JP2006151314A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2006151314A
JP2006151314A JP2004348381A JP2004348381A JP2006151314A JP 2006151314 A JP2006151314 A JP 2006151314A JP 2004348381 A JP2004348381 A JP 2004348381A JP 2004348381 A JP2004348381 A JP 2004348381A JP 2006151314 A JP2006151314 A JP 2006151314A
Authority
JP
Japan
Prior art keywords
circumferential groove
groove
tire
pneumatic tire
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004348381A
Other languages
Japanese (ja)
Inventor
Keita Yumii
慶太 弓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004348381A priority Critical patent/JP2006151314A/en
Publication of JP2006151314A publication Critical patent/JP2006151314A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of reducing columnar pipe resonance sound generated from a tire circumferential groove without reducing hydroplaning performance. <P>SOLUTION: A helically continuous recession/projection 20 forming an angle of 30-60° with a tire axial direction is provided on a groove bottom surface 10b at a groove 10a and the groove bottom surface 10b of a circumferential groove 10 formed on a tread part 2 of the pneumatic tire 1. A stream of air is disturbed to reduce columnar pipe resonance sound by the helical recession/projection 20 provided in an oblique direction relative to an extension direction of the circumferential groove 10. Water intruded into the circumferential groove 10 is discharged while rotation along the helical recession/projection 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空気入りタイヤに関するもので、特に、タイヤトレッド部に形成された周方向溝の気柱管共鳴音に起因するタイヤ騒音の低減に関する。   The present invention relates to a pneumatic tire, and more particularly, to reduction of tire noise caused by air column resonance noise of a circumferential groove formed in a tire tread portion.

近年、車両の静粛化に伴って、タイヤに起因したノイズの自動車騒音に対する寄与が大きくなり、その低減が求められている。中でも、高周波数、特に、1000Hz周辺のタイヤノイズは車外騒音の主原因となっており、環境問題への対応からも、その低減対策が必要不可欠である。
この1000Hz周辺のタイヤノイズは、タイヤトレッド表面に形成される周方向溝が接地する際に、タイヤと路面との間に形成された管状の空洞の共鳴現象により発生することから、一般に気柱管共鳴音と言われている。
この気柱管共鳴音を抑制するための手法としては、従来、周方向溝の本数や容積を減少させることがよく知られているが、この手法では周方向溝による排水機能が低下することから、ハイドロプレーニング現象に代表されるウエット性能の低下をもたらす。
もう一つの手法としては、上記手法とは逆に周方向溝幅を広げる方法がある(例えば、特許文献1参照)。しかしながら、この場合には、接地面積の大幅な減少並びに接地圧の幅方向分布に大きな段差が生じるため、特に、ドライ路面における操縦安定性、限界グリップ特性との両立が難しいという問題点があった。
In recent years, with the quietness of vehicles, the contribution of noise caused by tires to automobile noise has increased, and the reduction thereof has been demanded. Above all, tire noise at a high frequency, particularly around 1000 Hz, is a main cause of noise outside the vehicle, and countermeasures for reducing the noise are indispensable for dealing with environmental problems.
Since the tire noise around 1000 Hz is generated by the resonance phenomenon of the tubular cavity formed between the tire and the road surface when the circumferential groove formed on the surface of the tire tread is grounded, generally, the air column tube It is said to be a resonance sound.
As a technique for suppressing the air column resonance noise, it has been well known that the number and volume of the circumferential grooves are conventionally reduced. However, in this technique, the drainage function by the circumferential grooves is lowered. This causes a decrease in wet performance as typified by the hydroplaning phenomenon.
As another method, there is a method of widening the circumferential groove width contrary to the above method (see, for example, Patent Document 1). However, in this case, there is a problem in that it is difficult to achieve both the steering stability on the dry road surface and the limit grip characteristics, because the contact area is greatly reduced and a large step is generated in the distribution in the width direction of the contact pressure. .

そこで、図3(a),(b)に示すように、周方向溝10の溝壁面10aの全域のタイヤ半径方向及び周方向に凹凸11を設けて上記溝壁面10aを起伏させたり、図4に示すように、周方向溝10の溝壁面10aと溝底面10bとに小凹部12を分散配列させるなどして、騒音音圧レベルを低減させる方法が提案されている。すなわち、上記凹凸11や小凹部12の存在により周方向溝10の接地域内に流入する空気の流路断面積が変動し、気柱内の定在波の生成が阻害されるとともに、上記気柱内の騒音が上記凹凸11や小凹部12で反射して互いに干渉し合うので、騒音音圧レベルを低減することができる。また、周方向溝10は、凹凸11や小凹部12があっても、その溝幅や深さには変化がないので、ウエット性能を低下させることなく、タイヤノイズを低減することができる(例えば、特許文献2,3参照)。
特許第2698739号公報 特開平4−334606号公報 特開平7−17217号公報
Therefore, as shown in FIGS. 3 (a) and 3 (b), the groove wall surface 10a is undulated by providing irregularities 11 in the tire radial direction and the circumferential direction of the entire groove wall surface 10a of the circumferential groove 10. As shown in FIG. 4, a method for reducing the noise and sound pressure level has been proposed, for example, by arranging the small concave portions 12 in a distributed manner on the groove wall surface 10a and the groove bottom surface 10b of the circumferential groove 10. That is, the presence of the irregularities 11 and the small recesses 12 fluctuates the cross-sectional area of the air flowing into the contact area of the circumferential groove 10, thereby inhibiting the generation of standing waves in the air column, and Since the noise in the pillar is reflected by the unevenness 11 and the small recess 12 and interferes with each other, the noise sound pressure level can be reduced. Further, even if the circumferential groove 10 has the unevenness 11 and the small recessed portion 12, the groove width and depth thereof are not changed, so that the tire noise can be reduced without reducing the wet performance (for example, Patent Documents 2 and 3).
Japanese Patent No. 2698739 JP-A-4-334606 Japanese Patent Laid-Open No. 7-17217

しかしながら、上記溝壁面10aに凹凸11を設けたり、周方向溝10の溝壁面10a及び溝底面10bに小凹部12を分散配列させる方法では、気柱管共鳴音の低減については改善されるものの、上記凹凸11や小凹部12が溝内の水の流れを阻害するように分布せざるを得ないことから、構内の水を速やかに排水することができず、そのため、周方向溝10の溝幅や深さが同じであっても、ハイドロプレーニング性能を十分に確保できているとはいえなかった。   However, in the method in which the concave and convex portions 11 are provided on the groove wall surface 10a or the small concave portions 12 are dispersed and arranged on the groove wall surface 10a and the groove bottom surface 10b of the circumferential groove 10, the reduction of the air column resonance noise is improved. Since the unevenness 11 and the small recesses 12 must be distributed so as to inhibit the flow of water in the groove, the water in the premises cannot be drained quickly, and therefore the groove width of the circumferential groove 10 Even if the depth was the same, it could not be said that the hydroplaning performance was sufficiently secured.

本発明は、従来の問題点に鑑みてなされたもので、ハイドロプレーニング性能を低下させることなく、タイヤ周方向溝から発生する気柱管共鳴音を低減することのできる空気入りタイヤを提供することを目的とする。   The present invention has been made in view of conventional problems, and provides a pneumatic tire that can reduce air columnar resonance generated from a tire circumferential groove without reducing hydroplaning performance. With the goal.

本発明者らは、鋭意検討の結果、周方向溝の壁面と底面とに螺旋状の連続する凹凸(起伏)を設け、この周方向溝と角度を持って形成された螺旋状の連続する凹凸により周方向溝内での空気の流れを乱すことで、空気のポンピング作用に起因する気柱管共鳴音を低減することが可能になるとともに、溝内に浸入してきた水を上記螺旋に沿って回転しながら速やかに排水させることができるので、ハイドロプレーニング性能を低下させることなく、気柱管共鳴音を低減できることを見出し本発明に想到したものである。
すなわち、本願の請求項1に記載の発明は、トレッド表面にタイヤ周方向に沿って延びる周方向溝を有する空気入りタイヤにおいて、上記周方向溝の溝壁面及び溝底面に螺旋状に連続する凹凸を設けたことを特徴とするものである。
請求項2に記載の発明は、上記凹凸の高さを上記周方向溝内で変化させたものである。
請求項3に記載の発明は、溝底における上記螺旋状の凹凸の延長方向とタイヤ軸方向とのなす角度を30〜60度の範囲内にあるようにしたものである。
請求項4に記載の発明は、上記凸部の高さを0.2〜1.0mmとしたものである。
請求項5に記載の発明は、上記凸部の幅を0.2〜1.0mmとしたものである。
請求項6に記載の発明は、上記凹部の幅を0.2〜1.0mmとしたものである。
As a result of intensive studies, the inventors have provided spiral continuous irregularities (undulations) on the wall surface and bottom surface of the circumferential groove, and the spiral continuous irregularities formed at an angle with the circumferential groove. By disturbing the air flow in the circumferential groove by the above, it becomes possible to reduce the air column resonance noise caused by the pumping action of the air, and the water that has entered the groove along the spiral Since the water can be drained quickly while rotating, the present inventors have found out that the air columnar resonance can be reduced without degrading the hydroplaning performance, and have arrived at the present invention.
That is, the invention according to claim 1 of the present application is a pneumatic tire having a circumferential groove extending along the tire circumferential direction on the tread surface, and the unevenness spirally continuing on the groove wall surface and the groove bottom surface of the circumferential groove. Is provided.
According to a second aspect of the present invention, the height of the unevenness is changed in the circumferential groove.
According to a third aspect of the present invention, the angle formed by the extending direction of the spiral irregularities at the groove bottom and the tire axial direction is in the range of 30 to 60 degrees.
According to a fourth aspect of the present invention, the height of the convex portion is 0.2 to 1.0 mm.
The invention described in claim 5 is such that the width of the convex portion is 0.2 to 1.0 mm.
The invention described in claim 6 is such that the width of the recess is 0.2 to 1.0 mm.

本発明によれば、周方向溝の壁面と底面とに螺旋状の連続する凹凸を設けたので、周方向溝内での空気の流れを乱してタイヤ走行時の気柱管共鳴音を低減するとともに、溝内の水も上記螺旋状の凹凸に沿って速やかに排水できるので、ハイドロプレーニング性能を低下させることなく、タイヤノイズを効果的に低減することができる。   According to the present invention, since the spiral groove is provided on the wall surface and bottom surface of the circumferential groove, the air flow in the circumferential groove is disturbed to reduce air columnar resonance noise during tire travel. In addition, since the water in the groove can be quickly drained along the spiral irregularities, tire noise can be effectively reduced without degrading the hydroplaning performance.

以下、本発明の最良の形態について、図面に基づき説明する。
図1(a),(b)は、本発明の最良の形態に係る空気入りタイヤの接地形状と周方向溝の詳細を示す模式図で、同図において、10は空気入りタイヤ1のトレッド部2に形成された周方向溝、20は上記周方向溝10の溝壁面10aと溝底面10bとに設けられた螺旋状の連続する凹凸である。本例では、上記周方向溝10の溝底面10bにおける上記螺旋状の連続する凹凸20の延長方向とタイヤ軸方向とのなす角度θを30〜60度の範囲内とするとともに、上記凸部20aの高さを0.2〜1.0mm、幅を0.2〜1.0mmとし、上記凹部20bの幅を0.2〜1.0mmとしている。
上記螺旋状の連続する凹凸20は、上記のように、タイヤ周方向に対して斜めに形成されているので、周方向溝10の接地域内に流入する空気は、上斜めの凹凸20により流れが乱される。したがって、タイヤと路面との間に形成された管状の空洞に発生する定在波を抑制することができ、気柱管共鳴音を低減することが可能になる。
また、粘性が空気よりも大きい水は、上記螺旋状の凹凸20に沿って回転しながら周方向溝10を通って排水されるので、溝壁面10aと溝底面10bと凹凸20があっても、ハイドロプレーニング性能が低下することはない。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
1A and 1B are schematic views showing details of a ground contact shape and a circumferential groove of a pneumatic tire according to the best mode of the present invention, in which 10 is a tread portion of the pneumatic tire 1. Reference numeral 20 denotes a circumferential groove 20 formed on the groove wall surface 10 a and the groove bottom surface 10 b of the circumferential groove 10. In this example, the angle θ formed by the extending direction of the spiral continuous unevenness 20 on the groove bottom surface 10b of the circumferential groove 10 and the tire axial direction is within a range of 30 to 60 degrees, and the convex portion 20a. The height is 0.2 to 1.0 mm, the width is 0.2 to 1.0 mm, and the width of the recess 20b is 0.2 to 1.0 mm.
As described above, the spiral continuous unevenness 20 is formed obliquely with respect to the tire circumferential direction, so that air flowing into the contact area of the circumferential groove 10 flows through the upward oblique unevenness 20. Is disturbed. Therefore, the standing wave generated in the tubular cavity formed between the tire and the road surface can be suppressed, and air columnar resonance noise can be reduced.
Further, water having a viscosity higher than that of air is drained through the circumferential groove 10 while rotating along the spiral irregularities 20, so that even if there are the groove wall surface 10a, the groove bottom surface 10b, and the irregularities 20, Hydroplaning performance is not degraded.

このとき、上記螺旋状の連続する凹凸20の延長方向とタイヤ軸方向とのなす角度θを30〜60度の範囲内とすることが好ましい。すなわち、上記角度θが30度未満である場合には、周方向溝10に浸入してくる水の方向と上記凹凸20との角度が大きくなって、上記水を速やかに排水できないので、ハイドロプレーニング性能を保持することが困難であり、上記角度θが60度を超えると、上記凹凸20の角度と周方向溝10の角度とが近くなるので、空気の流れが十分に乱されず、気柱管共鳴音の低減効果が小さくなってしまうので、上記角度θは30〜60度の範囲内がよい。
また、上記凸部20aの高さと幅、及び、上記凹部20bの幅は、0.2〜1.0mmとすることが好ましい。すなわち、上記高さ及び幅が0.2未満である場合には、周方向溝10に浸入してくる水を回転させながら溝内を通す効果や、空気の流れを乱す効果が十分に得られず、また、上記高さ及び幅が1.0mmを超えると、凹凸が大きすぎて周方向溝10にクラックが生じる等、耐久性が悪化する恐れがあるので、上記凸部20aの高さと幅、及び、上記凹部20bの幅は0.2〜1.0mmがよい。
At this time, it is preferable that the angle θ formed by the extending direction of the spiral continuous unevenness 20 and the tire axial direction is within a range of 30 to 60 degrees. That is, if the angle θ is less than 30 degrees, the angle between the direction of the water entering the circumferential groove 10 and the unevenness 20 becomes large, and the water cannot be drained quickly. It is difficult to maintain the performance, and when the angle θ exceeds 60 degrees, the angle of the unevenness 20 and the angle of the circumferential groove 10 are close to each other, so that the air flow is not sufficiently disturbed, and the air column Since the effect of reducing the tube resonance sound is reduced, the angle θ is preferably in the range of 30 to 60 degrees.
The height and width of the convex portion 20a and the width of the concave portion 20b are preferably 0.2 to 1.0 mm. That is, when the height and width are less than 0.2, the effect of allowing the water entering the circumferential groove 10 to pass through the groove while rotating and the effect of disturbing the air flow are sufficiently obtained. In addition, if the height and width exceed 1.0 mm, the unevenness is so large that cracks may occur in the circumferential groove 10 and the durability may deteriorate, so the height and width of the convex portion 20a. And the width | variety of the said recessed part 20b has good 0.2-1.0 mm.

このように、本最良の形態によれば、空気入りタイヤ1のトレッド部2に形成された周方向溝10の溝壁面10aと溝底面10bとに、溝底面10bにおいて、タイヤ軸方向と30〜60度の角度をなす螺旋状の連続する凹凸20を設け、この周方向溝10の延長方向に対して斜め方向に設けられた螺旋状の凹凸20により、空気の流れを乱して気柱管共鳴音を低減するとともに、周方向溝10内に浸入してくる水を、上記螺旋状の凹凸20に沿って回転しながら排水するようにしたので、ハイドロプレーニング性能を低下させることなく、走行時の気柱管共鳴音を大幅に低減することができる。   Thus, according to this best mode, the groove wall surface 10a and the groove bottom surface 10b of the circumferential groove 10 formed in the tread portion 2 of the pneumatic tire 1 are separated from the tire axial direction by 30 to the groove bottom surface 10b. A spiral concavity and convexity 20 having an angle of 60 degrees is provided, and the air flow is disturbed by the spiral concavity and convexity 20 provided obliquely with respect to the extending direction of the circumferential groove 10 to disturb the air flow. While reducing resonance noise, water entering the circumferential groove 10 is drained while rotating along the spiral irregularities 20, so that the hydroplaning performance is not degraded and the vehicle is traveling. The air columnar resonance noise can be greatly reduced.

なお、上記最良の形態では、上記螺旋状の連続する凹凸20の高さを一定としたが、上記凹凸20の高さを周方向溝10内で変化させるようにすれば、空気の流れが一層乱されるので、気柱管共鳴音を更に低減することができる。
また、上記例では、周方向溝10をタイヤ軸に垂直にしたが、ジクザク状に折れ曲がっている周上溝であってもよく、また、その本数についても特に制限はない。
In the best mode, the height of the spiral continuous irregularities 20 is constant. However, if the height of the irregularities 20 is changed in the circumferential groove 10, the air flow is further increased. Since it is disturbed, the air column resonance noise can be further reduced.
In the above example, the circumferential groove 10 is perpendicular to the tire axis, but it may be a circumferential groove bent in a zigzag shape, and the number of the grooves is not particularly limited.

図1に示した、周方向溝に、タイヤ軸方向に対して45度傾いた螺旋状の凹凸が設けられたタイヤ(実施例)と、従来の周方向溝に凹凸のないタイヤ(比較例)について、気柱管共鳴音の測定を行った。
タイヤサイズは195/65R15で、これを6Jのリムにそれぞれ組込んだ。なお、タイヤ内圧は220kPaとした。
気柱管共鳴音の測定は、図2に示すように、試験タイヤTを回転ドラム51上で、押し付け荷重4.6kN、速度60km/hrにて走行させるとともに、タイヤ横方向2m、高さ0.25mの位置に設置したマイクロフォン52を前後1mの範囲で移動させながら、上記タイヤTの発生する騒音を検出し、1000Hzにおける音圧平均値を求めた。
また、ハイドロプレーニング性能については、上記タイヤTをそれぞれ装着した試験車両を、水膜10mmの走行路にて様々な速度で走行させ、ハイドロプレーニングが発生する最低速度により評価した。その結果を表1に示す。なお、評価値は、それぞれ、従来例を100とした値で、騒音レベルは数字の大きい方が低い。

Figure 2006151314
表1から明らかなように、本発明のタイヤは、騒音レベルが低く、ハイドロプレーニング性能についても、従来と同等であることが確認された。 The tire shown in FIG. 1 in which the circumferential groove is provided with spiral irregularities inclined by 45 degrees with respect to the tire axial direction (Example), and the conventional tire having no irregularities in the circumferential groove (Comparative Example) The air column resonance sound was measured.
The tire size was 195 / 65R15, and each was incorporated into a 6J rim. The tire internal pressure was 220 kPa.
As shown in FIG. 2, the measurement of the air column resonance noise is performed by running the test tire T on the rotating drum 51 with a pressing load of 4.6 kN and a speed of 60 km / hr, and with a tire lateral direction of 2 m and a height of 0. The noise generated by the tire T was detected while the microphone 52 installed at a position of 25 m was moved within a range of 1 m in the front and rear, and the sound pressure average value at 1000 Hz was obtained.
In addition, the hydroplaning performance was evaluated based on the minimum speed at which hydroplaning occurs by causing the test vehicle equipped with each of the tires T to travel at various speeds on the water film 10 mm travel path. The results are shown in Table 1. The evaluation values are values with the conventional example being 100, and the noise level is lower when the number is larger.
Figure 2006151314
As is clear from Table 1, the tire of the present invention has a low noise level, and it has been confirmed that the hydroplaning performance is equivalent to the conventional one.

このように、本発明によれば、ハイドロプレーニング性能を低下させることなく、走行時の気柱管共鳴音を大幅に低減することができるので、車両の安全性を確保しつつタイヤ騒音を小さくすることができる。   Thus, according to the present invention, the air columnar resonance noise during traveling can be significantly reduced without degrading the hydroplaning performance, so the tire noise is reduced while ensuring the safety of the vehicle. be able to.

本発明の最良の形態に係る空気入りタイヤの接地形状と周方向溝の詳細を示す模式図である。It is a schematic diagram which shows the detail of the grounding shape and circumferential groove | channel of the pneumatic tire which concerns on the best form of this invention. 気柱管共鳴音の測定方法を示す図である。It is a figure which shows the measuring method of air column resonance sound. 従来の周方向溝に凹凸が形成された空気入りタイヤの周方向溝を示す模式図である。It is a schematic diagram which shows the circumferential groove | channel of the pneumatic tire in which the unevenness | corrugation was formed in the conventional circumferential groove | channel. 従来の周方向溝に小凹部が形成された空気入りタイヤの周方向溝を示す模式図である。It is a schematic diagram which shows the circumferential groove | channel of the pneumatic tire in which the small recessed part was formed in the conventional circumferential groove | channel.

符号の説明Explanation of symbols

1 空気入りタイヤ、10 周方向溝、10a 溝壁面、10b 溝底面、
20 螺旋状の凹凸、20a 凸部、20b 凹部。
1 pneumatic tire, 10 circumferential groove, 10a groove wall surface, 10b groove bottom surface,
20 spiral irregularities, 20a convexity, 20b concaveity.

Claims (6)

トレッド表面にタイヤ周方向に沿って延びる周方向溝を有する空気入りタイヤにおいて、上記周方向溝の溝壁面及び溝底面に螺旋状の連続的な凹凸を設けたことを特徴とする空気入りタイヤ。   A pneumatic tire having a circumferential groove extending along a tire circumferential direction on a tread surface, wherein a spiral continuous unevenness is provided on a groove wall surface and a groove bottom surface of the circumferential groove. 上記凹凸の高さを周方向溝内で変化させたことを特徴とする請求項1に記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the height of the unevenness is changed in a circumferential groove. 上記螺旋状の凹凸がタイヤ軸方向となす角度が30〜60度の範囲内にあることを特徴とする請求項1または請求項2に記載の空気入りタイヤ。   The pneumatic tire according to claim 1 or 2, wherein an angle formed by the spiral irregularities with the tire axial direction is in a range of 30 to 60 degrees. 上記凸部の高さを0.2〜1.0mmとしたことを特徴とする請求項1〜請求項3のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 3, wherein a height of the convex portion is 0.2 to 1.0 mm. 上記凸部の幅を0.2〜1.0mmとしたことを特徴とする請求項1〜請求項3のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 3, wherein a width of the convex portion is 0.2 to 1.0 mm. 上記凹部の幅を0.2〜1.0mmとしたことを特徴とする請求項1〜請求項3のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 3, wherein a width of the recess is 0.2 to 1.0 mm.
JP2004348381A 2004-12-01 2004-12-01 Pneumatic tire Pending JP2006151314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348381A JP2006151314A (en) 2004-12-01 2004-12-01 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348381A JP2006151314A (en) 2004-12-01 2004-12-01 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2006151314A true JP2006151314A (en) 2006-06-15

Family

ID=36630095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348381A Pending JP2006151314A (en) 2004-12-01 2004-12-01 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2006151314A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013091A (en) * 2008-06-02 2010-01-21 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2021075273A (en) * 2019-11-12 2021-05-20 ハンコック タイヤ アンド テクノロジー カンパニー リミテッドHankook Tire & Technology Co., Ltd. Tire with noise reduction type main groove
KR20230023286A (en) * 2021-08-10 2023-02-17 넥센타이어 주식회사 Pneumatic tire with noise reduction block

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013091A (en) * 2008-06-02 2010-01-21 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2021075273A (en) * 2019-11-12 2021-05-20 ハンコック タイヤ アンド テクノロジー カンパニー リミテッドHankook Tire & Technology Co., Ltd. Tire with noise reduction type main groove
KR20210057841A (en) * 2019-11-12 2021-05-24 한국타이어앤테크놀로지 주식회사 Tires with noise-reducing main grooves
CN112848809A (en) * 2019-11-12 2021-05-28 韩国轮胎与科技株式会社 Tire with noise-reducing main groove
KR102283846B1 (en) * 2019-11-12 2021-08-03 한국타이어앤테크놀로지 주식회사 Tires with noise-reducing main grooves
JP7123107B2 (en) 2019-11-12 2022-08-22 ハンコック タイヤ アンド テクノロジー カンパニー リミテッド Tires with noise-reducing main grooves
AU2020267241B2 (en) * 2019-11-12 2022-12-08 Hankook Tire & Technology Co., Ltd Tire with noise-reducing main grooves
CN112848809B (en) * 2019-11-12 2023-03-10 韩国轮胎与科技株式会社 Tire with noise reducing main grooves
KR20230023286A (en) * 2021-08-10 2023-02-17 넥센타이어 주식회사 Pneumatic tire with noise reduction block
KR102587416B1 (en) 2021-08-10 2023-10-12 넥센타이어 주식회사 Pneumatic tire with noise reduction block

Similar Documents

Publication Publication Date Title
JP4639974B2 (en) Pneumatic tire
JP5129470B2 (en) Pneumatic tire
JP3949938B2 (en) Pneumatic tire
JP5231405B2 (en) Pneumatic tire
JP5350874B2 (en) Pneumatic tire
WO2004048130A1 (en) Pneumatic tire
JP2008049791A (en) Pneumatic tire
JP2006069305A (en) Pneumatic tire
KR20120022604A (en) Heavy duty pneumatic tire
JPH05254313A (en) Pneumatic tire
JPS585803B2 (en) low noise lug tires
CN106132728B (en) Tire
JP2009001204A (en) Pneumatic tire
JP5134879B2 (en) Pneumatic tire
JP4587795B2 (en) Pneumatic tire
JP5313322B2 (en) Pneumatic tire
JP2006151314A (en) Pneumatic tire
JP4755163B2 (en) Pneumatic tire
JP5117238B2 (en) Pneumatic tire
JP5879676B2 (en) Pneumatic tire
JP4759004B2 (en) Pneumatic tire
JP2010023760A (en) Tire
JP4939972B2 (en) Pneumatic tire
JP2008201200A (en) Pneumatic tire
JP5845216B2 (en) Pneumatic tire