JP2006150612A - Manufacturing method of transmission belt - Google Patents

Manufacturing method of transmission belt Download PDF

Info

Publication number
JP2006150612A
JP2006150612A JP2004340440A JP2004340440A JP2006150612A JP 2006150612 A JP2006150612 A JP 2006150612A JP 2004340440 A JP2004340440 A JP 2004340440A JP 2004340440 A JP2004340440 A JP 2004340440A JP 2006150612 A JP2006150612 A JP 2006150612A
Authority
JP
Japan
Prior art keywords
cog
rubber layer
mold
transmission belt
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004340440A
Other languages
Japanese (ja)
Inventor
Hitoshi Hanesaka
仁志 羽坂
Yasutsugu Kunihiro
康嗣 国広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2004340440A priority Critical patent/JP2006150612A/en
Publication of JP2006150612A publication Critical patent/JP2006150612A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a transmission belt extended in its life by accurately molding cog ridge parts including the joint part in a compressed rubber layer and improving the bending fatigue resistance of the joint part. <P>SOLUTION: In the manufacturing method of the transmission belt wherein a compressed rubber layer 7 and a stretched rubber layer 6 are arranged so as to be adjacent to an adhesive rubber layer 6 in which core wires 3 are embedded and the compressed rubber layer 7 has cog parts 12 wherein cog ridge parts 9a and 9b and cog valley parts 8 are arranged alternately, the joint parts 14a and 35a of the compressed rubber layer 7 are allowed to exist in the region of the cog ridge parts 9a and one of the cog ridge parts 9a including at least the joint parts 14a is molded by a hard mold 20b while the other ridge parts 9b are molded by a mold 20a made of a rubber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は伝動用ベルトの製造方法に係り、スノーモービル、スクーター及び一般産業用のベルトとして使用される高負荷用の変速ベルトであって圧縮ゴム層のジョイント部の位置するコグ山部の形状を安定させてジョイント部の耐屈曲疲労性を有する伝動用ベルトの製造方法に関する。   The present invention relates to a method for manufacturing a transmission belt, and is a high-load transmission belt used as a belt for snowmobiles, scooters and general industries, and the shape of a cog mountain portion where a joint portion of a compression rubber layer is located. The present invention relates to a method for manufacturing a transmission belt that is stabilized and has bending fatigue resistance of a joint portion.

従来から、スクーター、バギー、雪上車(スノーモービル)または一般産業用の機械分野の駆動系においては、駆動プーリと従動プーリに伝動用ベルトを懸架し、プーリの有効径を変化させて変速させるベルト式変速装置が用いられている。ここで使用されている伝動用ベルトは圧縮ゴム層と伸張ゴム層の両層もしくは圧縮ゴム層のゴム層にコグ山部とコグ谷部を交互に配したコグ部を有し、心線を接着ゴム層内に埋設した構成からなり、ローエッジダブルコグドベルトあるいはローエッジシングルコグドベルトなどのローエッジコグドベルトとして知られている。   Conventionally, in a drive system of a scooter, a buggy, a snow vehicle, or a general industrial machinery field, a transmission belt is suspended between a drive pulley and a driven pulley and the effective diameter of the pulley is changed to change the speed. A type transmission is used. The power transmission belt used here has a cog that has cog crests and cog troughs alternately arranged on both the compressed rubber layer and the stretched rubber layer or on the rubber layer of the compressed rubber layer. It has a configuration embedded in a rubber layer and is known as a low-edge cogged belt such as a low-edge double cogged belt or a low-edge single cogged belt.

上記のローエッジコグドベルトでは、長寿命化に対する要求が厳しさを増してきている。特に、溝幅可変プーリに掛架されてプーリへの巻き掛け径を無段階に変えながら動力を伝達する無段変速ベルトに使用する場合は、プーリから受ける過大な側圧のため、耐側圧性、耐屈曲性、耐磨耗性、そして耐熱性等が要求される。このために、上コグ部と下コグ部の形状、寸法なども検討されている。   In the above-mentioned low-edge cogged belt, the demand for extending the life is becoming stricter. In particular, when it is used for a continuously variable transmission belt that is hung on a variable groove width pulley and transmits power while changing the winding diameter of the pulley steplessly, because of excessive side pressure received from the pulley, side pressure resistance, Flexibility, abrasion resistance, heat resistance, etc. are required. For this reason, the shapes and dimensions of the upper and lower cog portions have been studied.

また、上記ローエッジコグドベルトの製造方法としては、予め用意したベルト周長よりも長い平面状の溝付母型の上に未加硫ゴムシートを設置し、プレスにより加熱加圧してコグ形状に型付けしたコグパッドを作製する。このコグパッドを成形ドラム上に装着した円筒状母型の凹条部と凸条部に嵌め込み、コグパッドのカット面を突き合わせてジョイントした後、心線を巻き付け、更に他のゴム層、補強布をこの上から巻き付けて成型を終え、加硫工程へ移行していた。(例えば、特許文献1)   In addition, as a manufacturing method of the low edge cogged belt, an unvulcanized rubber sheet is placed on a flat grooved mother die longer than a belt circumference prepared in advance, and is pressed into a cog shape by heating and pressing with a press. Make a cog pad. The cog pad is fitted into the concave and convex portions of the cylindrical master mold mounted on the forming drum, the cut surfaces of the cog pad are brought into contact with each other, the core wire is wound, and another rubber layer and reinforcing cloth are attached to the cog pad. After wrapping from above, the molding was completed and the process was shifted to the vulcanization process. (For example, Patent Document 1)

上記コグパッドは、1ないし数プライの補強布と未加硫ゴムシートとの積層体であって、長さ方向に一定ピッチでコグ山部とコグ谷部を交互に有している。
特開2001−317596号公報
The cog pad is a laminate of one to several plies of reinforcing cloth and an unvulcanized rubber sheet, and has cog crests and cog troughs alternately at a constant pitch in the length direction.
JP 2001-317596 A

しかし、厚みの厚いシートを円筒状母型に嵌め込んで直線状に突き合わせてジョイントした場合には、ゴムシートの内周と外周の差が大きいために、ジョイントの成形作業性が悪くなり、またジョイント部の母型が加硫中に変形して、正確な形状のジョイント部を成形できず、ベルト走行中にジョイント部を含むコグ部が変形しやすくなって疲労し、早期にジョイント部から亀裂が発生することがあった。更には、補強布がジョイント部へ侵入してジョイント部の接着不良が発生してここから割れが発生するといった不良や、突き合わせ部に間隙が生じてボリューム割れが起こり、ジョイント部の接合に欠陥が発生し、その結果ベルト走行時の負荷変動や発熱現象によってジョイント部から亀裂が発生することがあった。   However, when a thick sheet is fitted in a cylindrical matrix and joined together in a straight line, the difference in the inner and outer circumferences of the rubber sheet is large, resulting in poor joint molding workability. The joint mold is deformed during vulcanization, and the exact shape of the joint cannot be formed, and the cog including the joint is easily deformed and fatigued while the belt is running. May occur. In addition, the reinforcing cloth penetrates into the joint part and causes poor adhesion of the joint part, resulting in cracks from there, or a gap occurs in the butt part, resulting in volume cracking, resulting in defective joint joints. As a result, cracks may occur in the joint due to load fluctuations and heat generation during belt running.

本発明はかかる問題に着目し、鋭意研究した結果、圧縮ゴム層におけるジョイント部を含むコグ山部を正確に成形し、このジョイント部の耐屈曲疲労性を改善してベルト寿命を向上させた伝動用ベルトの製造方法を提供することを目的とする。   The present invention pays attention to such a problem, and as a result of earnest research, the cog mountain portion including the joint portion in the compressed rubber layer is accurately formed, and the bending fatigue resistance of the joint portion is improved to improve the belt life. It is an object of the present invention to provide a manufacturing method for an industrial belt.

上記した目的を達成すべく本願請求項記載の伝動用ベルトの製造方法では、心線を埋設した接着ゴム層に隣接して圧縮ゴム層と伸張ゴム層を配し、圧縮ゴム層がコグ山部とコグ谷部を交互に配したコグ部を有している伝動用ベルトの製造方法であり、該圧縮ゴム層のジョイント部をコグ山部の領域内に存在させるとともに、少なくともジョイント部を含むコグ山部の1つを硬質型で成形し、他のコグ山部をゴム製型で成形するものであり、硬質型が金属製、ゴム製、そして樹脂製から選ばれた型である場合、硬質型で成形されるジョイント部を含むコグ山部の数が1〜4である場合、そして伸張ゴム層コグ山部とコグ谷部を交互に配したコグ部を有している場合を含んでいる。   In order to achieve the above object, in the method for manufacturing a transmission belt according to the present invention, the compression rubber layer and the stretch rubber layer are disposed adjacent to the adhesive rubber layer in which the core wire is embedded, and the compression rubber layer is a cog mountain portion. And a cog trough having a cog portion alternately arranged, the joint portion of the compressed rubber layer being present in the region of the cog crest portion, and a cog including at least the joint portion. One of the ridges is molded with a hard mold, and the other cog ridge is molded with a rubber mold. If the rigid mold is a mold selected from metal, rubber, and resin, it is hard. Including the case where the number of the cog ridges including the joint part formed by the mold is 1 to 4, and the case of having the cog ridges in which the stretched rubber layer cog ridges and the cog valleys are alternately arranged. .

本発明に係る伝動用ベルトの製造方法では、ジョイント部を含むコグ山部の形状を精度よく成形し、ベルト走行中にジョイント部を含むコグ山部の繰り返しの変形を阻止し、それによる疲労を回避することによって、ジョイント部からの亀裂を低減してベルト寿命を向上させることができる効果がある。   In the method of manufacturing the transmission belt according to the present invention, the shape of the cog mountain portion including the joint portion is accurately formed, and the repeated deformation of the cog mountain portion including the joint portion is prevented during belt running, and fatigue caused thereby is prevented. By avoiding this, there is an effect that the cracks from the joint portion can be reduced and the belt life can be improved.

以下、本発明の実施例を添付図面に従って説明する。図1は本発明に係る伝動用ベルトの部分正面図、そして図2は本発明に係る他の伝動用ベルトの部分正面図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a partial front view of a transmission belt according to the present invention, and FIG. 2 is a partial front view of another transmission belt according to the present invention.

本発明の伝動用ベルト1は、接着ゴム層2内にポリエステル繊維、アラミド繊維、ガラス繊維等のコードからなる心線3が埋め込まれ、接着ゴム層2の上部、下部にはそれぞれ補強布4とゴム層5を積層した伸張ゴム層6と、また同様に補強布4とゴム層5を積層した圧縮ゴム層7がある。圧縮ゴム層7には、それぞれ一定ピッチでベルト長手方向に沿ってコグ谷部8とコグ山部9とを交互に配した下コグ部12が設けられている。   The power transmission belt 1 of the present invention has a cord 3 made of polyester fiber, aramid fiber, glass fiber or the like embedded in an adhesive rubber layer 2, and a reinforcing cloth 4 and an upper portion of the adhesive rubber layer 2, respectively. There is a stretched rubber layer 6 in which the rubber layer 5 is laminated, and a compressed rubber layer 7 in which the reinforcing cloth 4 and the rubber layer 5 are laminated in the same manner. The compressed rubber layer 7 is provided with lower cog portions 12 in which cog valley portions 8 and cog mountain portions 9 are alternately arranged at a constant pitch along the belt longitudinal direction.

本実施例では、伸張ゴム層6にはコグ部が存在せず、また両側面はコグ山部9の頂部からコグ谷部8の最底部にかけて逆V形に切断されたカット面にしてもよい。これによりプーリ内の側圧を心線3から圧縮ゴム層7に負担させることができ、心線3上部の伸張ゴム層6の剥離や欠損を遅延させることができる。   In this embodiment, the stretched rubber layer 6 does not have a cog, and both side surfaces may be cut surfaces that are cut in an inverted V shape from the top of the cog crest 9 to the bottom of the cog valley 8. . Thereby, the side pressure in the pulley can be borne from the core wire 3 to the compressed rubber layer 7, and the peeling or loss of the stretched rubber layer 6 above the core wire 3 can be delayed.

また本実施例では、ベルトの厚みをHとし、心線3のピッチラインから圧縮ゴム層7のコグ谷部9の最深部までの間隔をDとしたとき、0.2≦D/H≦0.26を満足している。この値は、ベルトの厚みHに対して心線3のピッチラインから圧縮ゴム層7のコグ谷部9の最深部までの間隔Dの占める割合を示すものであり、0.20未満では間隔Dが小さくなり過ぎて、ベルトの耐側圧性が低下により早期寿命に至る。一方、0.26を越えると、ベルトの可撓性が低下して耐屈曲性に欠け、早期にコグ谷部の最深部から亀裂が入りやすくなる。   Further, in this embodiment, when the belt thickness is H and the distance from the pitch line of the core wire 3 to the deepest portion of the cog valley portion 9 of the compressed rubber layer 7 is D, 0.2 ≦ D / H ≦ 0. .26 is satisfied. This value indicates the ratio of the distance D from the pitch line of the core wire 3 to the deepest part of the cog valley portion 9 of the compressed rubber layer 7 with respect to the belt thickness H, and the distance D is less than 0.20. Becomes too small, and the side pressure resistance of the belt decreases, leading to an early life. On the other hand, if it exceeds 0.26, the flexibility of the belt is lowered and the bending resistance is poor, and cracks are likely to occur from the deepest part of the cog valley at an early stage.

更に、図1に示す圧縮ゴム層7では、ジョイント部14aがコグ山部9の領域内に存在し、ジョイント部14aを含むコグ山部9aの領域(本実施例では2山強で交差した斜線を有する領域)は、硬質型で成形されているために変形することなく、コグ形状が精度よく成形され、ベルト走行中にジョイント部を含むコグ山部の繰り返しの変形を阻止し、それによる疲労を回避することによって、ジョイント部からの亀裂を低減できる。硬質型で成形した領域のコグ山部の数は1〜4であり、特に4を超えると成形型のコストが高くなる。   Further, in the compressed rubber layer 7 shown in FIG. 1, the joint portion 14a exists in the region of the cog mountain portion 9, and the region of the cog mountain portion 9a including the joint portion 14a (in this embodiment, the diagonal line intersecting at two mountain peaks). The area that has) is molded with a hard mold, so that the cog shape is accurately molded without deformation, preventing repeated deformation of the cog crest including the joint during belt running, and fatigue due to it By avoiding this, cracks from the joint can be reduced. The number of cog ridges in the region molded with the hard mold is 1 to 4, and when it exceeds 4, the cost of the mold increases.

図2に示す他の伝動用ベルト1では、伸張ゴム層6がコグ山部9とコグ谷部8を交互に配した上コグ部11を有している。伸張ゴム層6に設けたジョイント部14bは上コグ部11のコグ山部9の領域(本実施例では2山強で交差した斜線を有する領域)に存在し、しかも心線3に対して直角にすることが好ましい。これは接着ゴム層6のゴムがジョイント部14bへ侵入しても表面まで侵入させないためである。ジョイント部14bの位置はジョイント部14aと相違させることが応力集中を避け亀裂を阻止する上で好ましい。   In the other power transmission belt 1 shown in FIG. 2, the stretched rubber layer 6 has upper cog portions 11 in which cog mountain portions 9 and cog valley portions 8 are alternately arranged. The joint portion 14b provided in the stretched rubber layer 6 is present in the region of the cog crest portion 9 of the upper cog portion 11 (in this embodiment, a region having diagonal lines intersecting with two or more crests) and is perpendicular to the core wire 3. It is preferable to make it. This is because even if the rubber of the adhesive rubber layer 6 enters the joint portion 14b, it does not enter the surface. The position of the joint part 14b is preferably different from the joint part 14a in order to prevent stress concentration and prevent cracks.

上記圧縮ゴム層6および伸張ゴム層7になるゴムは、天然ゴム、ブチルゴム、スチレン−ブタジエンゴム、クロロプレンゴム、エチレン−プロピレンゴム、アルキル化クロロスルファン化ポリエチレン、水素化ニトリルゴム、水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマー等のゴム材の単独、またはこれらの混合物が使用される。   The rubber to be the compression rubber layer 6 and the stretch rubber layer 7 is natural rubber, butyl rubber, styrene-butadiene rubber, chloroprene rubber, ethylene-propylene rubber, alkylated chlorosulfanated polyethylene, hydrogenated nitrile rubber, hydrogenated nitrile rubber. A rubber material such as a mixed polymer of an unsaturated carboxylic acid metal salt or a mixture thereof is used.

そして、上記圧縮ゴム層6および伸張ゴム層7には、アラミド繊維、ポリアミド繊維、ポリエステル繊維、綿等の繊維からなり繊維の長さは繊維の種類によって異なるが1〜10mm程度の短繊維が用いられ、例えばアラミド繊維であると3〜5mm程度、ポリアミド繊維、ポリエステル繊維、綿であると5〜10mm程度のものが用いられる。そして、上記ゴム層中の短繊維の方向はベルトの長手方向に対して直角方向を向いているのを90°としたときほとんどの短繊維が70〜110°の範囲内に配向されていることが望ましい。接着ゴム層2には、上記短繊維を含めてもよいが、好ましくは含めない。   The compressed rubber layer 6 and the stretched rubber layer 7 are made of fibers such as aramid fiber, polyamide fiber, polyester fiber, and cotton, and the length of the fiber varies depending on the type of fiber, but short fibers of about 1 to 10 mm are used. For example, about 3 to 5 mm for aramid fibers, about 5 to 10 mm for polyamide fibers, polyester fibers, and cotton are used. And the direction of the short fiber in the rubber layer is oriented within the range of 70 to 110 ° when the direction perpendicular to the longitudinal direction of the belt is 90 °. Is desirable. The adhesive rubber layer 2 may include the short fibers, but preferably does not include them.

補強布4は綿、ポリエステル繊維、ナイロン等からなり、平織、綾織、朱子織等に製織した布で、経糸と緯糸との交差角が90〜120°程度の広角度帆布でもよい。補強布4はRFL処理した後、ゴム組成物をフィリクション・コーチングしてゴム付帆布とする。RFL液はレゾルシンとホルマリンとの初期縮合物をラテックスに混合したものであり、ここで使用するラテックスとしてはクロロプレン、スチレン・ブタジエン・ビニルピリジン三元共重合体、水素化ニトリル、NBRなどである。   The reinforcing cloth 4 is made of cotton, polyester fiber, nylon or the like, and is a cloth woven into a plain weave, twill weave, satin weave, or the like, and may be a wide angle canvas with a warp and weft crossing angle of about 90 to 120 °. The reinforcing cloth 4 is subjected to RFL treatment, and then the rubber composition is subjected to fiction and coaching to obtain a canvas with rubber. The RFL liquid is obtained by mixing an initial condensate of resorcin and formalin into a latex. Examples of the latex used here include chloroprene, styrene / butadiene / vinylpyridine terpolymer, hydrogenated nitrile, NBR, and the like.

図3は図1に示す伝動用ベルト1(コグドベルト)の製造方法の一例であって型上で圧縮ゴム層、心線、そして伸張ゴム層からなる成形体の作製状態を示すところである。まず、歯部21と溝部22を交互に有する成形型20を真円型19上に装着する。この成形型20は加硫ゴム製のゴム製型20aと金属製、硬度の高いゴム製、そしてフェノール、ポリアセタールのような熱硬化性樹脂製から選ばれた硬質型20bとを接合して円筒状にしたものである。ゴム製型20aと硬質型20bの接合は、架橋型接着剤を界面に塗布し、加熱することによって行う。また、ゴム製型20aと硬質型20bの内面に跨って補強布を貼り付けることもできる。   FIG. 3 is an example of a method for manufacturing the transmission belt 1 (cogged belt) shown in FIG. 1 and shows a state of producing a molded body comprising a compression rubber layer, a core wire, and an extension rubber layer on the mold. First, the mold 20 having the teeth 21 and the grooves 22 alternately is mounted on the perfect circle 19. The molding die 20 is formed by joining a rubber die 20a made of vulcanized rubber and a hard die 20b selected from metal, a hard rubber, and a thermosetting resin such as phenol and polyacetal. It is a thing. The rubber mold 20a and the hard mold 20b are joined by applying a cross-linking adhesive to the interface and heating. Further, a reinforcing cloth can be pasted across the inner surfaces of the rubber mold 20a and the hard mold 20b.

図4に示すように1〜数枚の補強布と圧縮ゴム層になる未加硫ゴムシートを積層し、これを別に準備した歯部と溝部とを交互に配した平坦な金型の上に設置し、加圧することによってコグ山部29とコグ谷部28を型付けしたコグパッド30に仕上げる。   As shown in FIG. 4, one to several sheets of reinforcing cloth and an unvulcanized rubber sheet to be a compressed rubber layer are laminated, and this is prepared on a flat mold in which teeth and grooves prepared alternately are arranged. The cog pad portion 30 and the cog valley portion 28 are finished into a cog pad 30 by installing and pressurizing.

コグパッド30の一方の切断部32は、図4に示すようにコグ山部28の頂部31で角度αが0〜10°に切断され、更にコグパッド30を反転させて他方の切断部33も同様にコグ山部29で逆方向へ傾斜するように切断される。上記コグパッド30をエンドレスにするとき、切断面が良好に密着する。   One cutting portion 32 of the cog pad 30 is cut at an angle α of 0 to 10 ° at the top portion 31 of the cog crest portion 28 as shown in FIG. 4, and the other cutting portion 33 is similarly turned by inverting the cog pad 30. It is cut so as to incline in the reverse direction at the cog mountain portion 29. When making the cog pad 30 endless, the cut surface adheres well.

成形機(図示せず)に成形型20を装着し、モールドの溝部22にコグパッドのコグ山部29を嵌合しながら、所定長さのコグパッド30をモールド20に一周巻き付けてカット端部を面接触させてジョイント部35aを形成する。このジョイント部35aは成形型20の金属製の硬質型20bの溝部22に位置させる。そして、接着ゴム層になる未加硫ゴムシート40を巻き付けた後、心線41をスパイラルに巻き付け、その上に1〜数枚の補強布42と伸張ゴム層の未加硫ゴムシート43の積層物を巻き付けて該カット端部を面接触させてジョイント部35bを形成し、成形体25を作製する。   The molding die 20 is mounted on a molding machine (not shown), and the cog pad 30 of the cog pad is fitted around the groove 22 of the mold while the cog pad 30 of a predetermined length is wound around the mold 20 to face the cut end. The joint part 35a is formed by contact. The joint portion 35 a is positioned in the groove portion 22 of the metal hard die 20 b of the forming die 20. And after winding the unvulcanized rubber sheet 40 used as an adhesive rubber layer, the core wire 41 is wound around the spiral, and 1 to several sheets of reinforcing cloth 42 and the unvulcanized rubber sheet 43 of the stretched rubber layer are laminated thereon. An object is wound and the cut end portion is brought into surface contact to form the joint portion 35b.

本実施例では、成形機から取り出した溝付きモールド20を支持台上に設置し、加硫ゴム製の円筒状母型、そしてジャケット(図示せず)を嵌入する。   In the present embodiment, the grooved mold 20 taken out from the molding machine is placed on a support base, and a cylindrical mother die made of vulcanized rubber and a jacket (not shown) are fitted therein.

最終工程として、成形体を加硫缶へ移して通常の方法で加硫を行う。加硫した後、ジャケット、母型、続いて円筒状のスリーブを成形型20から抜き取り、スリーブを所定幅に切断して図1に示すようなコグドベルト1に仕上げる。このようにして金属製の硬質型20bで成形したジョイント部35aを含むコグ山部は、コグ形状が精度よく成形され、ジョイント部35aを含むコグ山部を正確に成形し、このジョイント部35aの耐屈曲疲労性が改善する。   As a final step, the molded body is transferred to a vulcanizing can and vulcanized by a normal method. After vulcanization, the jacket, the mother die, and then the cylindrical sleeve are removed from the forming die 20, and the sleeve is cut to a predetermined width to finish the cogged belt 1 as shown in FIG. In this way, the cog mountain portion including the joint portion 35a formed by the metal hard mold 20b is accurately formed in the cog shape, and the cog mountain portion including the joint portion 35a is accurately formed. Bending fatigue resistance is improved.

以下、更に具体的な実験例により本発明の効果を確認する。
実施例1、比較例1
心線として1,500デニールのアラミド繊維(商品名:トワロン)を上撚り数19.7回/10cm、下撚り数15.8回/10cmで上下逆方向に撚糸して2×3の撚り構成とし、トータルデニール9,000の未処理コードを準備した。次いで、この未処理コードをイソシアネート系接着剤でプレディップした後、約170〜180°Cで乾燥し,RFL液に浸漬した後、200〜240°Cで延伸熱固定処理を行ない処理コードにした。
Hereinafter, the effects of the present invention will be confirmed by more specific experimental examples.
Example 1 and Comparative Example 1
Twisted configuration of 1,500 denier aramid fiber (trade name: Twaron) as a core wire, twisted in the upside down direction with an upper twist number of 19.7 times / 10 cm and a lower twist number of 15.8 times / 10 cm And an unprocessed code with a total denier of 9,000 was prepared. Next, this untreated cord was pre-dipped with an isocyanate-based adhesive, dried at about 170 to 180 ° C., immersed in an RFL solution, and then stretched and fixed at 200 to 240 ° C. to obtain a treated cord. .

補強布として、アラミド繊維(商品名:トワロン)とポリエチレンテレフタレート繊維を重量比で50:50の混撚糸を使用したワイドアングルの平織帆布を用いた。これらの帆布をRFL液に浸漬した後、150°Cで2分間熱処理して処理帆布とした。その後、これらの処理帆布にゴム組成物をフリクション・コーチングして、ゴム付帆布とした。   A wide-angle plain woven canvas using a 50:50 blended yarn of aramid fiber (trade name: Twaron) and polyethylene terephthalate fiber in a weight ratio was used as the reinforcing fabric. These canvases were immersed in an RFL solution and then heat treated at 150 ° C. for 2 minutes to obtain treated canvases. Thereafter, a rubber composition was friction coated with these treated canvases to obtain rubberized canvases.

圧縮ゴム層と伸張ゴム層はアラミドの短繊維を含んだクロロプレンゴムからなるゴム組成物を用い、また接着ゴム層は短繊維を含まないクロロプレンゴムからなるゴム組成物を用いた。   A rubber composition made of chloroprene rubber containing short aramid fibers was used for the compression rubber layer and the stretch rubber layer, and a rubber composition made of chloroprene rubber containing no short fibers was used for the adhesive rubber layer.

コグパッドとして、1枚の補強布と所定厚みの圧縮ゴム層用シートとの積層物を、歯部と溝部を交互に配した平坦なコグ付き型に設置し、75°Cで加圧することによってコグ部を型付けしたコグパッドに形成した。上記コグパッドの両端をコグ山部の頂部から垂直に切断した。   As a cog pad, a laminate of a single reinforcing cloth and a sheet for a compressed rubber layer having a predetermined thickness is placed on a flat cog mold in which teeth and grooves are alternately arranged, and is pressed by pressing at 75 ° C. The part was formed on a cog pad with a mold. Both ends of the cog pad were cut vertically from the top of the cog crest.

成形型として、加硫ゴム製の軟質型とコグ山部の数2個のステンレス製の硬質型とを接合して円筒状に作製した。   A soft mold made of vulcanized rubber and two hard molds made of stainless steel at the cog mountain portion were joined to form a cylindrical mold.

これらの材料と型を用意した後、上記成形型にコグパッドを巻き付けてジョイント部を硬質型の溝部に配置させた後、接着ゴム用シート、心線、平坦な伸張ゴム層、補強布を順次巻き付けて成形体を作製した。続いて、モールドを支持台の所定位置に設置した後、内周面に一定間隔で溝部と突部を有する加硫ゴム製の円筒状母型を挿入した。その後、ジャケットを被せてモールドを加硫缶に設置し、加硫してベルトスリーブを得た。このスリーブをカッターによってV状に切断してダブルコグドベルトである変速ベルト(サイズ:上幅29.8mm、厚さ16.4mm、外周長866mm)に仕上げた。   After preparing these materials and molds, wrap a cog pad around the above mold and place the joint part in the groove of the hard mold, and then wrap the adhesive rubber sheet, core wire, flat stretch rubber layer, and reinforcing cloth in order. Thus, a molded body was produced. Subsequently, after the mold was installed at a predetermined position on the support base, a vulcanized rubber cylindrical matrix having grooves and protrusions was inserted into the inner peripheral surface at regular intervals. Then, the jacket was put on and the mold was placed in a vulcanizing can and vulcanized to obtain a belt sleeve. This sleeve was cut into a V shape by a cutter to finish a transmission belt (size: upper width 29.8 mm, thickness 16.4 mm, outer peripheral length 866 mm) which is a double cogged belt.

得られたベルトのジョイント部を含み、かつこれを直角に位置し心線と平行する圧縮ゴム層のカットサンプル(長さ100mm×幅5mm×厚さ2mm)を採取し、このサンプルを100℃の高温度室に30分放置後、ストログラフにて引張試験を実施して引張り強さ(N=4)を測定し、破損位置を確認した。その結果、引張り強さは4.9MPaであり、ジョイント部の切断箇所は25%であった。   A cut sample (length 100 mm × width 5 mm × thickness 2 mm) of the compressed rubber layer including the joint portion of the obtained belt and positioned at a right angle and parallel to the core wire was taken, and this sample was collected at 100 ° C. After leaving in a high temperature chamber for 30 minutes, a tensile test was performed with a strograph to measure the tensile strength (N = 4), and the breakage position was confirmed. As a result, the tensile strength was 4.9 MPa and the cut part of the joint part was 25%.

比較例1
成形型として、加硫ゴム製の軟質型を使用し、成形型に巻付けたコグパッドのジョイント部を配置させた。それ以外は実施例1と同様にしてダブルコグドベルトを作製した。
得られたベルトのジョイント部を含むサンプルの引張り強さ(N=4)は3.5MPaであり、ジョイント部の切断箇所は100%であった。
この結果、実施例のジョイント部の強度は比較例に比べて確実に向上していることが判った。
Comparative Example 1
A soft mold made of vulcanized rubber was used as a mold, and a cog pad joint portion wound around the mold was disposed. Other than that was carried out similarly to Example 1, and produced the double cogged belt.
The tensile strength (N = 4) of the sample including the joint portion of the obtained belt was 3.5 MPa, and the cut portion of the joint portion was 100%.
As a result, it was found that the strength of the joint portion of the example was definitely improved as compared with the comparative example.

本発明の伝動ベルトは、スノーモービル、スクーター及び一般産業用の変速ベルトに好適である。   The power transmission belt of the present invention is suitable for snowmobiles, scooters and general industrial transmission belts.

図1は本発明に係る伝動用ベルトの部分正面図である。FIG. 1 is a partial front view of a transmission belt according to the present invention. 図2は本発明に係る他の伝動用ベルトの部分正面図である。FIG. 2 is a partial front view of another transmission belt according to the present invention. 本発明に係る伝動用ベルトをモールド上で成形体を作製する状態を示す図である。It is a figure which shows the state which produces the molded object on the mold for the transmission belt which concerns on this invention. 本発明に係る伝動用ベルトの使用するコグパッドの斜視図である。It is a perspective view of the cog pad which the transmission belt concerning the present invention uses.

符号の説明Explanation of symbols

1 伝動用ベルト
2 接着ゴム層
3 心線
4 補強布
5 ゴム層
6 伸張ゴム層
7 圧縮ゴム層
8 コグ谷部
9a コグ山部
9b コグ山部
11 上コグ部
12 下コグ部
14a ジョイント部
35a ジョイント部
20a ゴム製型
20b 硬質型
DESCRIPTION OF SYMBOLS 1 Transmission belt 2 Adhesive rubber layer 3 Core wire 4 Reinforcement cloth 5 Rubber layer 6 Stretch rubber layer 7 Compression rubber layer 8 Cog valley part 9a Cog mountain part 9b Cog mountain part 11 Upper cog part 12 Lower cog part 14a Joint part 35a Joint Part 20a Rubber mold 20b Hard mold

Claims (4)

心線を埋設した接着ゴム層に隣接して圧縮ゴム層と伸張ゴム層を配し、圧縮ゴム層がコグ山部とコグ谷部を交互に配したコグ部を有している伝動用ベルトの製造方法であり、該圧縮ゴム層のジョイント部をコグ山部の領域内に存在させるとともに、少なくともジョイント部を含むコグ山部の1つを硬質型で成形し、他のコグ山部をゴム製型で成形したことを特徴とする伝動用ベルトの製造方法。   A transmission belt having a compression rubber layer and a stretch rubber layer adjacent to an adhesive rubber layer in which a core wire is embedded, and the compression rubber layer having a cog portion in which a cog peak portion and a cog valley portion are alternately arranged. A method of manufacturing, wherein the joint portion of the compressed rubber layer is present in the region of the cog crest, and at least one of the cog crests including the joint is molded with a hard mold, and the other cog crest is made of rubber. A method of manufacturing a transmission belt, characterized by being molded with a mold. 硬質型が金属製、ゴム製、そして樹脂製から選ばれた型である請求項1記載の伝動用ベルトの製造方法。   2. The method of manufacturing a transmission belt according to claim 1, wherein the hard mold is a mold selected from metal, rubber, and resin. 硬質型で成形されるジョイント部を含むコグ山部の数は1〜4である請求項1または2記載の伝動用ベルトの製造方法。   The method for manufacturing a transmission belt according to claim 1 or 2, wherein the number of cog ridges including a joint portion formed by a hard mold is 1 to 4. 伸張ゴム層はコグ山部とコグ谷部を交互に配したコグ部を有している請求項1乃至3の何れかに記載の伝動用ベルトの製造方法。
The method of manufacturing a transmission belt according to any one of claims 1 to 3, wherein the stretched rubber layer has a cog portion in which a cog mountain portion and a cog valley portion are alternately arranged.
JP2004340440A 2004-11-25 2004-11-25 Manufacturing method of transmission belt Pending JP2006150612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340440A JP2006150612A (en) 2004-11-25 2004-11-25 Manufacturing method of transmission belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004340440A JP2006150612A (en) 2004-11-25 2004-11-25 Manufacturing method of transmission belt

Publications (1)

Publication Number Publication Date
JP2006150612A true JP2006150612A (en) 2006-06-15

Family

ID=36629482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340440A Pending JP2006150612A (en) 2004-11-25 2004-11-25 Manufacturing method of transmission belt

Country Status (1)

Country Link
JP (1) JP2006150612A (en)

Similar Documents

Publication Publication Date Title
US8002922B2 (en) Power transmission belt and method of making a power transmission belt
KR102062739B1 (en) Transmission belt and manufacturing method therefor
EP1150034B1 (en) Power transmission belt and a method of forming a power transmission belt
JPH0531012B2 (en)
JP6532416B2 (en) Transmission belt, method of manufacturing transmission belt, reinforcing cloth, and method of manufacturing reinforcing cloth
JP3745963B2 (en) Power transmission belt and manufacturing method thereof
US6962639B2 (en) Power transmission belt and a method of forming a power transmission belt
JP4495294B2 (en) Low edge cog belt
JP4566320B2 (en) Manufacturing method of power transmission belt
JP2006150612A (en) Manufacturing method of transmission belt
JP2005351317A (en) Driving belt
JP3833901B2 (en) Manufacturing method of power transmission belt
JP4642970B2 (en) Power transmission belt and manufacturing method thereof
JPS5834697B2 (en) Multi-rib belt and its manufacturing method
JP5329613B2 (en) Manufacturing method of power transmission belt
JP4589136B2 (en) Manufacturing method of transmission belt
JP2002089631A (en) Belt for power transmission
JP3069968U (en) Power transmission belt
JP4094976B2 (en) Manufacturing method of transmission belt
JP4772518B2 (en) Manufacturing method of power transmission belt
JPS6228340B2 (en)
JP2006132784A (en) Power transmission belt
JP2002349637A (en) Belt for power transmission
JPS59208245A (en) Multirib belt and manufacture thereof
JP2001041292A (en) Power transmitting belt