JP2006150307A - Nutrient injection method - Google Patents
Nutrient injection method Download PDFInfo
- Publication number
- JP2006150307A JP2006150307A JP2004348103A JP2004348103A JP2006150307A JP 2006150307 A JP2006150307 A JP 2006150307A JP 2004348103 A JP2004348103 A JP 2004348103A JP 2004348103 A JP2004348103 A JP 2004348103A JP 2006150307 A JP2006150307 A JP 2006150307A
- Authority
- JP
- Japan
- Prior art keywords
- nutrient source
- container
- groundwater
- nutrient
- calcium carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Processing Of Solid Wastes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
本発明は、土壌及び地下水に浸透した汚染物質を微生物により、適切に浄化する方法に関する。 The present invention relates to a method for appropriately purifying contaminants that have penetrated into soil and groundwater with microorganisms.
従来、土壌及び地下水の汚染の浄化方法は、真空抽出法、エアースパージング法、揚水処理法、鉄粉法、石灰投入法、微生物利用法、土壌掘削置換法、土壌湿式洗浄法、不溶化処理法等、有害汚染物質(有機塩素系化合物)に応じて様々な方法で浄化処理をされている。 Conventionally, soil and groundwater contamination purification methods include vacuum extraction method, air sparging method, pumping treatment method, iron powder method, lime injection method, microorganism utilization method, soil excavation and replacement method, soil wet cleaning method, insolubilization treatment method, etc. Depending on the harmful pollutant (organochlorine compound), it has been purified by various methods.
特に微生物利用法は、有害汚染物質が地中に流入する原位置において、地中の土着している微生物(嫌気性微生物)の働きによって浄化する技術であり、栄養源を地下水中に注入して、微生物を増殖、活性化させる方法、いわゆるバイオレメディエーションである。 In particular, the microbial utilization method is a technology that purifies by the action of indigenous microorganisms (anaerobic microorganisms) at the site where harmful pollutants flow into the ground. This is a so-called bioremediation method for growing and activating microorganisms.
しかしながら、微生物は、地下水の上部シルト層に多く分布していることが、調査により判明しており、微生物の存在分布の多い部分に栄養源を供給して微生物を増殖・活性化させ、汚染された地下水を微生物により浄化する必要性があった。 However, investigations have revealed that many microorganisms are distributed in the upper silt layer of groundwater, and nutrients are supplied to the parts where there is a large distribution of microorganisms to grow and activate the microorganisms, resulting in contamination. There was a need to purify the groundwater by microorganisms.
この種の技術は、有害汚染物質で汚染された地下水の上流側及び下流側に電極を下部シルト層に達するまで埋設し、かつ、地下水上流側の電極の近傍に注入井戸を有して、地下水下流側の電極の近傍に揚水井戸を設けて地下水を循環させ、栄養源等を添加した後、有害汚染物質で汚染された領域の上部シルト層に具備した散水管及び注入井戸からの栄養源等により、微生物を活性化させ有害汚染物質(有機塩素系化合物)の浄化を行う方法が知られている。(例えば、特許文献1参照)。 This type of technology embeds electrodes upstream and downstream of groundwater contaminated with harmful pollutants until it reaches the lower silt layer, and has an injection well in the vicinity of the electrodes upstream of the groundwater. After setting up a pumping well near the downstream electrode, circulating groundwater, adding nutrients, etc., nutrients from sprinkler pipes and injection wells in the upper silt layer of the area contaminated with harmful pollutants, etc. There is known a method of activating microorganisms to purify harmful pollutants (organochlorine compounds). (For example, refer to Patent Document 1).
また、有害汚染物質(有機塩素系化合物)で汚染された地下水の上流側及び、下流側に注入井戸と揚水井戸を夫々設けて、地下水を循環させて栄養源等を添加させながら、地下水の流れる帯水層と、有害汚染物質で汚染された領域を挟んでのシルト層に、水平電極を具備し、微生物を活性化させ有害汚染物質の浄化を行う方法が知られている。(例えば、特許文献2参照)。
このような従来の方法では、設備が大掛かりであり、有害汚染物質(有機塩素系化合物)で汚染された地下水の二次汚染(汚染の拡散、漏洩)を引き起こす可能性があり、実施をするには施工が複雑になり、施工費用も莫大であるという課題があった。 In such a conventional method, the equipment is large-scale, and there is a possibility of causing secondary contamination (diffusion and leakage) of groundwater contaminated with harmful pollutants (organochlorine compounds). However, there is a problem that the construction is complicated and the construction cost is enormous.
本発明は、このような従来の課題を解決するものであり、有害汚染物質(有機塩素系化合物)が地中に流入する原位置において、地下水の流れる帯水層で微生物が生息しやすい環境を作り出し、簡易な施工で浄化できる方法を提供することを目的とする。 The present invention solves such a conventional problem, and in an original position where harmful pollutants (organochlorine compounds) flow into the ground, an environment in which microorganisms tend to inhabit in an aquifer in which groundwater flows is provided. The purpose is to provide a method that can be created and purified by simple construction.
本発明は上記目的を達成するために、有害汚染物質(有機塩素系化合物)で汚染された領域において、地下水の上流側に栄養源の注入井戸を少なくとも1箇所以上設け、シルト層と帯水層との地層の境界近傍に、栄養源と、真砂土及び炭酸カルシウムの混合物を充填せしめた容器を吊り下げる。 In order to achieve the above object, the present invention provides at least one nutrient well in the upstream of groundwater in an area contaminated with harmful pollutants (organochlorine compounds), a silt layer and an aquifer. A container filled with a nutrient source and a mixture of pure sand and calcium carbonate is hung near the boundary of the stratum.
吊り下げた容器内の炭酸カルシウムと真砂土の持っている水分との化学反応により、発熱作用が起こり、地下水の水温を上げることができ、栄養源も溶出し易くなり、微生物(嫌気性微生物)が生息する環境を維持継続することができる。 Due to the chemical reaction between the calcium carbonate in the suspended container and the water contained in the pure sand soil, an exothermic action takes place, the temperature of the groundwater can be raised, the nutrient source is easily eluted, and microorganisms (anaerobic microorganisms) Can maintain the environment inhabited.
これにより、土着している微生物を容器に坦持することにより、シルト層から帯水層に
流出した有害汚染物質(有機塩素系化合物)を、微生物の働きによって低分子化することができ、エチレン分解菌によって無害化にできる。
As a result, by carrying the indigenous microorganisms in the container, harmful pollutants (organochlorine compounds) that have flowed out of the silt layer into the aquifer can be reduced in molecular weight by the action of microorganisms. It can be rendered harmless by degrading bacteria.
また、容器から溶出する栄養源によって、帯水層で微生物を増殖、活性化させることができる。 In addition, microorganisms can be grown and activated in the aquifer by the nutrient source eluted from the container.
すなわち、本発明は、地下水中において、有害汚染物質(有機塩素系化合物)を微生物によって浄化させる栄養源の注入方法を特徴とするものである。 That is, the present invention is characterized by a method of injecting a nutrient source that purifies harmful pollutants (organochlorine compounds) by microorganisms in groundwater.
また、本発明は、観測井戸から揚水された有害汚染物質を含有する地下水は地上において、活性炭等によって有害物質を吸着させた後、注入井戸に循環させることにより、浄化の速度を促進させることも特徴とするものである。 In addition, the present invention can accelerate the purification speed by grounding groundwater containing harmful pollutants pumped from the observation well on the ground after adsorbing harmful substances with activated carbon or the like and circulating them in the injection well. It is a feature.
本発明によれば、シルト層と帯水層の地層の境界近傍に、栄養源と、真砂土及び炭酸カルシウムの混合物を充填せしめた容器を吊り下げることにより、微生物(嫌気性微生物)の増殖、活性化する環境を作り出すことができ、微生物の生息する領域を拡大することができる。 According to the present invention, in the vicinity of the boundary between the silt layer and the aquifer layer, a microorganism (anaerobic microorganism) is propagated by suspending a container filled with a nutrient source and a mixture of pure sand soil and calcium carbonate, An environment that can be activated can be created, and the area inhabited by microorganisms can be expanded.
すなわち、シルト層と帯水層の地層の境界に群生する微生物を、シルト層と帯水層の地層の境界近傍に、栄養源と、真砂土及び炭酸カルシウムの混合物を充填せしめた容器を吊り下げることにより、容器に充填された炭酸カルシウムと地下水が化学反応をして発熱させることができ、真砂土を加温すると同時に、栄養源も加温することになり、溶解しやすくなる。 In other words, suspend the microbes that grow on the boundary between the silt layer and the aquifer, and the container filled with the nutrient source and the mixture of sand sand and calcium carbonate near the boundary between the silt layer and the aquifer. As a result, calcium carbonate and groundwater filled in the container can react chemically to generate heat, and at the same time as heating the natural sand soil, the nutrient source is also heated and easily dissolved.
これにより、帯水層において、微生物を増殖、活性化させる環境下にすることができ、微生物の働きにより、有害汚染物質(有機塩素系化合物)を低分子化でき、さらに無害化処理ができる。 Thereby, in an aquifer, it can be under the environment where microorganisms are propagated and activated, and harmful pollutants (organochlorine compounds) can be reduced in molecular weight by the action of microorganisms and further detoxified.
本発明の栄養源の注入方法は、有害汚染物質で汚染された汚染部領域の地下水の上流側に、少なくとも一つの栄養源を注入する注入井戸を設け、前記汚染部領域の下流側に、少なくとも一つの観測井戸を設け、前記栄養源と、真砂土及び炭酸カルシウムの混合物を容器に充填し、前記注入井戸の前記容器を帯水層とシルト層の地層の境界近傍に投入することを特徴としたものである。 The method of injecting a nutrient source according to the present invention is provided with an injection well for injecting at least one nutrient source on the upstream side of groundwater in a contaminated area contaminated with harmful pollutants, and at least on the downstream side of the contaminated area. One observation well is provided, a container is filled with the nutrient source, a mixture of sand sand and calcium carbonate, and the container of the injection well is placed near the boundary between the aquifer and the silt layer. It is a thing.
有害汚染物質としては有機塩素系化合物を含む土壌及び/または地下水が挙げられる。 Hazardous pollutants include soil and / or groundwater containing organochlorine compounds.
有機塩素系化合物としては、例えば、テトラクロロエチレン、トリクロロエチレン、ジクロロエチレン、塩化ビニル、ジクロロメタン、クロロホルム、四塩化炭素、クロロエタン、ジクロロエタン、トリクロロエタン、ジクロロプロパン、ジクロロブロエチレン、ブロモジクロロメタン、クロロジブモメタン、ダイオキシンなどが挙げられる。特にテトラクロロエチレン、トリクロロエチレンおよび四塩化炭素の少なくとも1種の汚染物質を含む土壌及び/または地下水の浄化に適している。 Examples of organochlorine compounds include tetrachloroethylene, trichloroethylene, dichloroethylene, vinyl chloride, dichloromethane, chloroform, carbon tetrachloride, chloroethane, dichloroethane, trichloroethane, dichloropropane, dichlorobroethylene, bromodichloromethane, chlorodibumomethane, and dioxin. Can be mentioned. It is particularly suitable for the purification of soil and / or groundwater containing at least one contaminant of tetrachlorethylene, trichlorethylene and carbon tetrachloride.
上述した有害汚染物質は、微生物により低分子化又は無害化される。 The harmful pollutants described above are reduced in molecular weight or detoxified by microorganisms.
また、容器の内筒に充填する栄養源が、炭素数が6以上の直鎖状飽和カルボン酸を主成分とする栄養源であり、地下水への溶解性が徐放的な働きを有するため、原位置において、栄養源としての効き目の持続可能性が高いことから、微生物の生息、活性化、増殖が可能であり、微生物による有害汚染物質(有機塩素系化合物)を低分子化、又は無害化ができる。 In addition, the nutrient source to be filled in the inner cylinder of the container is a nutrient source mainly composed of a linear saturated carboxylic acid having 6 or more carbon atoms, and its solubility in groundwater has a slow release function. In situ, since the sustainability of the effect as a nutrient source is high, microorganisms can inhabit, activate, and grow, and harmful pollutants (organochlorine compounds) by microorganisms are reduced in molecular weight or made harmless Can do.
すなわち、この微生物の活性化の栄養源としては、炭素数が6以上の直鎖状飽和モノカルボン酸を含むものから選択され、少なくとも1種を用いることができる。 That is, the nutrient source for activating the microorganism is selected from those containing a linear saturated monocarboxylic acid having 6 or more carbon atoms, and at least one kind can be used.
炭素数が6以上の直鎖状飽和モノカルボン酸は、嫌気性微生物に対して基質としてだけではなく、水素供与体としても機能するとともに、融点が十分に高く、これを含む栄養源が土壌や地下水において徐放性の特性を維持しやすくなる。 A straight-chain saturated monocarboxylic acid having 6 or more carbon atoms functions not only as a substrate for anaerobic microorganisms but also as a hydrogen donor, and has a sufficiently high melting point. It becomes easier to maintain sustained release characteristics in groundwater.
この直鎖状飽和モノカルボン酸の炭素数の上限については特に限定するものではないが、工業的、また天然素材で入手容易なことから、炭素数が22以下のものが好ましい。 The upper limit of the carbon number of the straight-chain saturated monocarboxylic acid is not particularly limited, but those having 22 or less carbon atoms are preferred because they are industrially and easily available from natural materials.
更に固体状態から液状化することを考慮すると炭素数が8から18であることが最も好ましい。 Further, in consideration of liquefaction from the solid state, the carbon number is most preferably 8 to 18.
また、直鎖状飽和モノカルボン酸は、二重結合などの多重結合でないことから、融点を低下させることがなく、しかも水との比重がほぼ同じの為、土壌や地下水で固体状態を維持することが容易となる。 In addition, since the linear saturated monocarboxylic acid is not a multiple bond such as a double bond, the melting point is not lowered and the specific gravity with water is almost the same, so that the solid state is maintained in soil and groundwater. It becomes easy.
直鎖状飽和モノカルボン酸、すなわち脂肪酸は、水素供与体としての効率も優れている 。 The linear saturated monocarboxylic acid, that is, the fatty acid is also excellent in efficiency as a hydrogen donor.
上記直鎖状飽和モノカルボン酸としては、カプリル酸(融点16.5℃、比重0.91)、ペラルゴン酸(融点15℃、比重0.90552)、カプリン酸(融点31.3℃、比重0.8931)、ラウリン酸(融点44℃、比重1.0099)、ミリスチン酸(融点53.5℃、比重0.8533)、パルミチン酸(融点62.65℃、比重0.8414)、ステアリン酸(融点71℃、比重0.8428)及びこれらのカルボン酸の混合物等が挙げられる。 Examples of the linear saturated monocarboxylic acid include caprylic acid (melting point: 16.5 ° C., specific gravity: 0.91), pelargonic acid (melting point: 15 ° C., specific gravity: 0.90552), capric acid (melting point: 31.3 ° C., specific gravity: 0) 8931), lauric acid (melting point 44 ° C., specific gravity 1.0099), myristic acid (melting point 53.5 ° C., specific gravity 0.8533), palmitic acid (melting point 62.65 ° C., specific gravity 0.8414), stearic acid ( Melting point 71 ° C., specific gravity 0.8428) and mixtures of these carboxylic acids.
これらの中でも、ミリスチン酸、パルミチン酸、ステアリン酸が特に好ましい。 Among these, myristic acid, palmitic acid, and stearic acid are particularly preferable.
このミリスチン酸、パルミチン酸、ステアリン酸は、工業的に生産されており、安価で入手しやすい。 These myristic acid, palmitic acid, and stearic acid are industrially produced, and are inexpensive and easily available.
また、ミリスチン酸、パルミチン酸、ステアリン酸は、炭素数が比較的大きく、水への溶解度が低いため、徐々に地下水等の水分等に溶解(徐放性)して、土壌や地下水中の原位置で固体状態を保つことが容易である。 In addition, myristic acid, palmitic acid, and stearic acid have a relatively large number of carbon atoms and low solubility in water. Therefore, they gradually dissolve in water such as ground water (sustained release), and are dissolved in soil and groundwater. It is easy to keep a solid state in position.
また混合物としては、複数のカルボン酸を選択して人為的に混合したもの、牛脂脂肪酸、ヤシ油脂肪酸など天然素材から抽出した脂肪酸の混合物であってもよい。 Moreover, as a mixture, the mixture of the fatty acid extracted from natural raw materials, such as what selected several carboxylic acid and artificially mixed, beef tallow fatty acid, coconut oil fatty acid, may be sufficient.
また、炭素数が6以上の直鎖状飽和カルボン酸を主成分とする栄養源が固体の為、地下水に流される影響が少なく、原位置において栄養源としての効き目の持続可能性が高いことから、微生物の生息、活性化、増殖が可能であり、栄養源の再注入の期間が液体及びゲル状の栄養源と比較して長く、栄養源の過剰注入を防止できるとともに、栄養源の消費量を低く抑えることができる。 In addition, since the nutrient source mainly composed of linear saturated carboxylic acid having 6 or more carbon atoms is solid, it is less affected by groundwater and has high sustainability as a nutrient source in situ. It is possible to inhabit, activate, and grow microorganisms, and the period of re-injection of nutrients is longer than that of liquid and gel-like nutrients, preventing over-injection of nutrients and the consumption of nutrients Can be kept low.
すなわち、直鎖状飽和モノカルボン酸を主成分とする栄養源が固体であることにより、地下水へ少しずつ溶出し、ゲル状栄養源及び液状栄養源と比較して、原位置での栄養源としての効果であり、水への溶解度の持続性が高くなる。 That is, since the nutrient source mainly composed of linear saturated monocarboxylic acid is solid, it elutes little by little into the groundwater, and as an in-situ nutrient source compared to the gel nutrient source and the liquid nutrient source. The effect of this is that the sustainability of solubility in water increases.
言い換えれば、地下水による影響がゲル状栄養源及び液状栄養源と比較して小さいため、栄養源の補充期間が長く、地下水への過剰な溶解を防止できるため、自然状態に近い環境で有害汚染物質を浄化することができる。 In other words, the effects of groundwater are small compared to gel nutrients and liquid nutrients, so the nutrient replenishment period is long and excessive dissolution in groundwater can be prevented. Can be purified.
なお、直鎖状飽和モノカルボン酸を主成分とする栄養源の使用量については、特に限定するものではなく、栄養源の種類、汚染領域の面積、汚染物質の量などに応じて適宜設定することができる。 The amount of the nutrient source mainly composed of a linear saturated monocarboxylic acid is not particularly limited, and is appropriately set according to the type of the nutrient source, the area of the contaminated area, the amount of the contaminant, and the like. be able to.
例えば、汚染部領域の表層調査、浅層調査、深層調査によりサンプリングした土壌又は地下水に含有される汚染物質の種類及び量、競合物質(酸化物質)の種類及び量、地質条件(浸透性、温度)などを分析、特定して、汚染物質の種類、土壌および地下水の質量に対して含有する有害汚染物質の質量から濃度を割り出す。 For example, the types and amounts of pollutants contained in the soil or groundwater sampled by surface surveys, shallow surveys, and deep surveys in contaminated areas, types and amounts of competing substances (oxidizing substances), and geological conditions (penetration, temperature) ) Etc. are analyzed and identified, and the concentration is determined from the mass of harmful pollutants contained with respect to the types of pollutants and the mass of soil and groundwater.
そして、有害汚染物質の種類、濃度、栄養源の拡散性および塩素を水素に置換するための必要量との相関により、汚染部領域の有害汚染物質の量に対して0.1倍から15倍、好ましくは1倍から12倍の栄養源を注入井戸に注入することで、浄化効率を向上させることができる。 And it is 0.1 to 15 times the amount of harmful pollutants in the contaminated area due to correlation with the types and concentrations of harmful pollutants, diffusibility of nutrient sources, and the amount required to replace chlorine with hydrogen. Preferably, the purification efficiency can be improved by injecting 1 to 12 times the nutrient source into the injection well.
また、容器の内筒部分に、炭素数が6以上の直鎖状飽和カルボン酸を主成分とする栄養源と多孔性物質を混合して充填することにより、帯水層において微生物を坦持させることができ、原位置において、微生物による有害汚染物質(有機塩素系化合物)を低分子化、又は無害化ができる。 In addition, the inner cylinder portion of the container is filled with a nutrient source mainly composed of a straight-chain saturated carboxylic acid having 6 or more carbon atoms and a porous material, so that microorganisms are carried in the aquifer. In situ, harmful pollutants (organochlorine compounds) caused by microorganisms can be reduced in molecular weight or detoxified.
すなわち、栄養源と、多孔質物質(例えば、活性炭、石炭灰、木炭、亜炭、ゼオライト、ベントナイト、セラミックス、木片)を混合することにより、帯水層において微生物を容易に付着させることができる。 That is, by mixing a nutrient source and a porous substance (for example, activated carbon, coal ash, charcoal, lignite, zeolite, bentonite, ceramics, wood chips), microorganisms can be easily attached in the aquifer.
容器としては、ステンレス製の円筒形状としたことにより、地下水の流れの抵抗を小さくすることができる。 As the container, the resistance of the flow of groundwater can be reduced by adopting a stainless steel cylindrical shape.
なお、円筒以外、例えば断面形状が楕円形や多角形など、地下水の流れの抵抗が大きくならない形状であれば、同様の効果を得ることができる。 In addition, the same effect can be acquired if it is a shape where the resistance of the flow of groundwater does not increase, such as an elliptical shape or a polygonal shape other than a cylinder.
また、容器の長手方向の円周部分の少なくとも一部が、網状で形成されることにより、
栄養源の溶出を物理的に調整でき、微生物を坦持させやすくなる。
Further, at least a part of the circumferential portion of the container in the longitudinal direction is formed in a net shape,
It is possible to physically adjust the elution of nutrient sources, and it becomes easier to carry microorganisms.
これにより、地下水の流れを変えず、自然の流れを保つことができ、地中の状態の再調査を行わないで微生物による浄化をすることができる。 As a result, the flow of groundwater can be maintained without changing the flow of groundwater, and purification by microorganisms can be performed without reexamining the underground state.
さらに、容器の構造を外筒と内筒を有する二重構造とし、外筒に真砂土と炭酸カルシウムの混合物を、内筒に栄養源を夫々充填することにより、微生物(嫌気性微生物)が生息し、増殖、活性する環境を帯水層においてつくりだすことができ、容器の材質をステンレス製にすることにより防錆作用を有する。 Furthermore, microorganisms (anaerobic microorganisms) inhabit by making the container structure a double structure with an outer cylinder and an inner cylinder, filling the outer cylinder with a mixture of pure sand and calcium carbonate, and filling the inner cylinder with nutrients, respectively. In addition, it is possible to create an environment that proliferates and activates in the aquifer, and it has a rust prevention effect by making the container made of stainless steel.
また、容器の内筒部分に炭素数が6以上の直鎖状飽和カルボン酸を主成分とする栄養源を60%〜70%充填し、多孔質物質(例えば、活性炭、石炭灰、木炭、亜炭、ゼオライト、ベントナイト、セラミックス、木片)を40%〜30%の割合で混合することにより、微生物を帯水層内において坦持させることができる。 In addition, the inner cylinder portion of the container is filled with 60% to 70% of a nutrient source mainly composed of a linear saturated carboxylic acid having 6 or more carbon atoms, and a porous material (for example, activated carbon, coal ash, charcoal, lignite) , Zeolite, bentonite, ceramics, and wood chips) are mixed in a proportion of 40% to 30%, whereby microorganisms can be supported in the aquifer.
容器の内筒に充填された直鎖状飽和モノカルボン酸を主成分とする栄養源と多孔質物質の混合比率は、微生物の活性化する速度により変わるが、実験により確認した結果、直鎖状飽和モノカルボン酸を主成分とする栄養源を60%〜70%とし、多孔質物質を40%〜30%にすることにより、嫌気性微生物の付着量(菌数)が顕著に多かった。
The mixing ratio of the nutrient source mainly composed of linear saturated monocarboxylic acid filled in the inner cylinder of the container and the porous material varies depending on the activation rate of the microorganisms. By making the nutrient source mainly composed of saturated monocarboxylic acid 60% to 70% and the
例えば、容器を取り出して菌数を測定した結果、多孔質物質が30%未満の場合は約150個/mlであり、多孔質物質が40%を超える場合は約1000個/mlであったが、多孔質物質が35%の場合には約1000000個/mlであった。 For example, as a result of taking out the container and measuring the number of bacteria, it was about 150 / ml when the porous material was less than 30%, and about 1000 / ml when the porous material was over 40%. When the porous material was 35%, it was about 1000000 pieces / ml.
また、容器の外筒部分に充填する真砂土を60%〜75%、炭酸カルシウムを40%〜25%の体積割合で混合することにより、真砂土に含有する水分と炭酸カルシウムの反応により、40℃〜60℃の発熱をさせることができ、地下水の温度を上昇させるとともに、栄養源の溶解を促進することができるので、微生物を活性化させることができる。 Further, by mixing 60% to 75% of the pure sand soil filling the outer cylinder portion of the container and 40% to 25% of the volume of calcium carbonate, the reaction of moisture contained in the true sand soil and calcium carbonate results in 40%. Since heat generation can be performed at a temperature of 60 ° C. to 60 ° C., the temperature of groundwater can be raised and dissolution of nutrient sources can be promoted, so that microorganisms can be activated.
すなわち、容器の外筒に充填された真砂土と炭酸カルシウムの混合比率は、真砂土に含有する水分を炭酸カルシウムの2倍当量にすることで40℃〜60℃の発熱をさせることができるため、混合比率は真砂土の含水率を考慮し、真砂土60%〜75%、炭酸カルシウム40%〜25%にすることで、地下水の温度を上昇させる効果を奏するとともに、栄養源の溶解を促進する効果も奏することとなり、真砂土への嫌気性微生物の付着もし易くなる。
In other words, the mixing ratio of the pure sand soil and calcium carbonate filled in the outer cylinder of the container can generate heat of 40 ° C. to 60 ° C. by making the water contained in the true sand soil twice the equivalent of calcium carbonate. The mixing ratio takes into consideration the moisture content of pure sand soil, and by making the
例えば、容器の外筒に充填される真砂土の含水率が60%の場合において、真砂土を体積比で60%、炭酸カルシウムを体積比で40%として混合した時、約60℃の発熱を生じさせることができ、水中においては、30℃から40℃になることが発明者の実験により判った。 For example, when the moisture content of the pure sand soil filled in the outer cylinder of the container is 60%, when the pure sand soil is mixed at a volume ratio of 60% and calcium carbonate is mixed at a volume ratio of 40%, an exotherm of about 60 ° C. is generated. It has been found by experiments of the inventors that the temperature can be raised from 30 ° C. to 40 ° C. in water.
また、容器の内筒部分に栄養源を充填し、容器の外筒部分に真砂土と炭酸カルシウムの混合物を充填していることから、真砂土の粘度と微生物の栄養源が同時に存在することになり、微生物が生息しやすい環境になり、微生物による有害汚染物質(有機塩素系化合物)を低分子化し、さらに無害化処理ができる。 Moreover, since the nutrient tube is filled in the inner cylinder part of the container and the mixture of the pure sand soil and calcium carbonate is filled in the outer cylinder part of the container, the viscosity of the true sand soil and the nutrient source of microorganisms exist at the same time. Therefore, it becomes an environment in which microorganisms are liable to inhabit, and harmful pollutants (organochlorine compounds) caused by microorganisms can be reduced in molecular weight and further detoxified.
すなわち、栄養源を充填する容器については、外筒と内筒を有する二重構造にして、かつ、外筒部分に真砂土と炭酸カルシウムを混合したものを充填し、内筒部分に栄養源を充填したものが望ましい。 That is, for the container for filling the nutrient source, the container has a double structure having an outer cylinder and an inner cylinder, and the outer cylinder portion is filled with a mixture of pure sand and calcium carbonate, and the nutrient source is provided in the inner cylinder portion. Filled ones are desirable.
これによって、シルト層と帯水層との地層の境界近傍に、栄養源と、真砂土及び炭酸カルシウムの混合物を充填せしめた容器を吊り下げることにより、微生物(嫌気性微生物)の増殖、活性化する環境を作り出すことができ、微生物の生息する領域を拡大することができる。 In this way, microorganisms (anaerobic microorganisms) are proliferated and activated by suspending a container filled with a nutrient source and a mixture of pure sand and calcium carbonate near the boundary between the silt layer and the aquifer. Environment can be created, and the area where microorganisms inhabit can be expanded.
言い換えれば、容器に充填された炭酸カルシウムと地下水とが化学反応をして発熱することにより、真砂土を加温すると同時に栄養源も加温することになり、溶解しやすくなる。 In other words, the calcium carbonate filled in the container and the groundwater undergo a chemical reaction to generate heat, thereby heating the natural sand soil and simultaneously heating the nutrient source, which facilitates dissolution.
この結果、帯水層において、微生物を増殖、活性化させる環境にすることができ、その微生物の働きにより、有害汚染物質(有機塩素系化合物)を低分子化することで、さらに無害化処理ができる。 As a result, in the aquifer, it is possible to create an environment in which microorganisms grow and activate, and by the action of the microorganisms, harmful pollutants (organochlorine compounds) are reduced in molecular weight, thereby further detoxifying treatment. it can.
(実施例1)
以下、本発明の実施例について図面を用いて説明する。
Example 1
Embodiments of the present invention will be described below with reference to the drawings.
図1は、本発明の汚染部領域の栄養源の注入方法の断面外略図である。 FIG. 1 is a schematic cross-sectional view of a method for injecting a nutrient source in a contaminated area according to the present invention.
1は汚染部領域を示し、汚染部領域1は、表土2から地中に長い年月をかけて粘土などの上部シルト層3に浸透する。
さらに、上部シルト層3に滞留した有害汚染物質は、少しずつ地下水の流れる帯水層4に浸透して地下水の汚染を引き起こす。
Further, the harmful pollutants staying in the
この汚染部領域1の有害汚染物質を土着している嫌気性微生物を利用して浄化するために、帯水層4を流れる地下水の上流側に下部シルト層5に達する注入井戸6を設け、さらに、地下水の下流側に下部シルト層5に達する観測井戸7を設け、源注入井戸6から観測井戸7の間の帯水層4の有害汚染物質を含んだ地下水を観測井戸7に具備された揚水装置(図示なし)によって揚水し、地上の活性炭槽8によって、有害汚染物質を活性炭に吸着させ、浄化された地下水を注入井戸6に再度注入するようにしたものである。
An injection well 6 reaching the
栄養源の注入については、上部シルト層3と帯水層4との地層の境界近傍に、栄養源と、真砂土及び炭酸カルシウムの混合物を充填せしめた容器9を吊り下げることにより、土着している嫌気性微生物が容器9に付着して、汚染部領域1の有害汚染物質を低分子化にさせることができる。
As for the injection of the nutrient source, the
容器9は図2、図3に示すように、網を有した外筒10及び内筒11の二重構造の円筒形状を成す。
As shown in FIGS. 2 and 3, the
容器9は、地中の状態に応じて、注入井戸6に対して、単数又は複数吊り下げても良い。
One or
また、図4に示すように、容器9への栄養源と、真砂土及び炭酸カルシウムの混合物12の充填方法は、外筒10に真砂土及び炭酸カルシウムの混合物12を充填、内筒11に栄養源を充填させることにより、土着している嫌気性微生物が容器9に付着し易い環境をつくることができる。
As shown in FIG. 4, the method of filling the
また、栄養源を充填する内筒11に多孔質物質(例えば、活性炭、石炭灰、木炭、亜炭、ゼオライト、ベントナイト、セラミックス、木片)を混合して充填しても良い。
Moreover, you may mix and fill with the porous substance (For example, activated carbon, coal ash, charcoal, lignite, zeolite, bentonite, ceramics, a piece of wood) to the
これにより、嫌気性微生物の分布が、上部シルト層3と帯水層4の狭間に集中していたのが、帯水層においても分布範囲を広めることができ、汚染部領域1の有害汚染物質を低分子化、又は無害化することになる。
As a result, the distribution of the anaerobic microorganisms was concentrated between the
例えば、実際の汚染現場において、被汚染帯水層が、グランドライン(GL)から、−3m〜−6mで、汚染領域1が200m2、動水勾配が0.0095m/m、透水係数が2.0×10-3cm/sにおける本発明の栄養源の注入による、汚染部領域1の有害汚染物質の浄化については、図5に示すように60日以内で環境基準値を下回った。
For example, in an actual pollution site, the contaminated aquifer is -3 m to -6 m from the ground line (GL), the contaminated
このようにして、汚染部領域1の有害汚染物質を嫌気性微生物の容器9への付着を利用して、漏洩又は拡散することを極力防止しながら、汚染の原位置において、土壌及び地下水を浄化することが可能となった。
In this way, the soil and groundwater are purified at the original location of contamination while preventing leakage or diffusion of harmful pollutants in the contaminated
なお、本実施の形態は一実施例であり、バイオレメディエーションの他の工法を組み合わせて用いることは現場の状況に応じて適宜対応することが最も適切な浄化方法となることはいうまでもない。 In addition, this Embodiment is an Example, and it cannot be overemphasized that it becomes the most suitable purification | cleaning method to respond | correspond suitably according to the condition of the field using combining other construction methods of bioremediation.
本発明の土壌及び地下水の浄化方法は、例えば、電子部品工場、金属製品工場、ドライクリーニング場およびゴミ焼却場など、有害汚染物質となり得る物質を使用又は排出する場所周辺において、有害汚染物質によって汚染された土壌及び地下水を浄化する方法として、極めて有用である。 The soil and groundwater purification method of the present invention is contaminated with harmful pollutants around places where substances that can be harmful pollutants are used or discharged, such as electronic parts factories, metal product factories, dry cleaning sites and garbage incineration plants. It is extremely useful as a method for purifying soil and groundwater.
1 汚染部領域
2 表土
3 上部シルト層
4 帯水層
5 下部シルト層
6 注入井戸
7 観測井戸
8 活性炭槽
9 容器
10 外筒
11 内筒
12 混合物
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004348103A JP4501659B2 (en) | 2004-12-01 | 2004-12-01 | Nutrient source injection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004348103A JP4501659B2 (en) | 2004-12-01 | 2004-12-01 | Nutrient source injection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006150307A true JP2006150307A (en) | 2006-06-15 |
JP4501659B2 JP4501659B2 (en) | 2010-07-14 |
Family
ID=36629216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004348103A Expired - Fee Related JP4501659B2 (en) | 2004-12-01 | 2004-12-01 | Nutrient source injection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4501659B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009011939A (en) * | 2007-07-05 | 2009-01-22 | Panasonic Corp | Cleaning method of contaminated soil and underground water |
JP2009279488A (en) * | 2008-05-20 | 2009-12-03 | Panasonic Corp | Method for decontaminating contaminated soil and ground water |
JP2011031187A (en) * | 2009-08-03 | 2011-02-17 | Kajima Corp | Cleaning method using microorganism |
JP2011031186A (en) * | 2009-08-03 | 2011-02-17 | Kajima Corp | Cleaning system and cleaning method |
JP2011031185A (en) * | 2009-08-03 | 2011-02-17 | Kajima Corp | Cleaning system and cleaning method |
JP2012061431A (en) * | 2010-09-16 | 2012-03-29 | Panasonic Corp | Apparatus and method for cleaning ground water |
CN111495964A (en) * | 2020-04-28 | 2020-08-07 | 菏泽富创医药科技有限公司 | Soil remediation bioreactor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1034103A (en) * | 1996-07-26 | 1998-02-10 | Geo Sci Kk | Multifunctional water-barrier material for final waste-disposal site, preparation thereof and water-barrier construction method |
JP2000185274A (en) * | 1998-12-22 | 2000-07-04 | Hisashi Nirei | Method of cleaning organochlorine-compound contaminated soil |
JP2001347280A (en) * | 2000-06-08 | 2001-12-18 | Ebara Corp | Method for cleaning ground water polluted with halogenated organic compound |
JP2004195431A (en) * | 2002-12-20 | 2004-07-15 | Matsushita Electric Ind Co Ltd | Purification accelerator for ground water |
-
2004
- 2004-12-01 JP JP2004348103A patent/JP4501659B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1034103A (en) * | 1996-07-26 | 1998-02-10 | Geo Sci Kk | Multifunctional water-barrier material for final waste-disposal site, preparation thereof and water-barrier construction method |
JP2000185274A (en) * | 1998-12-22 | 2000-07-04 | Hisashi Nirei | Method of cleaning organochlorine-compound contaminated soil |
JP2001347280A (en) * | 2000-06-08 | 2001-12-18 | Ebara Corp | Method for cleaning ground water polluted with halogenated organic compound |
JP2004195431A (en) * | 2002-12-20 | 2004-07-15 | Matsushita Electric Ind Co Ltd | Purification accelerator for ground water |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009011939A (en) * | 2007-07-05 | 2009-01-22 | Panasonic Corp | Cleaning method of contaminated soil and underground water |
JP2009279488A (en) * | 2008-05-20 | 2009-12-03 | Panasonic Corp | Method for decontaminating contaminated soil and ground water |
JP2011031187A (en) * | 2009-08-03 | 2011-02-17 | Kajima Corp | Cleaning method using microorganism |
JP2011031186A (en) * | 2009-08-03 | 2011-02-17 | Kajima Corp | Cleaning system and cleaning method |
JP2011031185A (en) * | 2009-08-03 | 2011-02-17 | Kajima Corp | Cleaning system and cleaning method |
JP2012061431A (en) * | 2010-09-16 | 2012-03-29 | Panasonic Corp | Apparatus and method for cleaning ground water |
CN111495964A (en) * | 2020-04-28 | 2020-08-07 | 菏泽富创医药科技有限公司 | Soil remediation bioreactor |
Also Published As
Publication number | Publication date |
---|---|
JP4501659B2 (en) | 2010-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7585132B2 (en) | Method for remediating a contaminated site | |
US12017938B2 (en) | Composition with a time release material for removing halogenated hydrocarbons from contaminated environments | |
ES2926175T3 (en) | Composition with a prolonged release material for the elimination of halogenated hydrocarbons from contaminated environments and in situ soil remediation procedure using said composition | |
US20030210956A1 (en) | Method for purifying a layer of contaminated soil and apparatus | |
JP3491929B2 (en) | Purification method of groundwater contaminated by soil contamination | |
JP4501659B2 (en) | Nutrient source injection method | |
JP2001347280A (en) | Method for cleaning ground water polluted with halogenated organic compound | |
JP2005177658A (en) | Equipment and method for decontaminating contamination of soil and ground water | |
JP4835486B2 (en) | Soil and groundwater purification methods | |
JP4359174B2 (en) | Environmental purification method | |
JP2006272118A (en) | Method for cleaning substance contaminated by organic chlorine compound | |
US20160039694A1 (en) | Iron-Containing Bioreactor & Method for Treating Reducible Compound Residues | |
JP4428125B2 (en) | Pollution purification method | |
Murdoch et al. | Advanced hydraulic fracturing methods to create in situ reactive barriers | |
JP2004025158A (en) | Cleaning method of polluted stratum and apparatus therefor | |
JP4788105B2 (en) | Purification method for contaminated soil | |
JP4547962B2 (en) | Method for purifying contaminated soil and groundwater | |
JP2005279392A (en) | Method for cleaning polluted soil and ground water | |
JP2005279395A (en) | Cleaning method | |
Yang et al. | A conceptual study on the bio‐wall technology: Feasibility and process design | |
JP2005279394A (en) | Method for cleaning polluted soil and ground water | |
JP5148365B2 (en) | Method for purifying contaminated soil and groundwater | |
JP2005305322A (en) | Contamination purification method | |
JP2004188406A (en) | Anaerobic purifying method for soil | |
Vila et al. | Guidelines for bioremediation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071120 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20071212 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100330 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100412 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4501659 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |