JP2011031187A - Cleaning method using microorganism - Google Patents

Cleaning method using microorganism Download PDF

Info

Publication number
JP2011031187A
JP2011031187A JP2009180605A JP2009180605A JP2011031187A JP 2011031187 A JP2011031187 A JP 2011031187A JP 2009180605 A JP2009180605 A JP 2009180605A JP 2009180605 A JP2009180605 A JP 2009180605A JP 2011031187 A JP2011031187 A JP 2011031187A
Authority
JP
Japan
Prior art keywords
activator
soil
pipe
groundwater
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009180605A
Other languages
Japanese (ja)
Other versions
JP5405936B2 (en
Inventor
Keijiro Ito
圭二郎 伊藤
Junichi Kawabata
淳一 川端
Tatsuji Kawai
達司 河合
Kenji Nakayama
賢治 仲山
Satoru Yamazawa
哲 山澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2009180605A priority Critical patent/JP5405936B2/en
Publication of JP2011031187A publication Critical patent/JP2011031187A/en
Application granted granted Critical
Publication of JP5405936B2 publication Critical patent/JP5405936B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning method using a microorganism, capable of stably cleaning contaminated soil or underground water by virtue of a microorganism. <P>SOLUTION: The cleaning method using a microorganism of cleaning contaminated soil or underground water by activating microorganisms living in soil, includes: a drilling process of forming a drilled hole 3 in an area containing contaminated soil or in the vicinity thereof; a filling process of inserting a pipe 5 including a plurality of through holes 5a penetrating the same from the outer face to the inner face thereof into the drilled hole 3 and filling the space formed between the inner face 3F of the drilled hole 3 and the outer face 5F of the pipe 5 with a mixture containing sand and a solid pH buffer; and an activating agent feeding process of feeding an activating agent that activates microorganisms into the ground via the drilled hole 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、土壌に生息する微生物を活性化させ、汚染した土壌又は地下水を浄化する微生物浄化方法に関する。   The present invention relates to a microorganism purification method for activating microorganisms living in soil and purifying contaminated soil or groundwater.

有機塩素化合物(トリクロロエチレン等)や揮発性有機化合物(VOC)によって土壌又は地下水が汚染された場合、従来、遮水壁による拡散防止や揚水による浄化処理といった対応策が行われてきた。しかし、これらの方法では土壌に吸着した汚染物質の除去が不十分であったり、コストの面で採算が合わないなどの問題があった。そこで、バイオスティミュレーションと呼ばれる浄化法が検討されている(特許文献1〜3参照)。この方法は、土壌に生息する微生物を活性化させて汚染物質の分解を行うものである。   When soil or groundwater is polluted with an organic chlorine compound (such as trichlorethylene) or a volatile organic compound (VOC), conventionally, countermeasures such as diffusion prevention by a water shielding wall and purification treatment by pumping water have been performed. However, these methods have had problems such as insufficient removal of contaminants adsorbed on the soil and unprofitable costs. Then, the purification method called biostimulation is examined (refer patent documents 1-3). This method activates microorganisms inhabiting soil to decompose pollutants.

特許文献1,2に記載の浄化法は、汚染領域全体に微生物活性剤等の薬剤を供給して浄化を行うものである。一方、特許文献3に記載の浄化法は、汚染領域の近傍であって地下水の流れの下流側に掘削した複数の井戸から微生物活性剤を注入し、当該箇所にバリア層(バイオバリア)を形成するものである。汚染領域を通過した地下水がバイオバリアに到達し、ここで微生物による汚染物質の分解がなされることで、汚染物質が下流側に流出するのを防止する。   The purification methods described in Patent Documents 1 and 2 perform purification by supplying a chemical such as a microbial activator to the entire contaminated area. On the other hand, in the purification method described in Patent Document 3, microbial activators are injected from a plurality of wells excavated in the vicinity of the contaminated area and downstream of the flow of groundwater, and a barrier layer (biobarrier) is formed at the location. To do. The groundwater that has passed through the contaminated area reaches the biobarrier, where the contaminants are decomposed by microorganisms, thereby preventing the contaminants from flowing downstream.

特開2005−279392号公報JP 2005-279392 A 特開2002−360240号公報JP 2002-360240 A 特許第3724287号公報Japanese Patent No. 3724287

ところで、土壌に生息する微生物は、有機酸などの栄養源があることに加え、pHが所定の範囲内であるときに活動が活発になり、汚染物質を盛んに分解する。しかし、地中において微生物活性剤から過剰の有機酸が生じると、pHが低下して微生物の活動が阻害される。特に、上述のバイオバリアによる浄化法にあっては、バイオバリアの機能を維持するために所定の頻度(例えば、1年に1回)で地中に微生物活性剤を地中に注入する作業を行うため、pHの管理が難しいという問題がある。すなわち、1回に注入する活性剤の量が多ければpH低下によって微生物の活動が阻害され、他方、少なければ高い頻度で注入作業を行う必要がある。   By the way, in addition to nutrient sources such as organic acids, microorganisms that inhabit soil become active when pH is within a predetermined range, and actively decompose pollutants. However, when excess organic acid is generated from the microbial activator in the ground, the pH is lowered and microbial activity is inhibited. In particular, in the above-described purification method using a bio-barrier, in order to maintain the function of the bio-barrier, an operation of injecting a microbe activator into the ground at a predetermined frequency (for example, once a year) is performed. Therefore, there is a problem that it is difficult to control pH. That is, if the amount of the active agent to be injected at a time is large, the activity of the microorganism is inhibited by the pH decrease, while if it is small, the injection operation needs to be performed with high frequency.

本発明は、上記実情に鑑みてなされたものであり、微生物活性剤の注入に伴うpH低下を十分に抑制し、汚染した土壌又は地下水を微生物によって安定的に浄化できる微生物浄化方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a microbial purification method capable of sufficiently suppressing a decrease in pH associated with injection of a microbial activator and stably purifying contaminated soil or groundwater by microorganisms. With the goal.

本発明は、土壌に生息する微生物を活性化させ、汚染した土壌又は地下水を浄化する微生物浄化方法であって、汚染した土壌を含む領域又はその近傍に掘削孔を形成する掘削工程と、外面から内面にかけて貫通する多数の貫通孔を有するパイプを掘削孔内に挿入するとともに、掘削孔の内面とパイプの外面との間に、砂及び固体のpH緩衝材を含有する混合物を充填する充填工程と、微生物を活性化させる活性剤を掘削孔から地中に供給する活性剤供給工程とを備える微生物浄化方法を提供する。   The present invention is a microbial purification method for activating microorganisms that inhabit soil and purifying contaminated soil or groundwater, a drilling step of forming a drilling hole in or near a region containing contaminated soil, and an outer surface A filling step of inserting a pipe having a large number of through holes penetrating to the inner surface into the drilling hole and filling a mixture containing sand and a solid pH buffering material between the inner surface of the drilling hole and the outer surface of the pipe; And a method for purifying microorganisms comprising an activator supplying step of supplying an activator for activating microorganisms from the excavation hole into the ground.

この浄化方法によれば、活性剤供給工程に先立ってパイプの外側に充填された固体のpH緩衝材により、活性剤に含まれる酸や微生物による分解によって生じた酸が中和されてpHが過度に低下することを防止できる。このため、微生物の活動が阻害されるのを十分に抑制でき、汚染領域の土壌及び地下水を安定的に浄化できる。   According to this purification method, the acid contained in the activator and the acid generated by the decomposition by the microorganisms are neutralized by the solid pH buffer filled outside the pipe prior to the activator supplying step, and the pH is excessively increased. Can be prevented. For this reason, it can fully suppress that the activity of microorganisms is inhibited, and the soil and groundwater of a contaminated area can be purified stably.

また、本発明は、土壌に生息する微生物を活性化させ、汚染した土壌又は地下水を浄化する微生物浄化方法であって、汚染した土壌を含む領域又はその近傍において土壌と固体のpH緩衝材とを混合する混合工程と、上記pH緩衝材と土壌とを混合した領域に掘削孔を形成する掘削工程と、微生物を活性化させる活性剤を掘削孔から地中に供給する活性剤供給工程とを備える微生物浄化方法を提供する。   The present invention also provides a microorganism purification method for activating microorganisms that inhabit the soil and purifying the contaminated soil or groundwater, wherein the soil and the solid pH buffering material are contained in or near the area containing the contaminated soil. A mixing step for mixing, a drilling step for forming a drilling hole in a region where the pH buffer material and soil are mixed, and an activator supplying step for supplying an activator for activating microorganisms into the ground from the drilling hole. A method for microbial purification is provided.

この浄化方法によれば、活性剤供給工程に先立って土壌に添加された固体のpH緩衝材により、活性剤に含まれる酸や微生物による分解によって生じた酸が中和されてpHが過度に低下することを防止できる。このため、微生物の活動が阻害されるのを十分に抑制でき、汚染領域の土壌及び地下水を安定的に浄化できる。   According to this purification method, the acid contained in the activator or the acid generated by the decomposition by the microorganism is neutralized by the solid pH buffer added to the soil prior to the activator supplying step, and the pH is excessively lowered. Can be prevented. For this reason, it can fully suppress that the activity of microorganisms is inhibited, and the soil and groundwater of a contaminated area can be purified stably.

本発明の効果を低コストにて得る観点から、固体のpH緩衝材は、炭酸カルシウムであることが好ましい。また、炭酸カルシウムは、過剰にアルカリ性にならない観点からも好ましい。なお、固体のpH緩衝材を使用することにより、液体のものを使用した場合と比較してその効果が長期にわたって持続するという利点がある。   From the viewpoint of obtaining the effects of the present invention at low cost, the solid pH buffer material is preferably calcium carbonate. Calcium carbonate is also preferable from the viewpoint of not becoming excessively alkaline. In addition, there exists an advantage that the effect lasts for a long period by using a solid pH buffer material compared with the case where a liquid thing is used.

本発明によれば、微生物活性剤の注入に伴うpH低下を十分に抑制することができ、汚染した土壌又は地下水を微生物によって安定的に浄化することが可能である。   According to the present invention, it is possible to sufficiently suppress a decrease in pH associated with the injection of a microbial activator, and it is possible to stably purify contaminated soil or groundwater with microorganisms.

微生物活性剤の注入に使用する井戸の一例を示す模式断面図である。It is a schematic cross section which shows an example of the well used for injection | pouring of a microbial activator. 地中にバリア層を形成するのに好適な浄化システムの一例を示す模式断面図である。It is a schematic cross section showing an example of a purification system suitable for forming a barrier layer in the ground. 地中にバリア層を形成するのに好適な浄化システムの他の例を示す模式断面図である。It is a schematic cross section which shows the other example of the purification system suitable for forming a barrier layer in the ground. 図3に示す浄化システムの摺動部材が上方に移動している様子を示す模式断面図である。It is a schematic cross section which shows a mode that the sliding member of the purification | cleaning system shown in FIG. 3 is moving upwards. 井戸から薬剤が拡散する様子を示す模式図であり、(a)は自然地下水流れのみで薬剤を拡散させた場合の一例を示し、(b)は図3に示す浄化システムを利用して薬剤を拡散させた場合の一例を示す。It is a schematic diagram which shows a mode that a chemical | medical agent diffuses from a well, (a) shows an example at the time of diffusing a chemical | medical agent only by a natural groundwater flow, (b) shows a chemical | medical agent using the purification system shown in FIG. An example in the case of diffusion is shown. 薬剤を含有するスラリーを地中に噴射して薬剤と土壌とを混合する様子を示す模式断面図である。It is a schematic cross section which shows a mode that the slurry containing a chemical | medical agent is injected in the ground, and a chemical | medical agent and soil are mixed. 微生物活性剤の注入に使用する井戸の他の例を示す模式断面図である。It is a schematic cross section which shows the other example of the well used for injection | pouring of a microbial activator.

本発明の好適な実施形態について、図面を参照しながら詳細に説明する。なお、以下の第1,2実施形態は、汚染領域の近傍にバイオバリアを形成して汚染物質の分解処理を行って、その拡散防止を図るものである。   DESCRIPTION OF EMBODIMENTS Preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following first and second embodiments, a biobarrier is formed in the vicinity of a contaminated area to perform a decomposition process of the pollutant to prevent its diffusion.

(第1実施形態)
本実施形態に係る浄化方法は、図1に示す構成の井戸10を複数形成した後、微生物活性剤を含む液を収容するタンク1から配管2を通じて井戸10内に供給する。微生物活性剤は、井戸10のパイプ5に設けられた多数の貫通孔5aを通じて地中に注入される。なお、なるべく少ない本数の井戸でバイオバリアを形成するには、汚染領域の地下水の流れ方向と直角方向に所定の間隔で並ぶように複数の井戸10を配置することが好ましい(図2参照)。
(First embodiment)
In the purification method according to the present embodiment, after forming a plurality of wells 10 having the configuration shown in FIG. 1, the wells 10 are supplied into the wells 10 through the pipes 2 from the tanks 1 containing the liquid containing the microbial activator. The microbial activator is injected into the ground through a large number of through holes 5 a provided in the pipe 5 of the well 10. In order to form a biobarrier with as few wells as possible, it is preferable to arrange a plurality of wells 10 so as to be arranged at a predetermined interval in a direction perpendicular to the flow direction of groundwater in the contaminated area (see FIG. 2).

図1に示す井戸10は次のようにして形成することができる。まず、汚染領域の近傍であって地下水の流れの下流側に所定の深度(例えば、10〜20m)の掘削孔3を形成する(掘削工程)。その後、掘削孔3内にパイプ5を挿入するとともに、掘削孔3の内面3Fとパイプ5の外面5Fとの間に、砂及び固体のpH緩衝材を含有する混合物を充填する(充填工程)。パイプ5の貫通孔5aは、パイプ5の内面から外面5Fにかけて貫通するように設けられている。パイプ5内の液体は、貫通孔5aを通じて外側に流出し、上記混合物からなる充填部8を通じて地中へと供給される。   The well 10 shown in FIG. 1 can be formed as follows. First, the excavation hole 3 having a predetermined depth (for example, 10 to 20 m) is formed in the vicinity of the contaminated area and downstream of the flow of groundwater (excavation process). Thereafter, the pipe 5 is inserted into the excavation hole 3 and a mixture containing sand and a solid pH buffer material is filled between the inner surface 3F of the excavation hole 3 and the outer surface 5F of the pipe 5 (filling step). The through hole 5a of the pipe 5 is provided so as to penetrate from the inner surface of the pipe 5 to the outer surface 5F. The liquid in the pipe 5 flows out through the through hole 5a and is supplied to the ground through the filling portion 8 made of the mixture.

上記充填工程において使用する固体のpH緩衝材としては、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、炭酸ナトリウム、炭酸水素ナトリウムなどを例示できる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。なお、低コストで十分な効果が得られる点から、pH緩衝材として炭酸カルシウムを使用することが好ましい。炭酸カルシウムは、過剰にアルカリ性にならない観点からも好ましい。   Examples of the solid pH buffer material used in the filling step include calcium carbonate, magnesium carbonate, magnesium oxide, sodium carbonate, and sodium bicarbonate. These may be used individually by 1 type and may use 2 or more types together. In addition, it is preferable to use calcium carbonate as a pH buffer material from the viewpoint that a sufficient effect can be obtained at low cost. Calcium carbonate is also preferable from the viewpoint of not becoming excessively alkaline.

充填部8の形成に使用する混合物を調製するにあたり、砂と固体のpH緩衝材と混合比率は、汚染物質の種類、汚染の程度及び使用するpH緩衝材の種類等に応じて適宜設定すればよい。例えば、砂の体積1mに対するpH緩衝材の配合量は3〜140kgであることが好ましく、10〜100kgであることがより好ましい。 In preparing the mixture used for forming the filling portion 8, the sand and solid pH buffer material and the mixing ratio may be appropriately set according to the type of contaminant, the degree of contamination, the type of pH buffer material used, and the like. Good. For example, the blending amount of the pH buffer material with respect to 1 m 3 of sand is preferably 3 to 140 kg, and more preferably 10 to 100 kg.

複数の井戸10を所定の位置に形成した後、各井戸10から地中に微生物活性剤を供給する(活性剤供給工程)。これにより、土壌に生息する微生物が活性化され、汚染した土壌又は地下水を浄化することができる。   After the plurality of wells 10 are formed at predetermined positions, a microbial activator is supplied into the ground from each well 10 (activator supplying step). Thereby, the microorganisms which inhabit soil are activated, and the contaminated soil or groundwater can be purified.

活性剤供給工程においては、1種の微生物活性剤を単独で使用してもよく、2種以上の微生物活性剤を併用してもよい。例えば、2種の微生物活性剤を併用する場合、以下のように活性剤供給工程を2段階に分けて実施することが好ましい。まず、第1の活性剤を掘削孔から地中に供給する(第1活性剤供給工程)。その後、第2の活性剤を掘削孔から地中に供給する(第2活性剤供給工程)。このとき、第1の活性剤に含まれる微生物活性化成分は、第2の活性剤に含まれる微生物活性化成分よりも平均分子量が小さいことが好ましい。   In the activator supplying step, one microbial activator may be used alone, or two or more microbial activators may be used in combination. For example, when two kinds of microbial activators are used in combination, the activator supply process is preferably carried out in two stages as follows. First, the first activator is supplied from the excavation hole into the ground (first activator supply step). Then, a 2nd activator is supplied in the ground from a drilling hole (2nd activator supply process). At this time, it is preferable that the microbial activation component contained in the first activator has a smaller average molecular weight than the microbial activation component contained in the second activator.

上記のように2種の微生物活性剤を併用する方法は、土壌汚染の発生後、早期に浄化処理を行って汚染拡大を防止する場合に特に有用である。すなわち、微生物による汚染物質分解は、微生物活性剤から発生する水素が関与する。第1の活性剤(低分子タイプ)は、多量の水素が短時間のうちに発生するため、生じた水素の一部が地盤に含まれる硫酸イオンの分解などに消費されても、過剰に発生した水素によって微生物が汚染物質を分解することができる。   As described above, the method of using two kinds of microbial activators in combination is particularly useful in the case of performing purification treatment early after the occurrence of soil contamination to prevent the spread of contamination. That is, the decomposition of pollutants by microorganisms involves hydrogen generated from microbial activators. The first activator (low molecular weight type) generates a large amount of hydrogen in a short time, so even if a portion of the generated hydrogen is consumed for decomposition of sulfate ions contained in the ground, it is generated excessively. Microorganisms can decompose pollutants with the hydrogen.

第1活性化剤供給工程後に使用する第2の活性剤(高分子タイプ)は、低分子タイプと比較すると少ない量の水素が持続的に発生するという特長を有する。第1活性剤供給工程後にあっては、地盤に含まれる硫酸イオンなどの成分が既に十分に分解された状態とすることができる。この状態となった段階で第2活性化剤供給工程を実施することで、第2の活性剤から生じた水素が微生物による汚染物質の分解に効率的に消費される。上記の通り、高分子タイプは、効果が持続するという特長を有するため、微生物活性剤の供給作業の頻度を低くできるという利点がある。   The second activator (polymer type) used after the first activator supply step has a feature that a small amount of hydrogen is continuously generated as compared with the low molecule type. After the first activator supply step, components such as sulfate ions contained in the ground can be in a sufficiently decomposed state. By carrying out the second activator supply step at this stage, the hydrogen generated from the second activator is efficiently consumed for the decomposition of the pollutants by the microorganisms. As described above, since the polymer type has a feature that the effect is sustained, there is an advantage that the frequency of supplying the microbial activator can be reduced.

第1の活性剤(低分子タイプ)の具体例としては、乳酸、グルコース、エタノール、グリセロール、酢酸、酪酸、プロピオン酸、蟻酸、ソルビトール、オリゴ乳酸、シュークロースなどの成分を1種又は2種以上含有するものが挙げられる。第2の活性剤(高分子タイプ)の具体例としては、ポリ乳酸、植物油、エマルジョン油、高級脂肪酸などの成分を1種又は2種以上含有するものが挙げられる。   Specific examples of the first active agent (low molecular type) include one or more components such as lactic acid, glucose, ethanol, glycerol, acetic acid, butyric acid, propionic acid, formic acid, sorbitol, oligolactic acid, and sucrose. The thing to contain is mentioned. Specific examples of the second active agent (polymer type) include those containing one or more components such as polylactic acid, vegetable oil, emulsion oil and higher fatty acid.

本実施形態に係る浄化方法によれば、活性剤供給工程に先立ってパイプ5の外側に充填された固体のpH緩衝材により、活性剤に含まれる酸や微生物による分解によって生じた酸が中和されてpHが過度に低下することを防止できる。このため、微生物の活動が阻害されるのを十分に抑制でき、汚染領域の土壌及び地下水を安定的に浄化できる。   According to the purification method according to the present embodiment, the acid contained in the activator and the acid generated by the decomposition by the microorganisms are neutralized by the solid pH buffer filled outside the pipe 5 prior to the activator supply step. Can prevent the pH from being lowered excessively. For this reason, it can fully suppress that the activity of microorganisms is inhibited, and the soil and groundwater of a contaminated area can be purified stably.

次に、図2〜5を参照しながら、複数の井戸10から適量の微生物活性剤を供給して地中に効率的にバイオバリアを形成する浄化システムについて説明する。上述の浄化方法は、以下の浄化システムの1種又は2種以上の構成を組み合わせて用いて実施することもできる。   Next, a purification system that efficiently forms a biobarrier in the ground by supplying an appropriate amount of a microbial activator from a plurality of wells 10 will be described with reference to FIGS. The above-described purification method can also be carried out by using one or two or more configurations of the following purification systems.

図2に示す浄化システム20は、汚染領域の近傍であって地下水の流れの下流側に掘削された複数の井戸10と、複数の井戸10がそれぞれ互いに連通するように設けられた流路15と、流路15と配管12で連通しており微生物活性剤を含む液を収容するタンク11とを備える。流路15は、井戸10と井戸10の間の表層部Gに透水性を有する材料を配置し、この中を流体が流れる構造とすることによって形成することができる。   The purification system 20 shown in FIG. 2 includes a plurality of wells 10 excavated in the vicinity of the contaminated area and downstream of the groundwater flow, and a flow path 15 provided so that the plurality of wells 10 communicate with each other. And a tank 11 communicating with the flow path 15 and the pipe 12 and containing a liquid containing a microbial activator. The flow path 15 can be formed by disposing a material having water permeability in the surface layer portion G between the wells 10 and having a structure in which a fluid flows.

図2に示すように、複数の井戸10を流路15によって連通させることにより、バイオバリアの機能を維持するために一定の頻度で微生物活性剤を地中に注入する作業を行う際、各井戸10から供給すべき微生物活性剤の量を個別に制御しなくてもよいという利点がある。   As shown in FIG. 2, when a plurality of wells 10 are communicated with each other by a flow path 15, each well is subjected to an operation of injecting a microbe activator into the ground at a constant frequency in order to maintain a biobarrier function. There is an advantage that the amount of the microbial activator to be supplied from 10 does not have to be individually controlled.

地盤の透水性等の条件によっては、井戸の間隔が密になったり、地下水の流れ方向に対して垂直な方向に汚染範囲が広がっている場合にあっては、数百mにわたって所定の間隔で井戸を設置する必要がある。その場合、井戸の本数が数十本に達することもあり、井戸ごとに注入作業を行っていたのでは多大の時間と労力を要する。また、地盤の不均質性から、地下水は均質に流れておらず、流れやすい箇所と流れにくい箇所が存在する。このような不均質性を考慮することなく、各井戸から一定量の薬剤を注入したのではバイオバリアの広がりが不十分となる。また、各井戸の近傍の透水係数をそれぞれ測定して各井戸から注入すべき薬剤の量を決定し、その管理を行うのは作業が煩雑になり過ぎるという問題がある。複数の井戸10を流路15によって連通させることで、かかる問題を解消することができる。   Depending on conditions such as the water permeability of the ground, if the interval between wells is close or the contamination range extends in the direction perpendicular to the direction of groundwater flow, it will be at predetermined intervals over several hundred meters. It is necessary to install a well. In that case, the number of wells may reach several tens, and a lot of time and labor are required if the injection operation is performed for each well. In addition, due to the inhomogeneity of the ground, groundwater does not flow homogeneously, and there are places that are easy to flow and places that are difficult to flow. Without considering such inhomogeneities, the injection of a certain amount of drug from each well will not sufficiently spread the biobarrier. In addition, there is a problem that it is too complicated to measure the water permeability coefficient in the vicinity of each well to determine the amount of chemical to be injected from each well and to manage it. Such a problem can be solved by allowing the plurality of wells 10 to communicate with each other through the flow path 15.

流路15は、透水性を有する材料によって構築してもよいが、これの他に、暗渠、配管又は溝を用いて構築してもよい。流路の構造的安定性を維持するため、例えば、溝の中には砕石等を敷詰めることが好ましい。   The flow path 15 may be constructed by a material having water permeability, but may be constructed by using a culvert, a pipe, or a groove. In order to maintain the structural stability of the flow path, for example, it is preferable to lay crushed stone or the like in the groove.

図3,4に示す浄化システム30は、井戸10の底を上下に移動させる機構を有し、漏れのないバリア層を地中に安定的に形成するためのものである。浄化システム30は、汚染領域の地下水流れの下流側に掘削された掘削孔3と、掘削孔3内に設置され、掘削孔3の底部から開口部まで延在するパイプ6と、パイプ6の上部に形成されており、パイプ6の外面から内面に向けて貫通する複数の貫通孔6aと、パイプ6の貫通孔6aが形成されていない区間において、上下方向に移動自在に設けられた摺動部材7と、摺動部材7を上下方向に移動させる駆動手段21と、摺動部材7よりも下方のパイプ6内にガスを供給するガス供給手段23とを備える。摺動部材7は、棒状部材24を介して駆動手段21と接続されており、上下方向に移動する井戸底をなす。   The purification system 30 shown in FIGS. 3 and 4 has a mechanism for moving the bottom of the well 10 up and down, and is for stably forming a leak-free barrier layer in the ground. The purification system 30 includes an excavation hole 3 excavated on the downstream side of the groundwater flow in the contaminated area, a pipe 6 installed in the excavation hole 3 and extending from the bottom to the opening of the excavation hole 3, and an upper portion of the pipe 6. A plurality of through holes 6a penetrating from the outer surface to the inner surface of the pipe 6 and a sliding member provided so as to be movable in the vertical direction in a section where the through holes 6a of the pipe 6 are not formed. 7, driving means 21 for moving the sliding member 7 in the vertical direction, and gas supply means 23 for supplying gas into the pipe 6 below the sliding member 7. The sliding member 7 is connected to the driving means 21 via the rod-shaped member 24, and forms a well bottom that moves in the vertical direction.

摺動部材7上には、固体又は高粘度の微生物活性剤18を載置できるようになっている。摺動部材7上の微生物活性剤18は徐々に地下水に溶解する。なお、微生物活性剤18は、不織布やネットや等に収容した状態でパイプ6内に設置してもよい。   A solid or high viscosity microbial activator 18 can be placed on the sliding member 7. The microbial activator 18 on the sliding member 7 is gradually dissolved in the groundwater. The microbial activator 18 may be installed in the pipe 6 in a state of being accommodated in a nonwoven fabric, a net, or the like.

高分子タイプの微生物活性剤などの薬剤は、地下水に少しずつ溶解する。このような薬剤を井戸10内に添加し、これを地下水の流れのみで地中に拡散させようとした場合、薬剤は主に地下水の流れ方向Fに主に拡散し、これと垂直な方向に拡散せず、隣接する井戸10との間に薬剤が存在しない領域が形成されやすい(図5(a)参照)。これに対し、浄化システム30によれば、摺動部材7を上方に移動させることで、パイプ6内の液面Lを自然水位Wよりも高くすることができる。薬剤の液の水頭圧を高くすることで、地下水流れ方向Fと垂直方向にも動水勾配が発生し、地下水の流れ方向F以外の方向にも薬剤を拡散させることができる(図5(b)参照)。これにより、比較的少ない本数の井戸で十分な機能を有するバリア層を形成できる。   Drugs such as polymer type microbial activators dissolve little by little in groundwater. When such a chemical is added into the well 10 and it is intended to diffuse into the ground only by the flow of groundwater, the chemical mainly diffuses mainly in the flow direction F of the groundwater and in a direction perpendicular thereto. A region where no drug is present is easily formed between adjacent wells 10 without being diffused (see FIG. 5A). On the other hand, according to the purification system 30, the liquid level L in the pipe 6 can be made higher than the natural water level W by moving the sliding member 7 upward. By increasing the hydraulic head pressure of the chemical liquid, a hydrodynamic gradient is generated in a direction perpendicular to the groundwater flow direction F, and the drug can be diffused in directions other than the groundwater flow direction F (FIG. 5B). )reference). Thereby, a barrier layer having a sufficient function can be formed with a relatively small number of wells.

自然地下水流れの動水勾配が1cm/m程度である場合、摺動部材7を数m上昇させることで、自然地下水流れより大きな勾配が生じ、地下水の流れ方向と垂直方向に薬剤を流すことができる(図4参照)。井戸10内の水が減少した場合には、摺動部材7を下げることで、地下水上流側から井戸10内に水が流入する。摺動部材7の上記のような上下動を連続的又は一定時間ごとに実施することで、持続的に自然地下水流れに対して横方向への流れを、局所的に生じさせることができる。   When the dynamic water gradient of the natural groundwater flow is about 1 cm / m, by raising the sliding member 7 several meters, a gradient larger than the natural groundwater flow is generated, and the chemical can flow in a direction perpendicular to the flow direction of the groundwater. Yes (see FIG. 4). When the water in the well 10 decreases, the water flows into the well 10 from the upstream side of the groundwater by lowering the sliding member 7. By performing the above-described vertical movement of the sliding member 7 continuously or at regular intervals, a flow in the lateral direction can be locally generated continuously with respect to the natural groundwater flow.

なお、複数の井戸から所定の圧力で薬剤を圧入し続ければ、地中において薬剤が拡散して広範囲にわたるバリア層を形成できる。しかし、この場合、薬剤の持続的な圧入によって当該領域の圧力が上昇したのでは、バリア層を迂回するように地下水が流れてしまって汚染が拡散するおそれがある。これに対し、浄化システム30を用いた方法では、地盤に新たに注水しないので、汚染地下水がバリア層を迂回して流れることはない。また、地下水を汲み上げたりしないので水処理の必要性もない。   In addition, if a medicine is continuously injected from a plurality of wells at a predetermined pressure, the medicine diffuses in the ground and a wide barrier layer can be formed. However, in this case, if the pressure in the region increases due to the continuous press-fitting of the drug, the groundwater may flow around the barrier layer and the contamination may spread. On the other hand, in the method using the purification system 30, since no new water is poured into the ground, the contaminated groundwater does not flow around the barrier layer. In addition, there is no need for water treatment because no groundwater is pumped.

摺動部材7を上方に移動させる速度を下方に移動させる速度よりも高くすることが好ましい。摺動部材7を上昇させる速度を高くすることでパイプ6内の液の水頭圧を速やかに高くできる。一方、摺動部材7を下降させる速度を低くすることで、摺動部材7を上昇させたことによって井戸10の外側に広がった微生物活性剤がパイプ6内へ急激に戻る流れを抑制できる。これに加え、井戸10の上流側から流れてくる地下水をパイプ6内に流入させることができ、井戸10内の液面Lを回復(上昇)させることができる。   It is preferable to make the speed of moving the sliding member 7 higher than the speed of moving the sliding member 7 downward. By increasing the speed at which the sliding member 7 is raised, the water head pressure of the liquid in the pipe 6 can be quickly increased. On the other hand, by lowering the speed at which the sliding member 7 is lowered, the flow of the microbial activator spreading outside the well 10 due to the raising of the sliding member 7 can be suppressed. In addition, groundwater flowing from the upstream side of the well 10 can flow into the pipe 6, and the liquid level L in the well 10 can be recovered (raised).

摺動部材7を上方に移動させる際、ガス供給手段23によって摺動部材7よりも下方のパイプ6内に窒素ガスを供給するとともに、摺動部材7を下方に移動させる際、供給した窒素ガスを回収することが好ましい。パイプ6内にガスを供給することにより、パイプ6内が負圧になるのを防止できる。また、窒素ガスを回収して再利用することにより、運転コストを削減できる。なお、活性化すべき微生物が嫌気性菌である場合には酸素を含まないガス(例えば、窒素ガス)を使用することが好ましいが、好気性菌である場合には酸素を含むガス(例えば、空気)を使用してもよい。   When the sliding member 7 is moved upward, nitrogen gas is supplied into the pipe 6 below the sliding member 7 by the gas supply means 23, and when the sliding member 7 is moved downward, the supplied nitrogen gas is supplied. Is preferably recovered. By supplying gas into the pipe 6, it is possible to prevent the inside of the pipe 6 from becoming negative pressure. Further, the operation cost can be reduced by collecting and reusing the nitrogen gas. When the microorganism to be activated is an anaerobic bacterium, it is preferable to use a gas that does not contain oxygen (for example, nitrogen gas), but when it is an aerobic bacterium, a gas that contains oxygen (for example, air) ) May be used.

(第2実施形態)
本実施形態に係る浄化方法は、汚染した土壌を含む汚染領域の近傍において土壌と固体のpH緩衝材とを混合する混合工程と、汚染領域に掘削孔3を形成して井戸10を構築する掘削工程と、微生物活性剤を井戸10から地中に供給する活性剤供給工程とを備える。
(Second Embodiment)
The purification method according to the present embodiment includes a mixing step of mixing soil and a solid pH buffer material in the vicinity of a contaminated area including contaminated soil, and excavation for forming a well 10 by forming an excavation hole 3 in the contaminated area. A step and an activator supplying step of supplying a microbial activator from the well 10 into the ground.

本実施形態に係る浄化方法は、活性剤供給工程については第1実施形態と同様に実施することができる。以下、図6,7を参照しながら、混合工程及び掘削工程について主に説明する。   The purification method according to the present embodiment can be performed in the same manner as the first embodiment with respect to the activator supply step. Hereinafter, the mixing process and the excavation process will be mainly described with reference to FIGS.

図7に示す井戸50は次のようにして形成することができる。まず、図6に示す混合装置60を用いて、汚染領域の土壌又はその近傍であって地下水の流れの下流側の土壌と、固体のpH緩衝材とを混合する(混合工程)。混合装置60は、固体のpH緩衝材を含有するスラリーを収容するタンク61と、このスラリーを昇圧するポンプ63と、昇圧されたスラリーを地中に噴射するための噴射管65とを備える。噴射管65の先端部にはスラリージェットJsを形成するためのノズルが設けられている。噴射管65を所定の深さにまで挿入した後、噴射管65を回転させるとともにスラリーを噴射しながら、噴射管65を一定の速度で引き上げる。これにより、所定の領域の土壌とpH緩衝材とを混合できる。   The well 50 shown in FIG. 7 can be formed as follows. First, using the mixing device 60 shown in FIG. 6, the soil in the contaminated region or the vicinity thereof and the soil downstream of the groundwater flow is mixed with the solid pH buffer material (mixing step). The mixing device 60 includes a tank 61 that contains a slurry containing a solid pH buffer material, a pump 63 that pressurizes the slurry, and an injection pipe 65 that injects the pressurized slurry into the ground. A nozzle for forming the slurry jet Js is provided at the tip of the injection pipe 65. After inserting the injection tube 65 to a predetermined depth, the injection tube 65 is rotated at a constant speed while rotating the injection tube 65 and injecting slurry. Thereby, the soil and pH buffer material of a predetermined area | region can be mixed.

上記の混合工程では、固体のpH緩衝材として、第1実施形態において例示したものを使用できる。土壌の体積1mに対するpH緩衝材の配合量は3〜140kgであることが好ましく、10〜100kgであることがより好ましい。 In the above mixing step, the solid pH buffer material exemplified in the first embodiment can be used. The amount of pH buffer against volume 1 m 3 of soil is preferably from 3~140Kg, and more preferably 10 to 100 kg.

混合工程後、pH緩衝材と土壌とを混合した領域に掘削孔53を形成する(掘削工程)。その後、図7に示す通り、多数の貫通孔55aを有するパイプ55を掘削孔53内に挿入するとともに、掘削孔53の内面53Fとパイプ55の外面55Fとの間に、砂及び固体のpH緩衝材を含有する混合物を充填する(充填工程)。なお、充填工程において、pH緩衝材を含有する混合物を使用せず、単に砂を充填してもよい。   After the mixing step, the excavation hole 53 is formed in a region where the pH buffer material and the soil are mixed (excavation step). Thereafter, as shown in FIG. 7, the pipe 55 having a large number of through holes 55 a is inserted into the excavation hole 53, and the pH buffer between sand and solids is provided between the inner surface 53 F of the excavation hole 53 and the outer surface 55 F of the pipe 55. The mixture containing the material is filled (filling step). In the filling step, sand may be simply filled without using a mixture containing a pH buffer material.

本実施形態に係る浄化方法によれば、活性剤供給工程に先立って土壌に添加された固体のpH緩衝材により、活性剤に含まれる酸や微生物による分解によって生じた酸が中和されてpHが過度に低下することを防止できる。このため、微生物の活動が阻害されるのを十分に抑制でき、汚染領域の土壌及び地下水を効率的に浄化できる。   According to the purification method according to the present embodiment, the acid contained in the activator or the acid generated by the decomposition by the microorganism is neutralized by the solid pH buffer added to the soil prior to the activator supply step, and the pH is increased. Can be prevented from excessively decreasing. For this reason, it can fully suppress that the activity of microorganisms is inhibited, and the soil and groundwater of a contaminated area can be purified efficiently.

以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記の第1,2実施形態に限定されるものではない。例えば、上記実施形態においては、バイオバリアを形成して汚染物質の分解処理及び拡散防止を行う場合を例示したが、地下水の流れを利用するものではなくてもよい。すなわち、本発明は、地中に挿入したパイプの周囲に固体のpH緩衝材を配合した状態で当該パイプから微生物活性剤を注入すればよく、例えば、汚染領域の全体に所定の間隔で複数のパイプを設置し、これらのパイプから微生物活性剤を注入することによって汚染領域全体を浄化処理してもよい。   Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the first and second embodiments. For example, in the above-described embodiment, the case where the biobarrier is formed to perform the decomposition processing and the diffusion prevention of the pollutant is illustrated, but the flow of groundwater may not be used. That is, in the present invention, a microbial activator may be injected from the pipe in a state where a solid pH buffer material is blended around the pipe inserted into the ground. The entire contaminated area may be purified by installing pipes and injecting a microbial activator from these pipes.

3,53…掘削孔、3F,53F…掘削孔の内面、5,6,55…パイプ、5F,55F…パイプの外面、5a,6a,55a…貫通孔、8…充填部、F…地下水の流れ方向。   3, 53 ... excavation hole, 3F, 53F ... inner surface of excavation hole, 5, 6, 55 ... pipe, 5F, 55F ... outer surface of pipe, 5a, 6a, 55a ... through hole, 8 ... filling part, F ... groundwater Flow direction.

Claims (3)

土壌に生息する微生物を活性化させ、汚染した土壌又は地下水を浄化する微生物浄化方法であって、
汚染した土壌を含む領域又はその近傍に掘削孔を形成する掘削工程と、
外面から内面にかけて貫通する多数の貫通孔を有するパイプを前記掘削孔内に挿入するとともに、前記掘削孔の内面と前記パイプの外面との間に、砂及び固体のpH緩衝材を含有する混合物を充填する充填工程と、
前記微生物を活性化させる活性剤を前記掘削孔から地中に供給する活性剤供給工程と、
を備えることを特徴とする微生物浄化方法。
A microorganism purification method for activating microorganisms living in soil and purifying contaminated soil or groundwater,
An excavation process for forming an excavation hole in or near an area containing contaminated soil; and
A pipe having a large number of through holes penetrating from the outer surface to the inner surface is inserted into the excavation hole, and a mixture containing sand and a solid pH buffer material is inserted between the inner surface of the excavation hole and the outer surface of the pipe. A filling step of filling;
An activator supplying step of supplying an activator for activating the microorganisms from the excavation hole into the ground;
A microorganism purification method comprising:
土壌に生息する微生物を活性化させ、汚染した土壌又は地下水を浄化する微生物浄化方法であって、
汚染した土壌を含む領域又はその近傍において土壌と固体のpH緩衝材とを混合する混合工程と、
前記pH緩衝材と土壌とを混合した領域に掘削孔を形成する掘削工程と、
前記微生物を活性化させる活性剤を前記掘削孔から地中に供給する活性剤供給工程と、
を備えることを特徴とする微生物浄化方法。
A microorganism purification method for activating microorganisms living in soil and purifying contaminated soil or groundwater,
A mixing step of mixing the soil and the solid pH buffer in or near the area containing the contaminated soil;
A drilling step of forming a drilling hole in a region where the pH buffer material and soil are mixed;
An activator supplying step of supplying an activator for activating the microorganisms from the excavation hole into the ground;
A microorganism purification method comprising:
前記固体のpH緩衝材は、炭酸カルシウムであることを特徴とする請求項1又は2に記載の微生物浄化方法。   3. The microorganism purification method according to claim 1, wherein the solid pH buffer material is calcium carbonate.
JP2009180605A 2009-08-03 2009-08-03 Microbial purification method Expired - Fee Related JP5405936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009180605A JP5405936B2 (en) 2009-08-03 2009-08-03 Microbial purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009180605A JP5405936B2 (en) 2009-08-03 2009-08-03 Microbial purification method

Publications (2)

Publication Number Publication Date
JP2011031187A true JP2011031187A (en) 2011-02-17
JP5405936B2 JP5405936B2 (en) 2014-02-05

Family

ID=43760790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009180605A Expired - Fee Related JP5405936B2 (en) 2009-08-03 2009-08-03 Microbial purification method

Country Status (1)

Country Link
JP (1) JP5405936B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624080A (en) * 2013-11-18 2014-03-12 东南大学 Microbial contaminated soil remediation method and remediation pile thereof
KR101383848B1 (en) * 2011-12-29 2014-04-11 한국광해관리공단 Method for stabilizing farmland using agricultural lime and microbe
JP5971606B1 (en) * 2015-12-18 2016-08-17 強化土株式会社 Soil purification method
JP2017209620A (en) * 2016-05-25 2017-11-30 鹿島建設株式会社 Diffusion prevention method of polluted ground water

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456550A (en) * 1991-01-21 1995-10-10 University Of Waterloo Procedure for delivering a substance into an aquifer
US6322700B1 (en) * 1995-04-11 2001-11-27 Arcadis Geraghty & Miller Engineered in situ anaerobic reactive zones
JP2002370085A (en) * 2001-04-13 2002-12-24 Matsushita Electric Ind Co Ltd Method for reducing nitrate nitrogen and volatile organic compound in soil or ground water
JP3724287B2 (en) * 1999-11-09 2005-12-07 株式会社大林組 Purification method of contaminated groundwater
JP2006150278A (en) * 2004-11-30 2006-06-15 Ohbayashi Corp Method for decontaminating contaminated soil
JP2006150307A (en) * 2004-12-01 2006-06-15 Matsushita Electric Ind Co Ltd Nutrient injection method
JP2007216119A (en) * 2006-02-15 2007-08-30 Petroleum Energy Center Water-permeable purification wall and purification treatment method of contaminated ground water
JP2008093575A (en) * 2006-10-12 2008-04-24 Matsushita Electric Ind Co Ltd Decontamination apparatus and method for decontaminating ground water by using the same
JP2009011939A (en) * 2007-07-05 2009-01-22 Panasonic Corp Cleaning method of contaminated soil and underground water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456550A (en) * 1991-01-21 1995-10-10 University Of Waterloo Procedure for delivering a substance into an aquifer
US6322700B1 (en) * 1995-04-11 2001-11-27 Arcadis Geraghty & Miller Engineered in situ anaerobic reactive zones
JP3724287B2 (en) * 1999-11-09 2005-12-07 株式会社大林組 Purification method of contaminated groundwater
JP2002370085A (en) * 2001-04-13 2002-12-24 Matsushita Electric Ind Co Ltd Method for reducing nitrate nitrogen and volatile organic compound in soil or ground water
JP2006150278A (en) * 2004-11-30 2006-06-15 Ohbayashi Corp Method for decontaminating contaminated soil
JP2006150307A (en) * 2004-12-01 2006-06-15 Matsushita Electric Ind Co Ltd Nutrient injection method
JP2007216119A (en) * 2006-02-15 2007-08-30 Petroleum Energy Center Water-permeable purification wall and purification treatment method of contaminated ground water
JP2008093575A (en) * 2006-10-12 2008-04-24 Matsushita Electric Ind Co Ltd Decontamination apparatus and method for decontaminating ground water by using the same
JP2009011939A (en) * 2007-07-05 2009-01-22 Panasonic Corp Cleaning method of contaminated soil and underground water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101383848B1 (en) * 2011-12-29 2014-04-11 한국광해관리공단 Method for stabilizing farmland using agricultural lime and microbe
CN103624080A (en) * 2013-11-18 2014-03-12 东南大学 Microbial contaminated soil remediation method and remediation pile thereof
JP5971606B1 (en) * 2015-12-18 2016-08-17 強化土株式会社 Soil purification method
JP2017209620A (en) * 2016-05-25 2017-11-30 鹿島建設株式会社 Diffusion prevention method of polluted ground water

Also Published As

Publication number Publication date
JP5405936B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
CN105964678A (en) Soil and groundwater in-situ remediation system and method through in-situ infusion and high-pressure jet grouting injection
JP4756651B2 (en) Purification system and method for oil-contaminated soil
CN102774965A (en) In-situ repair system for treating pollution of underground water
JP5405936B2 (en) Microbial purification method
JP6104122B2 (en) Contaminated soil purification method
JP5711519B2 (en) Groundwater purification system and groundwater purification method
JP5023850B2 (en) Method for purifying contaminated soil and groundwater
JP5205010B2 (en) In-situ purification method for contaminated groundwater
JP4281551B2 (en) Soil and groundwater contamination purification equipment and purification method
JP3565476B2 (en) Method and apparatus for purifying contaminated groundwater and / or contaminated stratum
US6464005B1 (en) Remediation method
US6776910B2 (en) In situ method and apparatus for biodegradation of alkyl ethers and tertiary butyl alcohol
JP3051047B2 (en) Purification method and purification system for contaminated soil using soil microorganisms
JP5374272B2 (en) Purification system and purification method
JP2014205112A (en) Original-position decontamination method by multi-point injection
JP2005131533A (en) In situ decontamination system of contaminated ground water
JP5185896B2 (en) Purification system and purification method
JP4375592B2 (en) Soil and groundwater purification methods
JP2004025158A (en) Cleaning method of polluted stratum and apparatus therefor
JP5722006B2 (en) Groundwater purification method
JP2010188220A (en) Contaminated soil cleaning method
CN104370375B (en) Underground water ammonia nitrogen In-sltu reinforcement nitrification and denitrification integrated system and method
CN204237624U (en) Underground water ammonia nitrogen In-sltu reinforcement nitrification and denitrification integrated system
JP2008093499A (en) Polluted soil purifying method and soil pile
US20110207204A1 (en) Method and apparatus for bioremediation of soils and sediments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

LAPS Cancellation because of no payment of annual fees