JP2006148143A - Holder for semiconductor-manufacturing apparatus - Google Patents

Holder for semiconductor-manufacturing apparatus Download PDF

Info

Publication number
JP2006148143A
JP2006148143A JP2005339616A JP2005339616A JP2006148143A JP 2006148143 A JP2006148143 A JP 2006148143A JP 2005339616 A JP2005339616 A JP 2005339616A JP 2005339616 A JP2005339616 A JP 2005339616A JP 2006148143 A JP2006148143 A JP 2006148143A
Authority
JP
Japan
Prior art keywords
support
wafer
manufacturing apparatus
holding part
semiconductor manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005339616A
Other languages
Japanese (ja)
Other versions
JP4305443B2 (en
Inventor
Hiroshi Hiiragidaira
啓 柊平
Masuhiro Natsuhara
益宏 夏原
Hirohiko Nakada
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005339616A priority Critical patent/JP4305443B2/en
Publication of JP2006148143A publication Critical patent/JP2006148143A/en
Application granted granted Critical
Publication of JP4305443B2 publication Critical patent/JP4305443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a holder for a semiconductor-manufacturing apparatus, which is superior in burning ability of a wafer-holding surface and can be properly used for the thermal curing of resin for photolithography in a coater developer and the heat baking of a semiconductor insulating film of low dielectric constant, such as Low-k, and in which the apparatus as a whole can be miniaturized. <P>SOLUTION: The holder for the semiconductor-manufacturing apparatus consists of a wafer-holding part 1 which has a resistor heating element 2 and is made of ceramics, and a support element 4 which supports the wafer-holding part 1. The thermal conductivity of the support element 4 is lower than the thermal conductivity of the wafer-holding part 1, and the wafer-holding portion 1 and the support element 4 are not jointed. Preferably, the wafer holding part 1 has AlN as the main component, and the supporting element 4 is composed mainly of mullites. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体製造装置に用いる保持体に関するものであり、特にコータデベロッパでのフォトリソグラフィー用樹脂膜の加熱硬化や、Low−kのような低誘電率の絶縁膜の加熱焼成に好適に用いられる半導体製造装置用保持体に関する。   The present invention relates to a holder used in a semiconductor manufacturing apparatus, and is particularly suitable for heat curing of a resin film for photolithography in a coater developer and heat baking of a low dielectric constant insulating film such as Low-k. The present invention relates to a semiconductor manufacturing apparatus holder.

半導体製造においては、シリコンウエハ上のAl回路やCu回路はAlスパッタやCuメッキ等によって形成されるが、近年の半導体の高集積化や小型化に伴って配線幅及び配線間幅は年々細くなってきている。   In semiconductor manufacturing, Al circuits and Cu circuits on silicon wafers are formed by Al sputtering, Cu plating, etc., but with the recent high integration and miniaturization of semiconductors, the wiring width and inter-wiring width become smaller year by year. It is coming.

Al回路やCu回路の配線パターンはフォトリングラフィー技術により形成される。例えばAl膜上に樹脂を均一に塗布した後、ステッパと呼ばれる露光装置で樹脂膜にパターンが刷り込まれ、樹脂膜を加熱硬化させて不要部分を除去することにより、配線用のAl膜上に抜きパターン樹脂膜を形成する。その後、エッチング装置で抜きパターン部分に沿ってAl膜をエッチングし、樹脂膜を除去することでパターン化されたAl配線が得られる。   The wiring pattern of the Al circuit or the Cu circuit is formed by a photolithography technique. For example, after a resin is evenly applied on an Al film, a pattern is imprinted on the resin film using an exposure device called a stepper, and the resin film is heated and cured to remove unnecessary portions, thereby removing the resin film on the Al film for wiring. A pattern resin film is formed. Thereafter, the Al film is etched along the cut pattern portion with an etching apparatus, and the resin film is removed to obtain a patterned Al wiring.

また、配線同士が近づくと配線間の信号の相互作用が生じるため、配線間や積層した層間は低誘電率の絶縁材料で埋めることにより、配線間の相互作用を無くすことが必要である。従来このための絶縁材料として酸化ケイ素が用いられていたが、更に誘電率の低い絶縁膜としてLow−kと呼ばれる材料が用いられるようになってきた。Low−kの絶縁膜は、その材料を溶いてスラリー状にし、これをスピンコートして均一膜を形成し、上記と同様にフォトリングラフィー技術によりパターン形成した後、ヒータで加熱焼成して固化させる方法によって形成されている。   Further, since the signal interaction between the wirings occurs when the wirings are close to each other, it is necessary to eliminate the interaction between the wirings by filling the wirings and the laminated layers with an insulating material having a low dielectric constant. Conventionally, silicon oxide has been used as an insulating material for this purpose, but a material called Low-k has come to be used as an insulating film having a lower dielectric constant. The low-k insulating film is made by dissolving the material into a slurry and spin-coating it to form a uniform film. After the patterning is performed by the photolithography technique in the same manner as described above, the film is solidified by heating and baking with a heater. It is formed by the method of making it.

上記のようなフォトリソグラフィー用樹脂膜の加熱硬化や、Low−k膜のような低誘電率の絶縁膜の加熱焼成に用いるヒータとしては、例えば抵抗発熱体であるSUS箔を石英板でサンドイッチしたヒータを用いていた。しかし、ヒータの均熱性や耐久性に問題があるため、均熱性に優れ且つ耐久性の高い加熱装置が望まれていた。   For example, a SUS foil as a resistance heating element is sandwiched between quartz plates as a heater used for heat curing of a resin film for photolithography as described above, or for heating and baking a low dielectric constant insulating film such as a low-k film. A heater was used. However, since there is a problem with the soaking property and durability of the heater, a heating device with excellent soaking property and high durability has been desired.

一方、各種薄膜の形成に用いるCVD装置においては、高熱伝導率で高耐食性のAlNやSi中にMoコイルを埋設したセラミックス製ヒータが使用されている。このセラミックス製ヒータは、そのウエハ保持面の裏側に筒状のAlN支持体の一端を接合し、他端をチャンバ−にO−リング封止して支持される。また、耐腐食性の低い電極端子や電極供給用の引出線は、チャンバー内で用いる腐食性ガスに曝されないように、筒状のAlN支持体の内側に収納されている。 On the other hand, in a CVD apparatus used for forming various thin films, a ceramic heater in which a Mo coil is embedded in AlN or Si 3 N 4 having high thermal conductivity and high corrosion resistance is used. This ceramic heater is supported by bonding one end of a cylindrical AlN support to the back side of the wafer holding surface and sealing the other end with an O-ring. Moreover, the electrode terminal with low corrosion resistance and the lead wire for supplying the electrode are accommodated inside the cylindrical AlN support so as not to be exposed to the corrosive gas used in the chamber.

半導体製造におけるコスト低減のためシリコンウエハの大型化が進められており、近年では8インチから12インチへと移行している。そのため、フォトリソグラフィー用樹脂膜の加熱硬化や、Low−kのような低誘電率の絶縁膜の加熱焼成に用いるヒータに対して均熱性向上の要求が高まってきている。具体的には、ヒータのウエハ保持面における均熱性が±1.0%以内、望むらくは±0.5%以内とすることが要望されている。   In order to reduce costs in semiconductor manufacturing, the size of silicon wafers has been increased, and in recent years, the size has shifted from 8 inches to 12 inches. For this reason, there is an increasing demand for improvement in thermal uniformity for a heater used for heat curing of a resin film for photolithography and for heat baking of a low dielectric constant insulating film such as Low-k. Specifically, it is desired that the thermal uniformity on the wafer holding surface of the heater is within ± 1.0%, and preferably within ± 0.5%.

一般に、セラミックス製のヒータでは、ウエハ保持部を安定させたり、電極端子をチャンバー内雰囲気から保護したりするために、ウエハ保持部と支持体を接合する場合がある。その場合、ウエハ保持部と支持体の熱膨張率が異なると、昇温や冷却の過程で材料間の熱膨張率の違いにより熱応力が発生し、脆性材料であるセラミックスに割れが発生するため、ウエミ保持部と支持体は同じ材料を用いて接合していた。   In general, in a ceramic heater, there is a case where a wafer holding part and a support are joined in order to stabilize the wafer holding part or protect the electrode terminal from the atmosphere in the chamber. In this case, if the thermal expansion coefficients of the wafer holding part and the support are different, thermal stress is generated due to the difference in thermal expansion coefficient between the materials during the heating and cooling process, and cracking occurs in the ceramic, which is a brittle material. The wemi holding part and the support were joined using the same material.

しかし、ウエハ保持面の均熱性を高めるためウエハ保持部に高熱伝導率の材料を用いると、支持体も高熱伝導率の同一材料にする必要があるため、ウエハ保持部の抵抗発熱体で発生した熱は高熱伝導率の支持体を介して極めて効率的に逃げていく。そのため、ウエハ保持部の温度が支持体との接合部分で大きく低下し、ウエハ保持部の均熱性は低くならざるを得なかった。   However, if a material with high thermal conductivity is used for the wafer holding part in order to increase the thermal uniformity of the wafer holding surface, it is necessary to use the same material with high thermal conductivity for the support, and this occurs in the resistance heating element of the wafer holding part. Heat escapes very efficiently through the support with high thermal conductivity. For this reason, the temperature of the wafer holding part is greatly lowered at the joint portion with the support, and the heat uniformity of the wafer holding part has to be lowered.

また、接合した支持体に熱が逃げることによってウエハ保持部の均熱性が低下することを防ぐため、低熱伝導率で且つウエハ保持部と熱膨張率の異なる支持体を接合すると、熱膨張率差による熱応力により脆性材料であるセラミックス製のウエハ保持部にクラックが入るという問題があった。   In addition, in order to prevent the thermal uniformity of the wafer holding part from deteriorating due to heat escaping to the joined support, if a support having a low thermal conductivity and a different thermal expansion coefficient from that of the wafer holding part is joined, the difference in thermal expansion coefficient There was a problem that cracks were formed in the ceramic wafer holding part, which is a brittle material, due to the thermal stress caused by.

更に、支持体をチャンバーに設置する箇所の温度を下げて、チャンバー側の材料の熱劣化を防ぐため、チャンバーの支持体設置部近傍を水などで冷却することが通常行われている。その場合に、支持体が短いと温度勾配がきつくなるため、その熱衝撃で支持体が割れやすかった。熱衝撃による割れを防ぐためには支持体を通常300mm程度に長くする必要があり、従ってこの支持体を収納するチャンバーの高さも大きくせざるを得ず、装置全体の小型化に制約があった。   Furthermore, in order to lower the temperature of the place where the support is placed in the chamber and prevent thermal deterioration of the material on the chamber side, it is common practice to cool the vicinity of the support placement part of the chamber with water or the like. In this case, if the support is short, the temperature gradient becomes tight, so that the support is easily broken by the thermal shock. In order to prevent cracking due to thermal shock, it is usually necessary to lengthen the support to about 300 mm. Therefore, the height of the chamber for housing the support must be increased, and there is a restriction on downsizing of the entire apparatus.

本発明は、このような従来の事情に鑑み、ウエハ保持面の均熱性に優れ、コータデベロッパでのフォトリソグラフィー用樹脂膜の加熱硬化や、Low−kのような低誘電率の絶縁膜の加熱焼成に好適に使用でき、装置全体の小型化が可能な半導体製造装置用保持体を提供することを目的とする。   In view of such a conventional situation, the present invention is excellent in heat uniformity of a wafer holding surface, heat curing of a resin film for photolithography in a coater developer, and heating of an insulating film having a low dielectric constant such as Low-k. An object of the present invention is to provide a holding body for a semiconductor manufacturing apparatus that can be suitably used for firing and can be downsized as a whole.

上記目的を達成するため、本発明が提供する半導体製造装置用保持体は、抵抗発熱体を有するセラミックス製のウエハ保持部と、ウエハ保持部を支持する支持体とからなり、支持体の熱伝導率がウエハ保持部の熱伝導率よりも低く、ウエハ保持部と支持体が接合されていないことを特徴とするものである。   In order to achieve the above object, a holding body for a semiconductor manufacturing apparatus provided by the present invention includes a ceramic wafer holding part having a resistance heating element and a supporting body that supports the wafer holding part. The rate is lower than the thermal conductivity of the wafer holder, and the wafer holder and the support are not joined.

上記本発明の半導体製造装置用保持体においては、前記ウエハ保持部がAlN、Al、SiC、Siから選ばれた少なくとも1種のセラミックスを主成分とすることを特徴とし、特に前記ウエハ保持部がAlNであることが好ましい。 In the holding body for a semiconductor manufacturing apparatus according to the present invention, the wafer holding portion is mainly composed of at least one ceramic selected from AlN, Al 2 O 3 , SiC, and Si 3 N 4 , In particular, the wafer holding part is preferably AlN.

また、上記本発明の半導体製造装置用保持体においては、前記支持体がムライトを主成分とすることを特徴とし、特に前記支持体がムライトとアルミナの複合体であることが好ましい。   In the holding body for a semiconductor manufacturing apparatus of the present invention, the support is mainly composed of mullite, and it is particularly preferable that the support is a composite of mullite and alumina.

更に、本発明は、上記した半導体製造装置用保持体のいずれかを用いた半導体製造装置を提供するものである。また、この本発明が提供する前記半導体製造装置は、フォトリソグラフィー用樹脂膜の加熱硬化、又は低誘電率の絶縁膜の加熱焼成に用いられる装置であることを特徴とする。   Furthermore, this invention provides the semiconductor manufacturing apparatus using either of the above-mentioned holding bodies for semiconductor manufacturing apparatuses. The semiconductor manufacturing apparatus provided by the present invention is an apparatus used for heat curing of a resin film for photolithography or heat baking of an insulating film having a low dielectric constant.

本発明によれば、ウエハ保持面の均熱性を±1.0%以内、好ましくは±0.5%以内とすることができ、装置全体の小型化が可能な半導体製造装置用保持体を提供することができる。この半導体製造装置用保持体は、コータデベロッパでのフォトリソグラフィー用樹脂膜の加熱硬化や、Low−kのような低誘電率の絶縁膜の加熱焼成に好適に使用することができる。   According to the present invention, there is provided a holding body for a semiconductor manufacturing apparatus in which the thermal uniformity of the wafer holding surface can be made within ± 1.0%, preferably within ± 0.5%, and the entire apparatus can be miniaturized. can do. This holding body for a semiconductor manufacturing apparatus can be suitably used for heat curing of a resin film for photolithography in a coater developer and heat baking of a low dielectric constant insulating film such as Low-k.

半導体製造過程において、コータデベロッパに用いるフォトリソグラフィー用樹脂膜の加熱硬化や、Low−kの加熱焼成は、ハロゲン元素を含む腐食性ガスを用いるCVD装置やエッチング装置と異なり、He、Ar、N、H等を雰囲気として用いるため、ハロゲンに腐食されやすい材料を主成分とする電極でも腐食されず、チャンバーへのコンタミ等の問題も発生しない。 In the semiconductor manufacturing process, heat curing of a resin film for photolithography used for a coater developer and low-k baking are different from a CVD apparatus and an etching apparatus using a corrosive gas containing a halogen element, such as He, Ar, N 2. , H 2 or the like is used as an atmosphere, so that an electrode mainly composed of a material that is easily corroded by halogen is not corroded, and problems such as contamination to the chamber do not occur.

従って、これらの非腐食性雰囲気を用いる半導体製造装置では、必ずしも支持体を筒状にし、その内部にウエハ保持部に設けたヒータの電極端子や引出線を収納し、チャンバー内雰囲気から完全にシールして分離する必要はない。そのため、ウエハ保持部と支持体とを気密接合することが必須ではなく、ウエハ保持部を支持体に接合せず、例えば支持体上に載置するだけで支持することが可能である。   Therefore, in a semiconductor manufacturing apparatus using these non-corrosive atmospheres, the support body is necessarily formed in a cylindrical shape, and the heater electrode terminals and lead wires provided in the wafer holding portion are accommodated therein, and completely sealed from the atmosphere in the chamber. There is no need to separate them. For this reason, it is not essential to hermetically bond the wafer holding unit and the support, and the wafer holding unit can be supported only by being placed on the support, for example, without being bonded to the support.

このように、ウエハ保持部と支持体を接合しない場合、ウエハ保持部の抵抗発熱体で発生した熱が支持体を通じて逃げることを抑制できるため、本発明では支持体の熱伝導率がウエハ保持部の熱伝導率よりも低いことと相俟って、ウエハ保持部の均熱性を大幅に向上させることができる。しかも、ウエハ保持部と支持体は接合されていないので、熱膨張率差による熱応力が全くかからず、セラミックス製のウエハ保持部が割れる恐れもない。   As described above, when the wafer holding unit and the support are not bonded, the heat generated by the resistance heating element of the wafer holding unit can be prevented from escaping through the support. Therefore, in the present invention, the thermal conductivity of the support is the wafer holding unit. Combined with the lower thermal conductivity, the heat uniformity of the wafer holder can be greatly improved. Moreover, since the wafer holding part and the support are not joined, no thermal stress due to the difference in thermal expansion coefficient is applied, and there is no possibility that the ceramic wafer holding part will break.

上記したウエハ保持部と支持体を接合しない場合、ウエハ保持部の均熱性を上げ、且つ支持体の長さを短くするためには、ウエハ保持部はできるだけ高熱伝導率の材料、少なくとも支持体よりも高熱伝導率の材料を用いると同時に、支持体にはできるだけ熱伝導率の低い材料を用いることが好ましい。   In the case where the wafer holding part and the support are not joined, in order to increase the thermal uniformity of the wafer holding part and shorten the length of the support, the wafer holding part should be made of at least a material having a high thermal conductivity, at least from the support. In addition, it is preferable to use a material having a low thermal conductivity as much as possible for the support while using a material having a high thermal conductivity.

ウエハ保持部の材料は、具体的には、高熱伝導率、耐熱性、絶縁性の観点から、AlN、Al、SiC、Siから選ばれた少なくとも1種のセラミックスが好ましい。その中でも、特に熱伝導率が高く、耐熱性、耐食性に優れたAlNがより好ましい。 Specifically, the material of the wafer holding part is preferably at least one ceramic selected from AlN, Al 2 O 3 , SiC, and Si 3 N 4 from the viewpoints of high thermal conductivity, heat resistance, and insulation. Among them, AlN having particularly high thermal conductivity and excellent heat resistance and corrosion resistance is more preferable.

ウエハ保持部にAlNを用いた場合、支持体の材料としては、AlNの熱膨張率4.5×10−6/℃に近い熱膨張率4.0×10−6/℃をもつムライト(3Al・2SiO)を主成分とする材料を用いることが好ましい。ムライトは熱伝導率も4W/mKと非常に低く、熱の逃げを抑制する効果も大きいため、ウエハ保持部の均熱性がより一層向上する。しかも、支持体の長さを短くしても、ウエハ保持部と支持部と容器設置部の温度勾配がきつくならず、熱衝撃による支持体の割れが抑制できるため信頼性が向上する。また、ムライトにアルミナ(Al)を添加して支持体の熱膨張率を調整し、例えば熱膨張率をほぼ4.5×10−6/℃に調整して、ウエハ保持部を構成するAlNの熱膨張率に近似させることもできる。 When using the AlN wafer holder, the material of the support is mullite having a thermal expansion coefficient of 4.0 × 10 -6 / ℃ close to the thermal expansion coefficient of AlN 4.5 × 10 -6 / ℃ ( 3Al It is preferable to use a material mainly composed of 2 O 3 .2SiO 2 ). Mullite has a very low thermal conductivity of 4 W / mK and has a great effect of suppressing the escape of heat, so that the thermal uniformity of the wafer holder is further improved. In addition, even if the length of the support is shortened, the temperature gradient of the wafer holding part, the support part, and the container installation part is not tight, and the cracking of the support due to thermal shock can be suppressed, so that the reliability is improved. Further, alumina (Al 2 O 3 ) is added to mullite to adjust the thermal expansion coefficient of the support, and for example, the thermal expansion coefficient is adjusted to about 4.5 × 10 −6 / ° C. to constitute the wafer holding unit. It is also possible to approximate the thermal expansion coefficient of AlN.

実施例1
窒化アルミニウム(AlN)粉末に、焼結助剤として0.5重量%のイットリア(Y)を加え、更に有機バインダーを添加して分散混合した後、スプレードライにより造粒した。この造粒粉末を、焼結後に直径350mm×厚み5mmとなる寸法に、一軸プレスにより2枚成形した。この成形体を温度800℃の窒素ガス気流中で脱脂し、窒素気流中にて温度1900℃で6時間焼結した。得られたAlN焼結体の熱伝導率は180W/mKであった。2枚の焼結体の表面を、ダイヤモンド砥粒を用いて研磨した。
Example 1
0.5% by weight of yttria (Y 2 O 3 ) was added to the aluminum nitride (AlN) powder as a sintering aid, an organic binder was further added and dispersed and mixed, and then granulated by spray drying. Two pieces of this granulated powder were formed by uniaxial pressing into a size of 350 mm in diameter and 5 mm in thickness after sintering. This molded body was degreased in a nitrogen gas stream at a temperature of 800 ° C., and sintered in a nitrogen stream at a temperature of 1900 ° C. for 6 hours. The obtained AlN sintered body had a thermal conductivity of 180 W / mK. The surfaces of the two sintered bodies were polished using diamond abrasive grains.

片方のAlN焼結体上に、W粉末に焼結助剤とエチルセルロース系のバインダーを添加混練したWスラリーを用いて抵抗発熱体回路を印刷し、900℃の窒素気流中で脱脂した後、1850℃で1時間加熱して焼き付けた。残りの焼結体上には、接合用のガラスにエチルセルロース系のバインダーを添加混練したスラリーを塗布し、900℃の窒素気流中で脱脂した。   On one AlN sintered body, a resistance heating element circuit was printed using W slurry obtained by adding and kneading a sintering aid and an ethylcellulose binder to W powder, and degreased in a nitrogen stream at 900 ° C. Bake by heating at 0 ° C. for 1 hour. On the remaining sintered body, a slurry obtained by adding and kneading an ethylcellulose binder to glass for bonding was applied and degreased in a nitrogen stream at 900 ° C.

これら2枚のAlN焼結体の接合用ガラス面と抵抗発熱体面を重ね合わせ、ずれ防止のため50g/cmの荷重を掛けた状態で、1800℃で2時間加熱して接合することにより、図1に示すように、内部に抵抗発熱体2が埋設されたAlN製のウエハ保持部1を作製した。このウエハ製保持部1の裏面に、内部の抵抗発熱体2に接続される電極端子(図示せず)を接合し、更に系外の電源に電気的に接続される電力供給用の引出線3を接合した。 By superposing the bonding glass surface of these two AlN sintered bodies and the resistance heating element surface, and applying a load of 50 g / cm 2 to prevent deviation, heating and bonding at 1800 ° C. for 2 hours, As shown in FIG. 1, an AlN wafer holder 1 having a resistance heating element 2 embedded therein was fabricated. An electrode terminal (not shown) connected to the internal resistance heating element 2 is joined to the back surface of the wafer holder 1, and the power supply leader 3 is electrically connected to an external power source. Were joined.

ウエハ保持部を支持する支持体として、ムライト(3Al・2SiO)からなり、外径100mm×内径90mm×長さ100mmの円筒形の支持体を準備した。このムライト製支持体の熱伝導率は4W/mKであった。図1に示すように、この支持体4の片端をチャンバー5にクランプ固定し、支持体4の上にウエハ保持部1を接合することなく載置した。尚、ウエハ保持部1からの引出線3は支持体4内に収納し、チャンバー5との間はO−リング6により封止した。 As a support for supporting the wafer holder consists of mullite (3Al 2 O 3 · 2SiO 2 ), was prepared cylindrical supporting body having an outer diameter of 100 mm × inner diameter 90 mm × length 100 mm. The thermal conductivity of this mullite support was 4 W / mK. As shown in FIG. 1, one end of the support 4 was clamped and fixed to the chamber 5, and the wafer holder 1 was placed on the support 4 without bonding. The lead wire 3 from the wafer holding unit 1 was housed in the support 4 and sealed between the chamber 5 and the O-ring 6.

チャンバー5内をN雰囲気で0.1torrの減圧にし、系外から抵抗発熱体2に電力を供給して500℃に加熱し、支持体4のチャンバー5に固定した竿部を水冷しながら、ウエハ保持体1のウエハ7を保持する面全体の均熱性を測定したところ、500℃±0.39%であった。同じ保持体を10個作製し、室温と500℃の間を500回昇降温してヒートサイクル試験を行ったが、ヒートサイクル後も10個全て問題無かった。 The inside of the chamber 5 is depressurized to 0.1 torr in an N 2 atmosphere, power is supplied from outside the system to the resistance heating element 2 and heated to 500 ° C., and the flange fixed to the chamber 5 of the support 4 is cooled with water When the temperature uniformity of the entire surface of the wafer holder 1 holding the wafer 7 was measured, it was 500 ° C. ± 0.39%. Ten of the same holders were prepared, and the heat cycle test was performed by raising and lowering the temperature between room temperature and 500 ° C. 500 times. However, all of the ten holders had no problem after the heat cycle.

また、従来の支持体は長さが300mmで、これを収納するチャンバーの高さも450mm程度必要であった。これに対して実施例1では、支持体4の長さを100mmに短くしても問題なく使用でき、チャンバー5の高さも250mmまでコンパクトにすることが可能となった。   In addition, the conventional support has a length of 300 mm, and the height of the chamber for housing it needs to be about 450 mm. On the other hand, in Example 1, even if the length of the support 4 was shortened to 100 mm, it could be used without any problem, and the height of the chamber 5 could be reduced to 250 mm.

実施例2
酸化アルミニウム(Al)粉末に、焼結助剤として2重量%のマグネシア(MgO)を加え、更にバインダーを添加して分散混合し、スプレードライにより造粒した。この造粒粉末を、焼結後に直径350mm×厚み5mmとなる寸法に、一軸プレスにより2枚成形した。
Example 2
2% by weight of magnesia (MgO) was added to the aluminum oxide (Al 2 O 3 ) powder as a sintering aid, and a binder was further added, dispersed and mixed, and granulated by spray drying. Two pieces of this granulated powder were formed by uniaxial pressing into a size of 350 mm in diameter and 5 mm in thickness after sintering.

W粉末に焼結助剤とエチルセルロース系のバインダーを添加して混練し、上記成形体のうちの1枚に抵抗発熱体回路を印刷した。これを700℃の大気気流中で脱脂し、1600℃で3時間加熱して同時焼結した。得られたAl焼結体の熱伝導率は20W/mKであった。この焼結体の表面を、ダイヤモンド砥粒を用いて研磨した。 A sintering aid and an ethylcellulose binder were added to the W powder and kneaded, and a resistance heating element circuit was printed on one of the molded bodies. This was degreased in an air stream at 700 ° C., heated at 1600 ° C. for 3 hours, and simultaneously sintered. The obtained Al 2 O 3 sintered body had a thermal conductivity of 20 W / mK. The surface of this sintered body was polished using diamond abrasive grains.

残りの成形体は上記と同様に焼結し、その焼結体上には接合用のガラスにエチルセルロース系のバインダーを添加混練したスラリーを塗布し、900℃の大気気流中で脱脂した。これら2枚の焼結体の接合用ガラス面と抵抗発熱体面を重ね合わせ、実施例1と同様に接合してウエハ保持部を得た。ウエハ保持部の裏面には、実施例1と同様に電極端子を接合し、更に引出線を接合した。   The remaining molded body was sintered in the same manner as described above, and a slurry obtained by adding and kneading an ethylcellulose binder to glass for bonding was applied onto the sintered body and degreased in an air stream at 900 ° C. The glass surface for bonding and the resistance heating element surface of these two sintered bodies were superposed and bonded in the same manner as in Example 1 to obtain a wafer holding part. The electrode terminal was joined to the back surface of the wafer holding part in the same manner as in Example 1, and the lead wire was further joined.

このAl製のウエハ保持部を、実施例1と同じムライト製の支持体上に載置した。ムライト製の支持体の片端はチャンバーにクランプ固定した。実施例1と同じ条件でウエハ保持部の保持面全面の均熱性を測定したところ、均熱性は500℃±0.7%であった。また、同じ保持体を10個作製し、実施例1と同様にヒートサイクル試験を行ったが全て問題無かった。 The Al 2 O 3 wafer holder was placed on the same mullite support as in Example 1. One end of the mullite support was clamped to the chamber. When the thermal uniformity of the entire holding surface of the wafer holder was measured under the same conditions as in Example 1, the thermal uniformity was 500 ° C. ± 0.7%. Moreover, ten same holders were produced, and a heat cycle test was conducted in the same manner as in Example 1. However, there was no problem.

実施例3
炭化ケイ素(SiC)粉末に、焼結助剤として2重量%の炭化ホウ素(BC)を加え、更にバインダーを添加して分散混合し、スプレードライにより造粒した。造粒粉末を、焼結後に直径350mm×厚み5mmとなる寸法に、一軸プレスにより2枚成形した。
Example 3
To the silicon carbide (SiC) powder, 2% by weight of boron carbide (B 4 C) was added as a sintering aid, a binder was further added, dispersed and mixed, and granulated by spray drying. Two pieces of the granulated powder were formed by uniaxial pressing into a size of 350 mm in diameter and 5 mm in thickness after sintering.

W粉末に焼結助剤とエチルセルロース系のバインダーを添加して混練し、1枚の成形体上に抵抗発熱体回路を印刷した。これを900℃の窒素気流中で脱脂し、1900℃で5時間加熱して同時焼成した。得られたSiC焼結体の熱伝導率は150W/mKであった。焼結体の表面を、ダイヤモンド砥粒を用いて研磨した。   A sintering aid and an ethylcellulose-based binder were added to the W powder and kneaded, and a resistance heating element circuit was printed on one molded body. This was degreased in a nitrogen stream at 900 ° C., heated at 1900 ° C. for 5 hours, and co-fired. The obtained SiC sintered body had a thermal conductivity of 150 W / mK. The surface of the sintered body was polished using diamond abrasive grains.

残りの成形体は上記と同様に焼結し、その焼結体上には接合用のガラスにエチルセルロース系のバインダーを添加混練したスラリーを塗布し、900℃の窒素気流中で脱脂した。これら2枚の焼結体の接合用ガラス面と抵抗発熱体面を重ね合わせ、実施例1と同様に接合してウエハ保持部を得た。ウエハ保持部の裏面には、実施例1と同様に電極端子を接合し、更に引出線を接合した。   The remaining molded body was sintered in the same manner as described above, and a slurry obtained by adding and kneading an ethylcellulose-based binder to glass for bonding was applied onto the sintered body and degreased in a nitrogen stream at 900 ° C. The glass surface for bonding and the resistance heating element surface of these two sintered bodies were superposed and bonded in the same manner as in Example 1 to obtain a wafer holding part. The electrode terminal was joined to the back surface of the wafer holding part in the same manner as in Example 1, and the lead wire was further joined.

このSiC製のウエハ保持部を、実施例1と同じムライト製の支持体上に載置した。ムライト製の支持体の片端はチャンバーにクランプ固定した。実施例1と同じ条件でウエハ保持部の保持面全面の均熱性を測定したところ、均熱性は500℃±0.5%であった。また、同じ保持体を10個作製し、実施例1と同様にヒートサイクル試験を行ったが全て問題無かった。   The SiC wafer holder was placed on the same mullite support as in Example 1. One end of the mullite support was clamped to the chamber. When the thermal uniformity of the entire holding surface of the wafer holder was measured under the same conditions as in Example 1, the thermal uniformity was 500 ° C. ± 0.5%. Moreover, ten same holders were produced, and a heat cycle test was conducted in the same manner as in Example 1. However, there was no problem.

実施例4
窒化ケイ素(Si)粉末に、焼結助剤として2重量%の酸化イットリウム(Y)と2重量%の酸化アルミニウム(Al)を加え、更にバインダーを添加して分散混合し、スプレードライにより造粒した。造粒粉末を、焼結後に直径350mm×厚み5mmとなる寸法に、一軸プレスにより2枚成形した。
Example 4
2 wt% yttrium oxide (Y 2 O 3 ) and 2 wt% aluminum oxide (Al 2 O 3 ) are added to the silicon nitride (Si 3 N 4 ) powder as a sintering aid, and a binder is further added. The mixture was dispersed and granulated by spray drying. Two pieces of the granulated powder were formed by uniaxial pressing into a size of 350 mm in diameter and 5 mm in thickness after sintering.

W粉末に焼結助剤とエチルセルロース系のバインダーを添加して混練し、1枚の成形体上に抵抗発熱体回路を印刷した。これを900℃の窒素気流中で脱脂し、1900℃で5時間加熱して同時焼成した。得られたSi焼結体の熱伝導率は20W/mKであった。焼結体の表面を、ダイヤモンド砥粒を用いて研磨した。 A sintering aid and an ethylcellulose-based binder were added to the W powder and kneaded, and a resistance heating element circuit was printed on one molded body. This was degreased in a nitrogen stream at 900 ° C., heated at 1900 ° C. for 5 hours, and co-fired. The obtained Si 3 N 4 sintered body had a thermal conductivity of 20 W / mK. The surface of the sintered body was polished using diamond abrasive grains.

残りの成形体は上記と同様に焼結し、その焼結体上には接合用のガラスにエチルセルロース系のバインダーを添加混練したスラリーを塗布し、900℃の窒素気流中で脱脂した。これら2枚の焼結体の接合用ガラス面と抵抗発熱体面を重ね合わせ、実施例1と同様に接合してウエハ保持部を得た。ウエハ保持部の裏面には、実施例1と同様に電極端子を接合し、更に引出線を接合した。   The remaining molded body was sintered in the same manner as described above, and a slurry obtained by adding and kneading an ethylcellulose-based binder to glass for bonding was applied onto the sintered body and degreased in a nitrogen stream at 900 ° C. The glass surface for bonding and the resistance heating element surface of these two sintered bodies were superposed and bonded in the same manner as in Example 1 to obtain a wafer holding part. The electrode terminal was joined to the back surface of the wafer holding part in the same manner as in Example 1, and the lead wire was further joined.

このSi製のウエハ保持部を、実施例1と同じムライト製の支持体上に載置した。ムライト製の支持体の片端はチャンバーにクランプ固定した。実施例1と同じ条件でウエハ保持部の保持面全面の均熱性を測定したところ、均熱性は500℃±0.8%であった。また、同じ保持体を10個作製し、実施例1と同様にヒートサイクル試験を行ったが全て問題無かった。 The Si 3 N 4 wafer holder was placed on the same mullite support as in Example 1. One end of the mullite support was clamped to the chamber. When the thermal uniformity of the entire holding surface of the wafer holding part was measured under the same conditions as in Example 1, the thermal uniformity was 500 ° C. ± 0.8%. Moreover, ten same holders were produced, and a heat cycle test was conducted in the same manner as in Example 1. However, there was no problem.

実施例5
上記実施例1と同じAlN製のウエハ保持部を、外径100mm×内径90mm×長さ100mmのSUS製の支持体上に、接合することなく載置した。尚、ウエハ保持部の裏面には、実施例1と同様に抵抗発熱体端部の電極端子と引出線を接合した。尚、このSUSの熱伝導率は15W/mKであった。
Example 5
The same AlN wafer holder as in Example 1 was placed on a SUS support having an outer diameter of 100 mm, an inner diameter of 90 mm, and a length of 100 mm without bonding. In addition, the electrode terminal and the lead wire of the resistance heating element edge part were joined to the back surface of the wafer holding part similarly to Example 1. The thermal conductivity of this SUS was 15 W / mK.

この保持体について実施例1と同じ評価を行ったところ、ウエハ保持面の均熱性は500℃±0.42%であった。また、同じ保持体を10個作製し、実施例1と同様にヒートサイクル試験を行ったが全て問題無かった。   When this holder was evaluated in the same manner as in Example 1, the thermal uniformity of the wafer holding surface was 500 ° C. ± 0.42%. Moreover, ten same holders were produced, and a heat cycle test was conducted in the same manner as in Example 1. However, there was no problem.

比較例1
実施例1と同じ方法でウエハ保持部を作製した。支持体はウエハ保持体と同じAlN製で、外径100mm×内径90mm×長さ300mmとした。ウエハ保持部及び支持体ともAlN製であり、熱伝導率は180W/mKであった。この支持体上に、ウエハ保持部を接合することなく載置した。
Comparative Example 1
A wafer holding unit was produced in the same manner as in Example 1. The support was made of the same AlN as the wafer holder and had an outer diameter of 100 mm, an inner diameter of 90 mm, and a length of 300 mm. Both the wafer holder and the support were made of AlN, and the thermal conductivity was 180 W / mK. The wafer holder was placed on this support without bonding.

得られた保持体について実施例1と同じ評価を行ったところ、均熱性は500℃±1.2%であった。また、同じ保持体を10個作製し、実施例1と同様にヒートサイクル試験を行ったが全て問題無かった。   When the same evaluation as Example 1 was performed about the obtained holding body, the soaking | uniform-heating property was 500 degreeC +/- 1.2%. Moreover, ten same holders were produced, and a heat cycle test was conducted in the same manner as in Example 1. However, there was no problem.

比較例2
実施例1と同じ方法でAlN製のウエハ保持部を作製した。支持体は、外径100mm×内径90mm×長さ300mmのCu製の支持体を準備した。ウエハ保持部の熱伝導率は180W/mK、支持体の熱伝導率は393W/mKであった。支持体の端部を研磨加工し、その上にウエハ保持部を接合することなく載置して保持体とした。
Comparative Example 2
A wafer holder made of AlN was produced in the same manner as in Example 1. As the support, a Cu support having an outer diameter of 100 mm, an inner diameter of 90 mm, and a length of 300 mm was prepared. The wafer holder had a thermal conductivity of 180 W / mK, and the support had a thermal conductivity of 393 W / mK. An end portion of the support was polished, and a wafer holder was placed on the end without bonding to form a holder.

得られた保持体について実施例1と同じ評価を行ったところ、均熱性は500℃±2.5%であった。また、同じ保持体を10個作製し、実施例1と同様にヒートサイクル試験を行ったが全て問題無かった。   When the same evaluation as Example 1 was performed about the obtained holding body, the soaking | uniform-heating property was 500 degreeC +/- 2.5%. Moreover, ten same holders were produced, and a heat cycle test was conducted in the same manner as in Example 1. However, there was no problem.

チャンバー内に本発明の保持体を固定した状態を示す概略の断面図である。It is general | schematic sectional drawing which shows the state which fixed the holding body of this invention in the chamber.

符号の説明Explanation of symbols

1 ウエハ保持部
2 抵抗発熱体
3 引出線
4 支持体
5 チャンバー

DESCRIPTION OF SYMBOLS 1 Wafer holding part 2 Resistance heating element 3 Leader 4 Support body 5 Chamber

Claims (7)

抵抗発熱体を有するセラミックス製のウエハ保持部と、ウエハ保持部を支持する支持体とからなり、支持体の熱伝導率がウエハ保持部の熱伝導率よりも低く、ウエハ保持部と支持体が接合されていないことを特徴とする半導体製造装置用保持体。   It comprises a ceramic wafer holding part having a resistance heating element and a support that supports the wafer holding part. The thermal conductivity of the support is lower than the thermal conductivity of the wafer holding part. A holding body for a semiconductor manufacturing apparatus, which is not bonded. 前記ウエハ保持部がAlN、Al、SiC、Siから選ばれた少なくとも1種のセラミックスを主成分とすることを特徴とする、請求項1に記載の半導体製造装置用保持体。 2. The holding body for a semiconductor manufacturing apparatus according to claim 1, wherein the wafer holding portion is mainly composed of at least one ceramic selected from AlN, Al 2 O 3 , SiC, and Si 3 N 4. . 前記ウエハ保持部がAlNであることを特徴とする、請求項2に記載の半導体製造装置用保持体。   The holding body for a semiconductor manufacturing apparatus according to claim 2, wherein the wafer holding portion is AlN. 前記支持体がムライトを主成分とすることを特徴とする、請求項1〜3のいずれかに記載の半導体製造装置用保持体。   The said support body has a mullite as a main component, The holding body for semiconductor manufacturing apparatuses in any one of Claims 1-3 characterized by the above-mentioned. 前記支持体がムライトとアルミナの複合体であることを特徴とする、請求項4に記載の半導体製造装置用保持体。   5. The holding body for a semiconductor manufacturing apparatus according to claim 4, wherein the support is a composite of mullite and alumina. 請求項1〜5のいずれかに記載の半導体製造装置用保持体を用いた半導体製造装置。   The semiconductor manufacturing apparatus using the holding body for semiconductor manufacturing apparatuses in any one of Claims 1-5. フォトリソグラフィー用樹脂膜の加熱硬化、又は低誘電率の絶縁膜の加熱焼成に用いられる装置であることを特徴とする、請求項6に記載の半導体製造装置。

The semiconductor manufacturing apparatus according to claim 6, wherein the semiconductor manufacturing apparatus is used for heat curing of a resin film for photolithography or heat baking of an insulating film having a low dielectric constant.

JP2005339616A 2005-11-25 2005-11-25 Holder for semiconductor manufacturing equipment Expired - Fee Related JP4305443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339616A JP4305443B2 (en) 2005-11-25 2005-11-25 Holder for semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339616A JP4305443B2 (en) 2005-11-25 2005-11-25 Holder for semiconductor manufacturing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002111515A Division JP4311910B2 (en) 2002-04-15 2002-04-15 Holder for semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2006148143A true JP2006148143A (en) 2006-06-08
JP4305443B2 JP4305443B2 (en) 2009-07-29

Family

ID=36627370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339616A Expired - Fee Related JP4305443B2 (en) 2005-11-25 2005-11-25 Holder for semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4305443B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098315A1 (en) * 2009-02-25 2010-09-02 京セラ株式会社 Probe card substrate, probe card laminated body, and probe card equipped with said probe card laminated body and probe
JP2011007597A (en) * 2009-06-25 2011-01-13 Kyocera Corp Board for probe card constituting probe card, laminate for probe card, and probe card using laminate for probe card
JP2011133303A (en) * 2009-12-24 2011-07-07 Kyocera Corp Ceramic wiring board for probe card and probe card using the same
JP2014153170A (en) * 2013-02-07 2014-08-25 Gigaphoton Inc Target supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098315A1 (en) * 2009-02-25 2010-09-02 京セラ株式会社 Probe card substrate, probe card laminated body, and probe card equipped with said probe card laminated body and probe
JP2010197193A (en) * 2009-02-25 2010-09-09 Kyocera Corp Substrate for probe card, laminate for probe card, and probe card using the laminate for probe card
JP2011007597A (en) * 2009-06-25 2011-01-13 Kyocera Corp Board for probe card constituting probe card, laminate for probe card, and probe card using laminate for probe card
JP2011133303A (en) * 2009-12-24 2011-07-07 Kyocera Corp Ceramic wiring board for probe card and probe card using the same
JP2014153170A (en) * 2013-02-07 2014-08-25 Gigaphoton Inc Target supply device

Also Published As

Publication number Publication date
JP4305443B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
US20060201422A1 (en) Workpiece Holder for Semiconductor Manufacturing Apparatus
US20100242844A1 (en) Holder for semiconductor manufacturing equipment
WO2001062686A1 (en) Aluminum nitride sintered compact, ceramic substrate, ceramic heater and electrostatic chuck
KR20070032966A (en) An electrostatic chuck
JP2003258068A (en) Semiconductor/liquid crystal manufacturing apparatus
JP2007194320A (en) Electrostatic chuck device
JP2001274230A (en) Wafer holder for semiconductor manufacturing device
JP4305443B2 (en) Holder for semiconductor manufacturing equipment
JP2005317749A (en) Holding body for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus loaded therewith
JP3791432B2 (en) Heating device for semiconductor manufacturing
JP2003282685A (en) Cooling plate
JP2005123602A (en) Holder for semiconductor manufacturing apparatus
JP2006245610A (en) Holder for semiconductor manufacturing apparatus
JP2007115736A (en) Wafer heating hot plate
JP2005045280A (en) Holder for semiconductor manufacturing apparatus
JP2004128232A (en) Ceramic junction, wafer holder, and semiconductor manufacturing equipment
JP4348094B2 (en) Holder for semiconductor manufacturing equipment
JP4788575B2 (en) Holder for semiconductor manufacturing equipment
JP2010283364A (en) Holder for semiconductor manufacturing device
JP2004087206A (en) Flat ceramic heater
WO2001084623A9 (en) Hot plate unit and semiconductor manufacturing and inspecting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Ref document number: 4305443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees