JP2006147494A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2006147494A
JP2006147494A JP2004339528A JP2004339528A JP2006147494A JP 2006147494 A JP2006147494 A JP 2006147494A JP 2004339528 A JP2004339528 A JP 2004339528A JP 2004339528 A JP2004339528 A JP 2004339528A JP 2006147494 A JP2006147494 A JP 2006147494A
Authority
JP
Japan
Prior art keywords
separator plate
cathode
anode
manifold
cooling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004339528A
Other languages
English (en)
Inventor
Shigeyuki Unoki
重幸 鵜木
Shinsuke Takeguchi
伸介 竹口
Yasuo Takebe
安男 武部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004339528A priority Critical patent/JP2006147494A/ja
Publication of JP2006147494A publication Critical patent/JP2006147494A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】 発電中にセルの発熱部の温度の影響を受けて、入口側マニホールド内の冷却流体が温度上昇する。これにより燃料電池セルスタックにおける各単セルの温度バラツキを生じ、フラッディングや出力電圧の変動が起こる。本発明は、入口側マニホールド内の冷却流体が温度上昇するのを抑制し、耐久性に優れ、安定した出力電圧を実現する燃料電池を提供する。
【解決手段】 カソード側セパレータ板およびアノード側セパレータ板に、冷却流体の入口側マニホールドと出口側マニホールドとを連絡する冷却流体の流路を有する燃料電池において、セルの発熱部(即ちカソードおよびアノードと対応する領域)を冷却する冷却部と、冷却流体の入口側マニホールドとの間に、熱遮断性部材を配置する。
【選択図】図4

Description

本発明は、家庭用コージェネレーションシステム、自動二輪車、電気自動車、ハイブリッド電気自動車等に用いられる燃料電池、特に高分子電解質型燃料電池に関するものである。さらに詳しくは、本発明は、燃料電池のセルスタックにおける各単セルの温度バラツキを低減することにより、フラッディングが発生しにくく、耐久性に優れた燃料電池に関するものである。
陽イオン(水素イオン)伝導性を有する高分子電解質を用いた燃料電池は、水素を含む燃料ガスと、空気など酸素を含む酸化剤ガスとを、電気化学的に反応させることで、電力と熱とを同時に発生させるものである。この燃料電池は、基本的には、水素イオンを選択的に輸送する水素イオン伝導性を有する高分子電解質膜、および高分子電解質膜の両面に配置された一対の電極からなる。これらの電極は、電極触媒(例えば、白金などの金属触媒)を担持した導電性カーボン粉末を主成分とする触媒層、およびこの触媒層の外側に形成された、通気性と電子導電性を併せ持つガス拡散層(例えば撥水処理を施したカーボンペーパー)からなるガス拡散電極から構成される。これを膜電極接合体(MEA)と呼ぶ。
供給される燃料ガスや酸化剤ガス(反応ガス)が外部にリークしたり、互いに混合したりしないように、電極の周辺には高分子電解質膜を挟んでガスシール材やガスケットが配置される。このシール材やガスケットは、電極および高分子電解質膜と一体化してあらかじめ組み立てられる。MEAの外側には、これを機械的に固定するとともに、隣接するMEAを互いに電気的に直列に接続するための導電性のセパレータ板が配置される。セパレータ板のMEAと接触する部分には、電極面に反応ガスを供給し、生成ガスや余剰ガスを運び去るためのガス流路が形成される。ガス流路は、セパレータ板と別に設けることもできるが、セパレータ板の表面に溝を設けてガス流路とする方式が一般的である。
これらのMEAとセパレータ板を交互に重ねていき、10〜200セル積層した後、集電板と絶縁板を介して端板でこれを挟み、締結ボルトで両端から固定するのが一般的な積層電池の構造である。これをセルスタックと呼ぶ。
高分子電解質膜は、水分を飽和状態で含水させることにより膜の比抵抗が小さくなり、水素イオン伝導性を有する電解質として機能する。よって、燃料電池の稼動中は、高分子電解質膜からの水分の蒸発を防ぐために、燃料ガスおよび酸化剤ガスは加湿して供給される。また、電池発電時には、次の電気化学反応が生じ、カソード側で反応生成物として水が生成される。
アノード ; H2 → 2H+ + 2e- (1)
カソード ; 2H+ + (1/2)O2 + 2e- → H2O (2)
加湿された燃料ガス中の水、加湿された酸化剤ガス中の水、および反応生成水は、高分子電解質膜の含水量を飽和状態に保つために使用され、さらに余剰の燃料ガス酸化剤ガスとともに燃料電池の外部へ排出される。
また、上の反応は発熱反応であることから、電池発電時にはセルスタックを冷却する必要がある。セルスタックを冷却するには、セパレータ板のMEAと接触する面(第1の面)とは反対側の面(第2の面)に冷却流体の流路を形成し、そこに冷却流体を流し、発熱反応により温度上昇したセパレータ板と冷却流体とを熱交換させる方法が一般的である。冷却流体の流路は、セパレータ板と別に設けることもできるが、セパレータ板の表面に溝を設けて流路とする方式が一般的である。
セルスタックの冷却が不十分な場合、MEAの温度が上昇して高分子電解質膜から水分が蒸発する。その結果、高分子電解質膜の劣化が促進されてセルスタックの耐久性が短縮したり、高分子電解質膜の比抵抗が増大してセルスタックの出力が低下したりする。一方、セルスタックを必要以上に冷却した場合、ガス流路を流れる反応ガス中の水分が結露し、反応ガス中に含まれる液体状態の水の量が増加する。液体状態の水は、セパレータ板のガス流路に表面張力によって液滴として付着する。この液滴の量が甚だしい場合は、ガス流路内に付着した水がガス流路を塞いでガスの流れを阻害し、フラッディングを起こす。その結果、電極の反応面積が減少し、電池性能が低下する。
そこで、酸化剤ガスの流路中の含水量が少ない領域をより冷却することを目的として、当該酸化剤ガスの流路中の含水量が少ない領域、即ち酸化剤ガスの流路の入口側と、冷却流体の流路中において冷却流体の温度が低い領域、即ち冷却流体の流路の入口側とを略一致するように互いに近傍に設け、これによってフラッディングを抑制し、出力電圧を安定にする冷却方法が提案されている(例えば、特許文献1参照)。
特表平9−511356号公報
しかしながら、上記特許文献1の方法を採用したセパレータ板においては、酸化剤ガスの流路中の含水量が少ない領域、即ち式(1)による反応生成水の総量が少なく、酸化剤ガス濃度が高く、かつ式(1)の反応がより促進されることによる発熱量が多い領域と、冷却流体の導入部とが一致しているため、以下のような問題が生じる。
ここで、図9に、上記特許文献1におけるセパレータ板と同様の構造を有する従来のカソード側セパレータ板の、冷却流体の流路側の上面図を示す。従来のセパレータ板101においては、冷却流体の入口側マニホールド孔102aと出口側のマニホールド孔102bとを接続する溝状の冷却流体の流路107が設けられ、裏面には、酸化剤ガスの入口側マニホールド孔103aと出口側マニホールド孔103bとが、溝状の酸化剤ガスのガス流路(図示せず)で接続されている。なお、104aおよび104bはそれぞれ燃料ガスの入口側マニホールド孔および出口側マニホールド孔で、四隅に締結ボルト用の孔106が設けられている。
従来のカソード側セパレータ板101のハッチングで示される領域109においては、冷却流体の導入部と、酸化剤ガスの入口側マニホールド孔103a付近における、酸化剤ガスの流路中の含水量が少ない領域とが一致しているため、冷却流体の入口側マニホールド内の冷却流体が、一点鎖線105で示されカソードに対応する領域の発熱の影響を受ける。そのため、セルスタックへの導入前ないしは導入直後の冷却流体の温度T0が、発熱したカソードの温度T2によってT1にまで上昇し(ただし、T0<T1<T2)、その温度上昇ΔT(=T1−T0)が比較的大きい。このことは、アノード側セパレータ板においても同様である。そうすると、単セルが積層されたセルスタックにおける冷却流体の入口側マニホールドにおいては、冷却流体の滞留時間が短い入口部と、滞留時間が長くなる入口部から最も遠い奥側の部分(即ち、冷却流体の入口側マニホールドの、冷却流体の流れる方向において最も下流側の部分)との間に、冷却流体の温度差が生じる。したがって、セルスタック内の積層方向において下流に行けばいくほど冷却効果が低下し、各単セルの冷却状態にバラツキが生じ、最適状態に冷却することが困難になる。
その結果、セルスタック内の積層方向において各単セルの温度が不均一になり、温度が高い単セルにおいては、高分子電解質膜から水分が蒸発して該高分子電解質膜の劣化が促進することによって単セルの耐久性が短縮したり、高分子電解質膜の比抵抗の増大によって単セルの出力が低下してしまうという問題を有していた。
一方、温度が低い単セルにおいては、ガス流路を流れる反応ガス中の水分が結露して液体状態の水が増加し、ガス流路内に付着した水がガス流路を塞いでガスの流れを阻害するフラッディングが発生するという問題を有していた。
上記のような問題は、セルスタック内の積層方向における各単セルの不均一冷却に起因するため、個々の単セルにおけるセパレータ板の冷却流体の流路パターンや、冷却流体の流速の最適化などによっては解決することは困難であった。
本発明は、以上の問題を鑑みてなされたものであり、燃料電池の発電中に単セルの発熱部の温度と、冷却流体の入口側マニホールド内の冷却流体との温度差に起因して入口側マニホールド内の冷却流体に生じる温度上昇を緩和し、燃料電池のセルスタックの積層方向における各単セルの温度バラツキを低減することにより、フラッディングを抑制し、耐久性に優れ、安定した出力電圧を実現する燃料電池を提供することを目的とする。
本発明は、上記課題を解決すべく、
高分子電解質膜、高分子電解質膜を挟むカソードおよびアノードを含む膜電極接合体と、膜電極接合体を挟むカソード側セパレータ板およびアノード側セパレータ板と、を有する単セルを2以上積層したセルスタックを具備する燃料電池であって、
セルスタックは、酸化剤ガスの入口側マニホールドおよび出口側マニホールド、燃料ガスの入口側マニホールドおよび出口側マニホールド、ならびに冷却流体の入口側マニホールドおよび出口側マニホールドを有し、
カソード側セパレータ板は、カソードと対向する第1の面に、酸化剤ガスの入口側マニホールドと酸化剤ガスの出口側マニホールドとを連絡する酸化剤ガスの流路を有し、
アノード側セパレータ板は、アノードと対向する第1の面に、燃料ガスの入口側マニホールドと燃料ガスの出口側マニホールドとを連絡する燃料ガスの流路を有し、
カソード側セパレータ板およびアノード側セパレータ板の少なくとも一方において、第1の面の反対側に位置する第2の面に、冷却流体の入口側マニホールドと冷却流体の出口側マニホールドとを連絡する冷却流体の流路を有し、
冷却流体の流路は、カソードおよびアノードと対応する領域を冷却する冷却部を構成し、
冷却部と冷却流体の入口側マニホールドとの間に、下記式(1)で表される条件を満たす熱遮断部材を有すること、を特徴とする燃料電池を提供する。
{Tm/Ts}<0.008 ・・・(1)
[式(1)中、Tmは前記熱遮断部材の熱伝導率(W/m・K)を示し、Tsは前記カソード側セパレータ板およびアノード側セパレータ板の少なくとも一方の熱伝導率(W/m・K)を示す。]
上記のように、カソード側セパレータ板およびアノード側セパレータ板のうちの少なくとも一方において、冷却流体の流路で構成される従来からの冷却部に加えて、当該冷却部と冷却流体の入口側マニホールドとの間に位置する、上記式(1)で表される条件を満たす熱遮断部材を設けることにより、燃料電池の発電中に単セルの発熱部(即ちアノードおよびカソード)の温度上昇に伴って熱が冷却流体の入口側マニホールド内の冷却流体に移動することを遮断することができる。そして、上記発熱部の温度と、冷却流体の入口側マニホールド内の冷却流体との温度差に起因する、入口側マニホールド内の冷却流体に生じる温度上昇を緩和することができ、これによって燃料電池のセルスタックの積層方向における各単セルの温度バラツキを低減することができ、フラッディングを抑制し、耐久性に優れた燃料電池を得ることができる。
ここで、式(1)の値{Tm/Ts}の値が0.008を超えると充分な熱遮断効果が得られず、単セルの発熱部(即ちアノードまたはカソード)の温度上昇に伴って、熱が冷却流体の入口側マニホールド内の冷却流体に移動してしまう。式(1)の値{Tm/Ts}に下限は特にはないが、できるだけ小さいことが好ましい。
なお、熱伝導率は、円板熱流計法、レーザーフラッシュ法などで測定することができ、式(1)の値{Tm/Ts}を求める際には、Tm及びTsの値は、それぞれの単位が同一となるようにそろえた値を使用する。
本発明によれば、入口側マニホールド内の冷却流体が温度上昇するのを抑制することができるため、セルスタックにおける冷却流体の入口側マニホールド内において、冷却流体が入口から奥へ進むに従って次第に温度が高くなるということがなく、入口部と最も奥の部分とでの温度差が大きくなることはない。このため、セルスタックの各セルに導入される冷却流体の温度差が殆どなく、セルスタック全体がほぼ均一に冷却される。
したがって、本発明によれば、燃料電池のセルスタックにおける各セルの温度バラツキが低減されるので、フラッディングが抑制され、安定した出力電圧を実現する、耐久性に優れた燃料電池を提供することができる。
以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略することもある。
図1は、本発明の燃料電池の好適な一実施形態の基本構成を示す概略断面図である。単セル10は、高分子電解質膜の一例である水素イオン伝導性を有する高分子電解質膜1と、高分子電解質膜1を挟むカソード2およびアノード3を備えている。高分子電解質膜1には、パーフルオロスルホン酸からなる膜(デュポン(株)製のNafion(商品名))を用いている。カソードおよびアノードは、高分子電解質膜に接する触媒層と、その外側に配置されたガス拡散層とからなる。カソードおよびアノードの触媒には、電極触媒(例えば白金金属)を担持したカーボンを用いている。
単セル10は、高分子電解質膜1、カソード2およびアノード3からなる膜電極接合体(MEA)を挟む、カソード側セパレータ板30およびアノード側セパレータ板40を備えている。そして、カソード側セパレータ板30およびアノード側セパレータ板40には、詳細は後述するが、熱遮断部材38が設けられている。高分子電解質膜1は、カソード2およびアノード3の外周部において、ガスケット4により挟まれている。
以下の説明では、単セル10は、図1のように、MEAが水平方向に対して垂直となるように設置されるものとする。
次に、図2に、上記の単セル10を2以上(複数個)積層して得られるセルスタックの概略斜視図を示す。セルスタック20は、MEA、カソード側セパレータ板30およびアノード側セパレータ板40にそれぞれ設けられて、互いに連通する酸化剤ガスの入口側マニホールド孔につながる酸化剤ガスの入口22aおよび出口側マニホールド孔につながる酸化剤ガスの出口22b、燃料ガスの入口側マニホールド孔につながる燃料ガスの入口23aおよび出口側マニホールド孔につながる燃料ガスの出口23b、ならびに、冷却水の入口側マニホールド孔につながる冷却水の入口24aおよび出口側マニホールド孔につながる冷却水の出口24bを有する。なお、セルスタック20の両端に位置するセパレータ板は、冷却水の流路を有しない。このセルスタック20は、両端に、集電板および絶縁板を介して端板を重ね合わせ、締結ボルトで締め付けることにより、燃料電池が構成される。
上記のように構成された燃料電池においては、酸化剤ガスの入口22aから各セルの入口側マニホールドに導入された酸化剤ガスは、カソード側セパレータ板30の流路36からカソード2のガス拡散電極に拡散して反応に供される。余剰の酸化剤ガスおよび反応生成物は、流路36から出口側マニホールドを経て出口22bより排出される。燃料ガスも同様に、入口23a、入口側マニホールド、およびアノード側セパレータ板40の流路46を経由してアノード3に供給され、余剰の燃料ガスおよび反応生成物は流路46から出口側マニホールドを経て出口23bより排出される。
ここで、従来の燃料電池においては、上述したように、冷却流体の入口側マニホールド内の冷却流体が電極の発熱の影響を受けるため、セルスタック内の積層方向において各単セルの温度が不均一になり、温度が高い単セルにおいては、高分子電解質膜から水分が蒸発して該高分子電解質膜の劣化が促進することによって単セルの耐久性が短縮したり、高分子電解質膜の比抵抗の増大によって単セルの出力が低下してしまうという問題を有していた。これに対し、本発明の燃料電池においては、図3、図4および図5に示すような構造を有するカソード側セパレータ板と、図6および図7に示すような構造を有するアノード側セパレータ板とを用いる。
図3は、本実施形態における燃料電池のカソード側セパレータ板の酸化剤ガスの流路側の正面図である。図4は、図3に示すカソード側セパレータ板の背面図、即ち冷却流体の流路側の正面図である。また、図5は、図4におけるX−X線部分の構成を示す断面図である。
カソード側セパレータ板30は、図3および図4に示すように、酸化剤ガスの入口側マニホールド孔32aおよび出口側マニホールド孔32b、燃料ガスの入口側マニホールド孔33aおよび出口側マニホールド孔33b、冷却水の入口側マニホールド孔34aおよび出口側マニホールド孔34b、ならびに締結用ボルトを通すための4個の孔31を有する。また、カソード側セパレータ板30は、カソードと対向する面に、酸化剤ガスのマニホールド孔32aと32bをつなぐ酸化剤ガスの流路36を有し、背面には、冷却水のマニホールド孔34aと34bをつなぐ冷却水の流路37を有する。
図3および図4において、一点鎖線35で囲まれた領域は、MEAの触媒層を含む発電部(即ちカソード)が位置する領域と対応する。そして、図3に示すように、酸化剤ガスの流路36は、2本の並行する溝により構成され、一点鎖線35で囲まれた領域においては、各溝は7本の水平方向に伸びる直線部と隣接する直線部をつなぐ6個のターン部とから構成されている。溝の数およびターン部の数はこれらに限定されるものではなく、本発明の効果を損なわない範囲で適宜設定することが可能である。
一方、冷却水の流路37は、2本の並行する溝からなり、一点鎖線35で囲まれた領域に位置する冷却部37c、冷却部37cを入口側マニホールド孔34aにつなぐ入口側の部分37a、および冷却部37cを出口側マニホールド孔34bにつなぐ出口側の部分37bで構成されている。
冷却部37cは、2本の並行する溝により構成され、各溝は7本の水平方向に伸びる直線部と隣接する直線部をつなぐ6個のターン部とから構成されており、出口側の部分37bは、単純に垂直方向に伸びる直線部で構成されている。
本実施形態におけるカソード側セパレータ板30は、冷却水の入口側マニホールド孔34aと、冷却部37cとの間に熱遮断部材38を有し、熱遮断部材38の上面に、2本の並行する溝が設けられ、これらの溝が冷却水の流路37の入口側の部分37aを構成していることを特徴とする。
即ち、本実施形態では、冷却水の流路37は、その入口側の部分37aが、熱遮断部材38上に形成され、したがって、発熱部(即ちカソード)からの熱が冷却水の入口側マニホールド孔34aに伝わることを有効に遮断できるようになっている点で出口側の部分37bと異なっている。
これにより、燃料電池の発電中に単セルの発熱部(即ちカソード)の温度上昇に伴って熱が冷却水の入口側マニホールド内の冷却水に移動することを遮断することができる。そして、上記発熱部の温度と、冷却水の入口側マニホールド内の冷却水との温度差に起因する、入口側マニホールド内の冷却水に生じる温度上昇を緩和することができ、これによって燃料電池のセルスタックの積層方向における各単セルの温度バラツキを低減することができ、フラッディングを抑制し、耐久性に優れた燃料電池を得ることができる。
熱遮断部材38は、図4および図5に示されるようにカソード側セパレータ板30の一辺よりも短い短冊状の形状を有し、図1および図5に示すようにカソード側セパレータ板30よりも薄く、カソード側セパレータ板30に埋め込まれた状態で固定されている。熱遮断部材38の上面には、2本の並行する溝が設けられ、これらによって冷却水の流路37の入口側の部分37aが構成されている。
本実施形態において、カソード側セパレータ板30は導電性カーボン(熱伝導率:128W/m・K)で構成され、熱遮断部材38はガラス(熱伝導率:1.02W/m・K)で構成されている。したがって、本実施形態のカソード側セパレータ板30における{Tm/Ts}値は0.00797(=1.02/128)であり、上記式(1)で示される条件を満たしている。
次に、図6は、本実施形態における燃料電池のアノード側セパレータ板の燃料ガスの流路側の正面図である。図7は、図6に示すアノード側セパレータ板の背面図、即ち冷却流体の流路側の正面図である。
アノード側セパレータ板40は、図6および図7に示すように、酸化剤ガスの入口側マニホールド孔42aおよび出口側マニホールド孔42b、燃料ガスの入口側マニホールド孔43aおよび出口側マニホールド孔43b、冷却水の入口側マニホールド孔44aおよび出口側マニホールド孔44b、ならびに締結用ボルトを通すための4個の孔41を有する。また、アノード側セパレータ板40は、アノードと対向する面に、燃料ガスのマニホールド孔43aと43bをつなぐ燃料ガスの流路46を有し、背面には、冷却水のマニホールド孔44aと44bをつなぐ冷却水の流路47を有する。
図6および図7において、一点鎖線45で囲まれた領域は、カソード側セパレータ板の場合と同様に、MEAの触媒層を含む発電部(即ちアノード)が位置する領域と対応する。燃料ガスの流路46は、2本の並行する溝により構成され、一点鎖線45で囲まれた領域においては、各溝は7本の水平方向に伸びる直線部と隣接する直線部をつなぐ6個のターン部から構成されている。溝の数およびターン部の数はこれらに限定されるものではなく、本発明の効果を損なわない範囲で適宜設定することが可能である。
アノード側セパレータ板40は、その背面をカソード側セパレータ板30の背面と接合すると、セパレータ板30の冷却水の流路37とともに1つの冷却水の流路を構成するための冷却水の流路47を有する。したがって、流路47は、流路37と面対称の関係にある形状を有する。すなわち流路47は、一点鎖線45で囲まれた領域に位置する冷却部47c、冷却部47cを入口側マニホールド孔44aにつなぐ入口側の部分47a、および冷却部47cを出口側マニホールド孔44bにつなぐ出口側の部分47bで構成されている。
本実施形態におけるアノード側セパレータ板40は、冷却水の入口側マニホールド孔44aと、冷却部47cとの間に熱遮断部材48を有し、熱遮断部材48の上面に、2本の並行する溝が設けられ、これらの溝が冷却水の流路47の入口側の部分47aを構成していることを特徴とする。
即ち、本実施形態では、冷却水の流路47は、その入口側の部分47aが、熱遮断部材48上に形成され、したがって、発熱部(即ちアノード)からの熱が冷却水の入口側マニホールド孔44aに伝わることを有効に遮断できるようになっている点で出口側の部分47bと異なっている。
これにより、燃料電池の発電中に単セルの発熱部(即ちアノード)の温度上昇に伴って熱が冷却水の入口側マニホールド内の冷却水に移動することを遮断することができる。そして、上記発熱部の温度と、冷却水の入口側マニホールド内の冷却水との温度差に起因する、入口側マニホールド内の冷却水に生じる温度上昇を緩和することができ、これによって燃料電池のセルスタックの積層方向における各単セルの温度バラツキを低減することができ、フラッディングを抑制し、耐久性に優れた燃料電池を得ることができる。
熱遮断部材48は、上記のカソード側セパレータ板30における熱遮断部材38と同様の形態を有している。ここでは図5に対応する図面は省略したが、熱遮断部材48は、上記の熱遮断部材38と同様に、アノード側セパレータ板40の一辺よりも短い短冊状の形状を有し、アノード側セパレータ板40の厚みよりも薄く、アノード側セパレータ板40に埋め込まれた状態で固定されている。また、熱遮断部材48の上面には、2本の並行する溝が設けられ、これらによって冷却水の流路47の入口側の部分47aが構成されている。
本実施形態において、アノード側セパレータ板40は導電性カーボン(熱伝導率:128W/m・K)で構成され、熱遮断部材48はガラス(熱伝導率:1.02W/m・K)で構成されている。したがって、本実施形態のアノード側セパレータ板40における{Tm/Ts}値は0.00797(=1.02/128)であり、上記式(1)で示される条件を満たしている。
ここで、本実施形態の燃料電池におけるセパレータ板が、上述したような従来の問題点を解決する機構について、図3、図4および図5に示したカソード側セパレータ板30に代表させて説明する。
図8は、図4に示した本発明の燃料電池のカソード側セパレータ板30の冷却流体の流路37を流れる冷却流体の温度状態(分布)を概念的に表した図である。
本発明におけるカソード側セパレータ板30においては、一点鎖線35で示されカソードに対応する領域に存在する冷却部37cに加えて、冷却部37cと冷却水の入口側マニホールド34aとの間の領域に、熱遮断部材38を有する。
従来のセパレータ板においては、冷却水の入口側マニホールド内の冷却水が、一点鎖線35で示されカソードに対応する領域におけるカソードの発熱の影響を受けるが、本発明におけるセパレータ30では、先に述べた熱遮断部材38を有するため、セルスタック20への導入前ないしは導入直後の冷却水の温度T0が、発熱したカソードの温度T2によってT1にまで上昇するものの(ただし、T0<T1<T2)、その温度上昇ΔT(=T1−T0)が従来に比べて飛躍的に小さくなる。
そうすると、単セル10が積層されたセルスタック20における冷却水の入口側マニホールドにおいて、冷却水の滞留時間が短い入口部、および滞留時間が長くなる入口部から最も遠い奥側の部分(即ち、冷却水の入口側マニホールドの、冷却水の流れる方向において最も下流側の部分)のいずれにおいても、冷却水への熱の伝達を抑制することができる。したがって、セルスタック20内の積層方向において各単セル10の冷却状態にバラツキが生じるのを低減させることができ、最適状態に冷却することが可能となる。
即ち、本発明の燃料電池では、発電中に単セル10の発熱部の温度と、冷却水の入口側マニホールド内の冷却水との温度差に起因して、入口側マニホールド内の冷却水が温度上昇するのを緩和するための温度上昇緩和手段として、各単セル10のセパレータ板において、冷却水により単セルの発熱部に対応する一点鎖線35で示される領域を冷却する冷却部37cと、冷却水の入口側マニホールド孔34aとの間に、熱遮断部材38を設ける。この熱遮断部材38を設け、冷却部37cと冷却水の入口側マニホールド孔34aとの間の熱伝達を遮断する。これにより、セルスタック20内の積層方向において各単セル10の冷却状態にバラツキが生じるのを低減させることができ、最適状態に冷却することが可能となる。
以上のような構成を有する本実施形態の燃料電池のセルスタック20においては、冷却水が、入口24aから導入され、入口側マニホールドからカソード側セパレータ板30の流路37とアノード側セパレータ板40の流路47とにより構成される流路を流れ、出口側マニホールドを経て出口24bより排出される。排出された冷却水は、適当な熱交換器で熱交換して冷却された後、再び入口24aからセルスタック20に導入される。セパレータ板30と40とにより形成された流路に流れる冷却水は、冷却部37c、47cにおいて、単セル10の発熱部であるアノードおよびカソードの触媒層に対応するセパレータ板30、40の部位を冷却する。また、セパレータ板30、40における熱遮断部材38、48は、発熱部から入口側マニホールドへの熱伝達を遮断する。これによって、単セル10の発熱部の熱がセパレータ板30、40により形成される入口側マニホールド内を流れる冷却水の温度が上昇するのを抑制することができる。
以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。
例えば、上記実施形態では、カソード側セパレータ板30およびアノード側セパレータ板40の両方に熱遮断部材38、48を設けたが、本発明においては、カソード側セパレータ板30およびアノード側セパレータ板40のいずれか一方に熱遮断部材を設けてもよい。
熱遮断部材38、48、カソード側セパレータ板30およびアノード側セパレータ板40の形状や寸法については本発明の効果を損なわない範囲であれば適宜設計することができ、下記のような材料を用いて従来公知の方法(例えば成形や切削)により作製することができる。
また、熱遮断部材38、48の厚みは、カソード側セパレータ板30およびアノード側セパレータ板40の厚みより、薄いかまたは同じであるのが好ましい。
熱遮断部材38、48の厚みが、カソード側セパレータ板30およびアノード側セパレータ板40の厚みより薄い場合は、カソード側セパレータ板30およびアノード側セパレータ板40に溝部または開口部を設け、当該溝部または当該開口部に嵌め込むだけでよく、接着剤で接着しても構わない。一方、熱遮断部材38、48の厚みが、カソード側セパレータ板30およびアノード側セパレータ板40の厚みと同じ場合は、カソード側セパレータ板30およびアノード側セパレータ板40に開口部(貫通孔)を設け、当該開口部に嵌め込むだけでよく、接着剤で接着しても構わない。
熱遮断部材38、48、カソード側セパレータ板30およびアノード側セパレータ板40を構成する材料としては、上記式(1)で表される条件を満たすとともに本発明の効果を損なわない材料であれば特に制限はなく用いることができる。
なかでも、熱遮断部材38、48を構成する材料としては、例えばガラスまたは樹脂を用いることができる。
樹脂としては、例えばポリフェニレンサルファイド、ポリフッ化ビニリデン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエチレンテレフタレート(PET)、ポリアミドイミド、ポリイミド、ポリアミド、ポリベンゾイミダゾール、ポリエチレンおよびポリテトラフルオロエチレン(PTFE)からなる群より選択される少なくとも1種を用いることができる。PTFEを用いる場合は、強化のためにマイカを充填材として用いてもよく、ポリイミドは高純度のものが好ましい。ポリエチレンとしては超高分子量ポリエチレンが好ましい。
熱遮断部材38、48を構成する材料として用いることのできる代表的な材料の熱伝導率を、以下の表1に示す。
Figure 2006147494
上述の実施形態においては、各単セルの間に、冷却水の流路による冷却部を設けたが、例えば2〜3セルに1つの割合で、冷却部を設けてもよい。冷却水の流路は、カソード側セパレータ板とアノード側セパレータ板の双方に溝を設けて1組の流路を形成したが、一方のセパレータ板のみに溝を設け、これによって、両セパレータ板間に冷却水の流路を設けるようにしてもよい。
また、上述の実施形態においては、単セルを積層したセルスタックにおいて、カソード側セパレータ板とアノード側セパレータ板との間に冷却水の流路が形成されるが、セルスタックの両端の単セルの外側部分に位置するカソード側セパレータ板またはアノード側セパレータ板では、集電板、絶縁板および端板が積層され、セパレータ板と集電板との間に冷却水の流路が形成されていてもよい。
セパレータ板における冷却水の流路は、冷却水の入口側マニホールドと出口側マニホールドとに連絡されており、上記実施形態においては2本の並行する溝によって構成したが、複数本の溝により構成してもよい。冷却部が複数本の溝により構成される場合、熱遮断部材上にも同じ本数の溝で構成すればよい。
なお、セパレータ板の構造以外の構成要素については、特に制限はなく、本発明の効果を損なわない範囲で適宜選択することができる。また、冷却流体は冷却水に限定されるものではない。
以下、実施例及び比較例を挙げて本発明について更に詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
《実施例1》
ガス拡散層は、細孔の80%以上の径が20〜70μmである日本カーボン(株)製のカーボン織布(GF−20−E)を基材として用い、この基材を、界面活性剤入りの純水に、ポリテトラフルオロエチレン(PTFE)を分散させた分散液に浸漬させた。その後、基材を遠赤外線乾燥炉に通し、300℃で60分間焼成した。このときの基材における撥水性樹脂(PTFE)量は1.0mg/cm2であった。
次に、コート層用塗料を作製した。純水と界面活性剤を混ぜ合わせて得られた溶液に、カーボンブラックを加え、プラネタリーミキサーで3時間分散させた。得られた分散液にPTFEと水を加え、さらに3時間混練した。なお、界面活性剤としては、トリトン(Triton)X−100の商品名で市販されているものを用いた。
このコート層用塗料を、上述のように撥水処理を施したカーボン織布の片方の面に、アプリケータを用いて塗工した。コート層を形成したカーボン織布を、熱風乾燥機を用いて300℃で2時間焼成し、ガス拡散層を作製した。得られたガス拡散層に含まれる撥水性樹脂(PTFE)量は0.8mg/cm2であった。
次に触媒層を作製した。炭素粉末であるケッチェンブラック(ケッチェンブラックインターナショナル(株)製のKetjen Black EC、粒径30nm)上に電極触媒である白金を担持させて得られた触媒体(50質量%がPt)66質量部を、水素イオン伝導材でありかつ結着剤であるパーフルオロカーボンスルホン酸アイオノマー(米国Aldrich社製の5質量%Nafion分散液)33質量部(高分子乾燥質量)と混合し、得られた混合物を成形して触媒層(10〜20μm)を作製した。
上述のようにして得たガス拡散層と触媒層とを、高分子電解質膜(米国DuPont社のNafion112膜、イオン交換基容量:0.9meq/g)の両面にホットプレスにより接合し、MEAを作製した。
次に、以上のように作製したMEAの高分子電解質膜の外周部に、ゴム製のガスケット板を接合し、燃料ガスおよび酸化剤ガスを流通させるためのマニホールド孔を形成した。
一方、160mm×160mm×5mmの外寸を有し、かつ幅1.0mm、深さ1.0mmのガス流路を有し、フェノール樹脂を含浸させた黒鉛板からなる、図3、図4および図5に示す構造を有するカソード側セパレータ板(熱伝導率Ts:128W/m・K)、ならびに図6および図7に示す構造を有するアノード側セパレータ板(熱伝導率Ts:128W/m・K)を準備した。ただし、カソード側セパレータ板およびアノード側セパレータ板に埋め込んだ熱遮断部材は、熱伝導率が1.02W/m・Kのガラスプレートに2本の並行する溝を設けて作製した。
これらのセパレータ板を用い、MEAの一方の面に酸化剤ガス用のガス流路が成形されたカソード側セパレータ板を重ね合わせ、他方の面に燃料ガス用のガス流路が成形されたアノード側セパレータ板を重ね合わせ、単セルを得た。
ついでこの単セル100個を積層してセルスタックとし、セルスタックの両端部に、銅製の集電板、ならびに電気絶縁性材料で作製された絶縁板および端板を配置し、全体を締結ロッドで固定することによって、本発明の燃料電池を作製した。なお、このときの締結圧はセパレータの面積当たり10kgf/cm2とした。
《比較例1》
カソード側セパレータ板およびアノード側セパレータ板に熱遮断部材を設けなかった他は、上記実施例1と同様にして、比較燃料電池を作製した。即ち、図9に示す構造を有するカソード側セパレータ板を用い、アノード側セパレータ板としても当該カソード側セパレータ板と同様の構造を有するものを用いた。
[評価]
以上の実施例1および比較例1の各燃料電池について、入口側マニホールドの入口部へ、温度70℃の冷却水を3.7リットル/分で供給した。また、アノード側およびカソード側にはそれぞれ露点が70℃となるように加温、加湿した水素ガスおよび空気を供給し、燃料ガス利用率Ufは70%、酸化ガス利用率Uoは40%に設定した。
電流密度を0.2A/cm2として24時間運転した後、冷却水の入口側マニホールドの入口部および入口から最も遠い奥の部分における冷却水温度を測定した。
次いで、Uoを70%に上げて6時間運転し、10秒毎に電圧をサンプリングしたときの標準偏差により電圧の安定性を比較した。
また、Uoを40%に戻して24時間運転した。この時点を基点として、連続1000時間運転した。この連続運転による、平均電圧の低下分により、電池の耐久性を比較した。
これらの結果を表2に示した。
Figure 2006147494
表2から明らかなように、比較例1の燃料電池は、冷却水の入口側マニホールド内の冷却水温度が入口部と入口部から最も遠い最奥側の部分とで4℃の差があり、利用率70%で運転時の電圧安定性、および連続1000時間運転時の耐久性が実施例に比較して劣っている。
比較例1では、マニホールド内の冷却水温度の不均一により、セルスタック内の各セルを最適状態に冷却することが困難となっていることがわかる。即ち、冷却不足により単セル温度が高くなり、高分子電解質膜から水分が蒸発することによる高分子電解質膜の劣化が促進し、単セルの耐久性の短縮、および、高分子電解質膜の比抵抗の増大による単セルの出力低下が発生したものと考えられる。
一方、本発明の燃料電池である実施例1の燃料電池においては、発電中におけるMEAの発熱部の温度と、冷却流体入口マニホールド内の冷却流体との温度差に起因する冷却流体の温度上昇を緩和するための温度上昇緩和手段が設けられていることにより、上記のような問題の発生がなく、燃料電池の耐久劣化抑制効果が確認された。
なお、本発明は、上記実施例に記載の冷却水の流路の形状、本数などに限定されるものではなく、発明の趣旨から逸脱することなく様々な変形が可能である。
さらに、各実施例は高分子電解質型燃料電池に関するものであるが、本発明は、電池発電時に電気化学反応により発熱することから冷却が必要な燃料電池や、カソード側で反応生成物として水が生成される燃料電池に適用した場合に、大きな効果が得られる。
本発明の燃料電池は、セルスタックにおける各単セルの温度バラツキが低減され、耐久性に優れ、フラッディングや出力電圧の変動が生じない。したがって、本発明の燃料電池は、家庭用コージェネレーションシステム、自動二輪車、電気自動車、ハイブリッド電気自動車等に用いるのに有用である。
本発明の燃料電池の好適な一実施形態の基本構成(単電池)の概略縦断面図である。 図1に示す単電池を2以上積層してなるセルスタックの斜視図である。 図1に示す燃料電池のカソード側セパレータ板の正面図である。 図3に示すカソード側セパレータ板の背面図である。 図4におけるX−X線断面を示す概略図である。 図1に示す燃料電池のアノード側セパレータ板の正面図である。 図6に示すアノード側セパレータ板の背面図である。 本発明の一実施形態の燃料電池に用いるカソード側セパレータ板における冷却水の温度状態(分布)を概念的に示す正面図である。 従来(比較例)の燃料電池に用いるカソード側セパレータ板における冷却水の温度状態(分布)を概念的に示す正面図である。
符号の説明
1・・・高分子電解質膜、2・・・カソード、3・・・アノード、4・・・ガスケット、10・・・単セル、20・・・セルスタック、21、31、41・・・締結軸用孔、22a・・・酸化剤ガスの入口、22b・・・酸化剤ガスの出口、23a・・・燃料ガスの入口、23b・・・燃料ガスの出口、24a・・・冷却水の入口、24b・・・冷却水の出口、30・・・カソード側セパレータ板、32a、32b、42a、42b・・・酸化剤ガスのマニホールド孔、33a、33b、43a、43b・・・燃料ガスのマニホールド孔、34a、44a、102a・・・冷却水の入口側マニホールド孔、34b、44b、102b・・・冷却水の出口側マニホールド孔、36・・・酸化剤ガスの流路、37、47・・・冷却水の流路、37a、47a・・・部分、37c、47c・・・冷却部、38、48・・・熱遮断部材、40・・・アノード側セパレータ板、46・・・燃料ガスの流路、35、45・・・MEA領域の発電部に相当する部分、37b、47b・・・第一の冷却部を出口側マニホールド孔につなぐ出口側の部分

Claims (3)

  1. 高分子電解質膜、前記高分子電解質膜を挟むカソードおよびアノードを含む膜電極接合体と、前記膜電極接合体を挟むカソード側セパレータ板およびアノード側セパレータ板と、を有する単セルを2以上積層したセルスタックを具備する燃料電池であって、
    前記セルスタックは、酸化剤ガスの入口側マニホールドおよび出口側マニホールド、燃料ガスの入口側マニホールドおよび出口側マニホールド、ならびに冷却流体の入口側マニホールドおよび出口側マニホールドを有し、
    前記カソード側セパレータ板は、前記カソードと対向する第1の面に、前記酸化剤ガスの前記入口側マニホールドと前記酸化剤ガスの前記出口側マニホールドとを連絡する酸化剤ガスの流路を有し、
    前記アノード側セパレータ板は、前記アノードと対向する第1の面に、前記燃料ガスの前記入口側マニホールドと前記燃料ガスの前記出口側マニホールドとを連絡する燃料ガスの流路を有し、
    前記カソード側セパレータ板およびアノード側セパレータ板の少なくとも一方において、前記第1の面の反対側に位置する第2の面に、前記冷却流体の前記入口側マニホールドと前記冷却流体の前記出口側マニホールドとを連絡する冷却流体の流路を有し、
    前記冷却流体の流路は、前記カソードおよびアノードと対応する領域を冷却する冷却部を構成し、
    前記冷却部と前記冷却流体の入口側マニホールドとの間に、下記式(1)で表される条件を満たす熱遮断部材を有すること、を特徴とする燃料電池。
    {Tm/Ts}<0.008 ・・・(1)
    [式(1)中、Tmは前記熱遮断部材の熱伝導率(W/m・K)を示し、Tsは前記カソード側セパレータ板およびアノード側セパレータ板の少なくとも一方の熱伝導率(W/m・K)を示す。]
  2. 前記熱遮断部材が、樹脂またはガラスで構成されていること、を特徴とする請求項1に記載の燃料電池。
  3. 前記樹脂が、ポリフェニレンサルファイド、ポリフッ化ビニリデン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリイミド、ポリアミドイミド、ポリベンゾイミダゾール、ポリエチレン、ポリテトラフルオロエチレンおよびポリエチレンテレフタレートのうちの少なくとも1種からなること、を特徴とする請求項2に記載の燃料電池。
JP2004339528A 2004-11-24 2004-11-24 燃料電池 Pending JP2006147494A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004339528A JP2006147494A (ja) 2004-11-24 2004-11-24 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004339528A JP2006147494A (ja) 2004-11-24 2004-11-24 燃料電池

Publications (1)

Publication Number Publication Date
JP2006147494A true JP2006147494A (ja) 2006-06-08

Family

ID=36626922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339528A Pending JP2006147494A (ja) 2004-11-24 2004-11-24 燃料電池

Country Status (1)

Country Link
JP (1) JP2006147494A (ja)

Similar Documents

Publication Publication Date Title
US5922485A (en) Solid polymer electrolyte fuel cell
JP4309965B1 (ja) 燃料電池
JP4056550B2 (ja) 燃料電池
US20080280177A1 (en) Gas Separator for Fuel Cells and Fuel Cell Equipped With Gas Separator
WO2001017047A9 (fr) Cellule electrochimique de type a electrolyte polymerique
WO2006070892A1 (ja) 燃料電池及びこれを備える燃料電池スタック
JP4559539B2 (ja) 燃料電池
KR100529452B1 (ko) 고분자 전해질형 연료전지와 그 운전방법
JP3459615B2 (ja) 燃料電池用電極及び燃料電池
JP2003123826A (ja) 燃料電池スタック
WO2002073723A1 (fr) Pile a combustible d'electrolyte polymere
JP3448550B2 (ja) 固体高分子型燃料電池スタック
US7638227B2 (en) Fuel cell having stack structure
EP1494306A1 (en) Fuel cell and fuel cell stack
JP3354550B2 (ja) 固体高分子型燃料電池および固体高分子型燃料電池スタック
JP4726186B2 (ja) 燃料電池スタック
US20180145342A1 (en) Flow field for fuel cell including graphene foam
JP3685039B2 (ja) 固体高分子型燃料電池システム
JP3736475B2 (ja) 燃料電池
JP2005038845A (ja) 高分子電解質型燃料電池
JP2006147495A (ja) 燃料電池
JP5518721B2 (ja) 燃料電池及びこれを備える燃料電池スタック
JP4314696B2 (ja) 高分子電解質型燃料電池スタック
JP2006147494A (ja) 燃料電池
JP2004342442A (ja) 燃料電池のセパレータ

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061225