JP2006145498A - Oil content concentration measurement method and apparatus - Google Patents

Oil content concentration measurement method and apparatus Download PDF

Info

Publication number
JP2006145498A
JP2006145498A JP2004339484A JP2004339484A JP2006145498A JP 2006145498 A JP2006145498 A JP 2006145498A JP 2004339484 A JP2004339484 A JP 2004339484A JP 2004339484 A JP2004339484 A JP 2004339484A JP 2006145498 A JP2006145498 A JP 2006145498A
Authority
JP
Japan
Prior art keywords
oil
oil content
solvent
extraction solvent
hydrochlorofluorocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004339484A
Other languages
Japanese (ja)
Other versions
JP4459791B2 (en
Inventor
Atsushi Tanaka
敦志 田中
Hiroshi Fujii
洋 藤井
Masayoshi Ito
正義 伊藤
Koji Uchimura
幸治 内村
Ryosuke Fukushima
良助 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Horiba Advanced Techno Co Ltd
Original Assignee
Horiba Ltd
Horiba Advanced Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Horiba Advanced Techno Co Ltd filed Critical Horiba Ltd
Priority to JP2004339484A priority Critical patent/JP4459791B2/en
Publication of JP2006145498A publication Critical patent/JP2006145498A/en
Application granted granted Critical
Publication of JP4459791B2 publication Critical patent/JP4459791B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil content measurement method and oil content measuring apparatus for reducing not only ozone depletion coefficients but also global warming coefficients, while equally maintaining at least the oil content extraction capability of the case using chlorotrifluoroethylene dimer. <P>SOLUTION: The oil content concentration measuring apparatus for analyzing a solvent for extracting oil content, in which the oil content is extracted by adding the solvent for extracting the oil content to liquid containing the oil content by an infrared light absorption method comprises a cell 11 that uses hydrochlorofluorocarbon as the solvent for extracting the oil content and to which hydrochlorofluorocarbon whose oil content has been extracted is supplied; an infrared light source 16 arranged at one end side; and optical filters 19, 20 and infrared photodetectors 17, 18 arranged at the other end side of the cell 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、自然水や、工場、下水処理場などからの排水あるいは土壌に含まれる油分の濃度を測定する油分濃度測定方法および油分濃度測定装置に関する。   The present invention relates to an oil concentration measuring method and an oil concentration measuring apparatus for measuring the concentration of oil contained in natural water, waste water from a factory, a sewage treatment plant, or soil.

前記自然水や排水などに含まれる油分を測定する方法として、波長が3.4μm付近におけるC−H基の吸収を用いた赤外吸光法(以下、NDIR法と言う)が広く用いられている。図8は、この赤外吸光法による油分濃度測定に用いる装置の全体を概略的に示すもので、この図において、1は抽出槽で、その内部には、商用の電源によって駆動されるバイブレータ2に連結された攪拌棒3とこれに取り付けられた攪拌羽根板4とからなる攪拌部材5が設けられており、その上部には、サンプルおよび抽出用溶媒の注入口6が設けられている。抽出槽1の下部には電磁弁7を介して流路8が接続され、この流路8に設けられるフィルタ9の下流には、非分散形赤外線分析計(NDIR;Non Dispersive Infrared Analyzer)を組み込んだ油分濃度計10が設けられている。   As a method for measuring oil contained in natural water or waste water, an infrared absorption method (hereinafter referred to as NDIR method) using absorption of C—H groups at a wavelength of about 3.4 μm is widely used. . FIG. 8 schematically shows the entire apparatus used for oil concentration measurement by the infrared absorption method. In this figure, reference numeral 1 denotes an extraction tank, and a vibrator 2 driven by a commercial power source is provided in the inside thereof. A stirring member 5 including a stirring rod 3 connected to the head and a stirring blade plate 4 attached to the stirring rod 3 is provided, and an inlet 6 for a sample and an extraction solvent is provided above the stirring member 5. A flow path 8 is connected to the lower part of the extraction tank 1 via an electromagnetic valve 7, and a non-dispersive infrared analyzer (NDIR) is incorporated downstream of a filter 9 provided in the flow path 8. An oil concentration meter 10 is provided.

このように構成された油分濃度測定装置においては、それぞれ計量されたサンプル(油分を含んだ液体)と油分抽出用溶媒とを抽出槽1に収容して、攪拌部材5によって攪拌を行って、サンプル中に含まれる油分を油分抽出用溶媒に抽出し、油分を含んだ油分抽出用溶媒をフィルタ9を介して油分濃度計10に供給し、この分析部10において、例えば下記特許文献1に開示されるように、NDIR法によって分析を行うことにより、油分濃度を得ることができる。
特開平7−270310号公報
In the oil concentration measuring apparatus configured as described above, each sample (oil-containing liquid) and the oil extraction solvent are accommodated in the extraction tank 1 and stirred by the stirring member 5 to obtain a sample. The oil contained therein is extracted into an oil extraction solvent, and the oil extraction solvent containing the oil is supplied to the oil concentration meter 10 through the filter 9. As described above, the oil concentration can be obtained by performing the analysis by the NDIR method.
JP-A-7-270310

このように試料水から油分を油分抽出用溶媒に抽出しNDIR法を用いて油分抽出用溶媒に抽出された油分の濃度を定量する際、波長が3.4μm付近におけるC−H基の吸収を用いて測定を行う必要であるところから、従来油分の油分抽出溶媒として、C−H基を含まない四塩化炭素を使用するのが一般的であった。しかし、四塩化炭素の使用および製造規制に伴い、その代替としてクロロトリフロロエチレンダイマーを用いて油分濃度の定量を実施していた。クロロトリフロロエチレンダイマーはクロロフルオロカーボンの一種である。このクロロトリフロロエチレンダイマーは四塩化炭素に比較してオゾン破壊係数が小さく環境負荷が小さいというメリットがあった。ところが、近年、クロロトリフロロエチレンダイマーにおいてもオゾン破壊係数が高く環境負荷が大きいという不都合が指摘されている。   Thus, when extracting the oil component from the sample water into the oil extraction solvent and quantifying the concentration of the oil component extracted into the oil extraction solvent using the NDIR method, absorption of C—H groups at a wavelength of about 3.4 μm is obtained. Since it is necessary to carry out the measurement using carbon tetrachloride, carbon tetrachloride containing no C—H group has generally been used as an oil component extraction solvent. However, along with the use of carbon tetrachloride and production regulations, the oil concentration was quantified using chlorotrifluoroethylene dimer as an alternative. Chlorotrifluoroethylene dimer is a type of chlorofluorocarbon. This chlorotrifluoroethylene dimer has the merit that the ozone depletion coefficient is smaller and the environmental load is smaller than carbon tetrachloride. However, in recent years, it has been pointed out that chlorotrifluoroethylene dimer also has a high ozone depletion coefficient and a large environmental load.

また、従来用いていた油分抽出溶媒としてのクロロトリフロロエチレンダイマー溶媒では、図7に示すクロロトリフロロエチレンダイマー溶媒(以下、単に溶媒という)の吸収スペクトル100から分かるように、油分の測定範囲である3.4μm付近(2941cm-1付近)の前後では、ほとんど吸収がないことから、溶媒による妨害を受けずに測定することが可能である。なお、図7において、101,102,103は、油分濃度計10を用いて油分の濃度を定量するときに用いる吸収スペクトルの一例を示している。そして、この例では、これら吸収スペクトル101,102,103は同一油種(同一測定対象成分)における異なる濃度での吸収スペクトルを示している。そして、吸収スペクトル101,102および103の順で油分の濃度が高い。
しかし、測定対象となる油分は当該範囲に広い吸収を有している。そのため、非分散方式のNDIR法により油分の濃度を定量する場合、用いる光学フィルタとしては、理想的には油分の測定範囲である3.4μm付近を含み溶媒そのものの吸収と当該溶媒に抽出された測定対象成分の吸収とが重なるまでの、図6(A)に両矢印で示した理想的な光学フィルタの範囲(端部Pと端部Qの間)104を透過させる分光特性を有するものが必要となる。しかし、光学フィルタ自体の個体差などを考慮して実際には、理想的な光学フィルタの範囲104より狭い範囲104’(端部P’と端部Q’の間)の光学フィルタを用いることになる。ところが、上述したような光学フィルタ自体の個体差や測定対象となる油分が異なることから、実際用いる光学フィルタが透過する範囲の両端部P’,Q’での吸収が左右に変動を生じるおそれがある。すなわち、図7において、実際の光学フィルタ範囲104’が例えば105で示す範囲となるおそれがある。このことは、装置毎の指示差や同一装置での直線性の悪化の原因になる。そこで、本発明者らは、如何にして、油分抽出能力をクロロトリフロロエチレンダイマーを用いた場合と同等に維持でき、オゾン破壊係数をクロロトリフロロエチレンダイマーを用いた場合より小さくできるのかを各種の溶媒で鋭意研究した。その結果、本発明者らは、溶媒としてハイドロクロロフルオロカーボンを用いるのが最も好ましいことを見出し、以下の発明を提供するに至った。
Further, in the conventional chlorotrifluoroethylene dimer solvent as the oil extraction solvent, as can be seen from the absorption spectrum 100 of the chlorotrifluoroethylene dimer solvent (hereinafter simply referred to as solvent) shown in FIG. Since there is almost no absorption around a certain 3.4 μm (around 2941 cm −1 ), it is possible to measure without being disturbed by the solvent. In FIG. 7, reference numerals 101, 102, and 103 indicate examples of absorption spectra used when the oil concentration meter 10 is used to quantify the oil concentration. In this example, these absorption spectra 101, 102, and 103 indicate absorption spectra at different concentrations in the same oil type (same measurement target component). And the density | concentration of an oil component is high in order of the absorption spectrum 101,102,103.
However, the oil to be measured has a wide absorption in the range. Therefore, when quantifying the concentration of oil by the non-dispersive NDIR method, the optical filter used ideally includes the vicinity of 3.4 μm, which is the measurement range of oil, and is absorbed into the solvent itself and extracted into the solvent. Those having spectral characteristics that pass through the ideal optical filter range (between the end P and the end Q) 104 shown by the double-headed arrow in FIG. 6A until the absorption of the measurement target component overlaps. Necessary. However, in consideration of individual differences of the optical filter itself, actually, an optical filter in a range 104 ′ (between the end P ′ and the end Q ′) narrower than the ideal optical filter range 104 is used. Become. However, since the individual differences of the optical filters themselves and the oil content to be measured are different as described above, the absorption at both ends P ′ and Q ′ of the range through which the actually used optical filter transmits may vary from side to side. is there. That is, in FIG. 7, the actual optical filter range 104 ′ may be a range indicated by 105, for example. This causes an instruction difference for each device and deterioration of linearity in the same device. Therefore, the present inventors have various ways how the oil extraction ability can be maintained equivalent to the case of using chlorotrifluoroethylene dimer and the ozone depletion coefficient can be made smaller than that of using chlorotrifluoroethylene dimer. We studied earnestly with these solvents. As a result, the present inventors have found that it is most preferable to use hydrochlorofluorocarbon as a solvent, and have provided the following inventions.

すなわち、この発明の目的は、少なくとも油分抽出能力をクロロトリフロロエチレンダイマーを用いた場合と同等に維持しながら、オゾン破壊係数だけでなく、地球温暖化係数も小さくできる油分濃度測定方法および油分濃度測定装置を提供することである。 That is, an object of the present invention is to provide an oil concentration measuring method and an oil concentration capable of reducing not only the ozone depletion coefficient but also the global warming coefficient while maintaining at least the oil extraction ability equivalent to the case of using chlorotrifluoroethylene dimer. It is to provide a measuring device.

この発明の油分濃度測定方法は、油分を含んだ液体に油分抽出用溶媒を加えて油分を抽出した油分抽出用溶媒を赤外吸光法によって分析することにより、油分濃度を求めるようにした油分濃度測定方法において、前記油分抽出用溶媒としてハイドロクロロフルオロカーボンを用いることを特徴とする(請求項1)。   The oil concentration measurement method of the present invention is an oil concentration obtained by adding an oil extraction solvent to a liquid containing oil and extracting the oil by analyzing the oil extraction solvent by infrared absorption. In the measurement method, hydrochlorofluorocarbon is used as the oil extraction solvent (claim 1).

また、この発明は別の観点から、油分を含んだ液体に油分抽出用溶媒を加えて油分を抽出した油分抽出用溶媒を赤外吸光法によって分析する油分濃度測定装置において、前記油分抽出用溶媒としてハイドロクロロフルオロカーボンを用い、油分を抽出したハイドロクロロフルオロカーボンが供給されるセルと、その一端側に配置された赤外光源と、セルの他端側に配置された光学フィルタおよび赤外光検出器とを備えたことを特徴とする油分濃度測定装置を提供する(請求項4)。   Further, according to another aspect of the present invention, in the oil concentration measuring apparatus for analyzing the oil extraction solvent obtained by adding the oil extraction solvent to the oil-containing liquid and extracting the oil component by infrared absorption method, the oil extraction solvent A cell supplied with hydrochlorofluorocarbon from which oil has been extracted, an infrared light source disposed at one end thereof, an optical filter and an infrared light detector disposed at the other end of the cell An oil concentration measuring device is provided (claim 4).

本願の請求項1に係る発明では、例えば排水、環境水中の油分濃度測定において、試料水から油分を抽出する溶媒としてハイドロクロロフルオロカーボンを使用し、赤外吸光法(NDIR法)を適用して油分濃度を測定するようにしている。そして、本願の請求項1に係る発明では、油分抽出用溶媒としてハイドロクロロフルオロカーボンを用いることで以下の効果を奏する。   In the invention according to claim 1 of the present application, for example, in measurement of oil concentration in wastewater and environmental water, hydrochlorofluorocarbon is used as a solvent for extracting oil from sample water, and infrared absorption (NDIR method) is applied to obtain oil content. The concentration is measured. And in invention concerning Claim 1 of this application, the following effects are produced by using hydrochlorofluorocarbon as a solvent for oil content extraction.

(1)油分抽出能力がクロロトリフロロエチレンダイマーを用いたときと同等もしくはそれ以上になる。
(2)地球温暖化係数、オゾン破壊係数とも、クロロトリフロロエチレンダイマーと比較して小さくできる。
(1) The oil extraction capability is equal to or higher than when chlorotrifluoroethylene dimer is used.
(2) Both global warming potential and ozone depletion potential can be reduced compared to chlorotrifluoroethylene dimer.

また、本願の請求項4に係る発明では、油分抽出用溶媒としてハイドロクロロフルオロカーボンを用い、油分を抽出したハイドロクロロフルオロカーボンが供給されるセルと、その一端側に配置された赤外光源と、セルの他端側に配置された光学フィルタおよび赤外光検出器とを備えている。すなわち、ハイドロクロロフルオロカーボン溶媒(以下、単に溶媒という)は、例えばジクロロペンタフルオロプロパン(請求項6)のようなC−H結合を一つだけ有し、他の結合がハロゲンとカーボンの結合であることから、油分の測定範囲より高波数側に強い吸収がある。すなわち、この溶媒は、油分中のC−H基特有の吸収帯の高波数側に近接した波数域に強い赤外吸収帯を有している。そのため、溶媒そのものの吸収と当該溶媒に抽出された測定対象成分の吸収とが重なるまでの領域、すなわち、例えば図6(B)に両矢印で示したような理想的な光学フィルタの範囲204は図6(A)の理想的な光学フィルタの範囲104に比べて狭くすることができる。そこで、前記実際の光学フィルタ範囲104’を持つ、図6(A)に示したのと同じ光学フィルタを用いても、図6(B)にXで示した波数領域は溶媒自身の強い吸収があることから、Xで示した波数領域が、あたかも赤外線の透過範囲を制限する光学フィルタのような作用を奏することになり、それによって、従来問題となっていたような影響、すなわち、光学フィルタ自体の個体差や測定対象となる油分が異なることに起因する影響をなくすことができる。このことから、装置毎の指示差や同一装置での直線性を改善できる。   Further, in the invention according to claim 4 of the present application, hydrochlorofluorocarbon is used as a solvent for oil extraction, a cell to which hydrochlorofluorocarbon from which oil has been extracted is supplied, an infrared light source disposed on one end thereof, and a cell An optical filter and an infrared light detector arranged on the other end side of That is, a hydrochlorofluorocarbon solvent (hereinafter simply referred to as a solvent) has only one C—H bond such as dichloropentafluoropropane (Claim 6), and the other bond is a bond between halogen and carbon. For this reason, there is strong absorption on the high wave number side from the oil content measurement range. That is, this solvent has a strong infrared absorption band in the wave number region close to the high wave number side of the absorption band peculiar to the C—H group in the oil. Therefore, an area until the absorption of the solvent itself and the absorption of the measurement target component extracted into the solvent overlap, that is, an ideal optical filter range 204 as indicated by a double arrow in FIG. It can be made narrower than the ideal optical filter range 104 in FIG. Therefore, even if the same optical filter as shown in FIG. 6A having the actual optical filter range 104 ′ is used, the wave number region indicated by X in FIG. For this reason, the wave number region indicated by X acts as an optical filter that limits the infrared transmission range, thereby causing an influence that has been a problem in the past, that is, the optical filter itself. It is possible to eliminate the influence caused by the individual difference of the oil and the oil content to be measured. From this, it is possible to improve the instruction difference for each device and the linearity of the same device.

以下、この発明の実施の形態を、図を参照しながら説明する。なお、それによってこの発明は限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited thereby.

図1〜図4はこの発明の一実施の形態を示す。なお、図1〜図4において、図6、図7に示した符号と同一のものは、同一または相当物である。   1 to 4 show an embodiment of the present invention. 1 to 4, the same reference numerals as those shown in FIGS. 6 and 7 are the same or equivalent.

この発明の油分濃度測定方法が従来のNDIR法と大きく異なる点は、油分抽出用溶媒として、例えばジクロロペンタフルオロプロパンなどのハイドロクロロフルオロカーボンを用いて分析するようにしたことである。ジクロロペンタフルオロプロパン(以下、HCFC−225という)は、3,3−ジクロロ−1,1,1,2,2−ペンタフルオロプロパン(3,3-Dichloro-1,1,1,2,2-pentafluoropropane )〔HCFC−225ca〕及び/又は1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン(1,3-Dichloro-1,1,2,2,3-pentafluoropropane )〔HCFC−225cb〕を成分とする。   The oil concentration measurement method of the present invention is greatly different from the conventional NDIR method in that the analysis is performed using a hydrochlorofluorocarbon such as dichloropentafluoropropane as the oil extraction solvent. Dichloropentafluoropropane (hereinafter referred to as HCFC-225) is 3,3-dichloro-1,1,1,2,2-pentafluoropropane (3,3-Dichloro-1,1,1,2,2- pentafluoropropane) [HCFC-225ca] and / or 1,3-dichloro-1,1,2,2,3-pentafluoropropane (HCFC) -225cb] as a component.

HCFC−225は、下記表1に示すように、クロロトリフロロエチレンダイマーと同様の油分抽出能力を有する。すなわち、 HCFC−225を用いることで油分抽出能力がクロロトリフロロエチレンダイマーを用いたときと同等もしくはそれ以上となった。   As shown in Table 1 below, HCFC-225 has the same oil content extraction ability as chlorotrifluoroethylene dimer. That is, by using HCFC-225, the oil extraction capability became equal to or higher than that when chlorotrifluoroethylene dimer was used.

Figure 2006145498
Figure 2006145498

また、HCFC−225は、下記表2に示すように、クロロトリフロロエチレンダイマーに比べて地球温暖化係数、オゾン破壊係数は小さい。   Further, as shown in Table 2 below, HCFC-225 has a smaller global warming potential and ozone destruction coefficient than chlorotrifluoroethylene dimer.

Figure 2006145498
Figure 2006145498

HCFC−225では、図3に示すHCFC−225の吸収スペクトル200から分かるように、HCFC−225はC−H基特有の吸収帯(2941cm-1付近;3.4μm付近)の高波数側に近接した波数域(2970〜3090cm-1)に赤外吸収帯があり、C−H基特有の吸収帯域での赤外吸収が少ない。このHCFC−225固有の赤外線透過特性を利用することで、用いる光学フィルタ(赤外線透過フィルタ)、例えば図6(B)、図6(A)に示すような光学フィルタ範囲104’を持つ光学フィルタの高波数側の選択性を緩和することができる。すなわち、上述したように、図6(B)にXで示した波数領域には溶媒自身の強い吸収があることから、Xで示した波数領域では、溶媒があたかも赤外線の透過範囲を制限する光学フィルタのような作用を奏する。つまり、この発明では、油分抽出用溶媒固有の赤外透過特性を光学フィルタ(赤外線透過フィルタ)の分光特性同様に扱い、演算処理することで、光学フィルタ(赤外線透過フィルタ)の高波数側での選択可能な範囲を緩和することができる。その結果、C−H基特有の赤外吸収を精度良く検出することが可能となり、直線性も向上した。図4において、○はHCFC−225を用いたときの測定値を示し、図5において、△はクロロトリフロロエチレンダイマーを用いたときの測定値を示す。図4、図5からクロロトリフロロエチレンダイマーを用いたときの指示値に比して、HCFC−225を用いた場合の指示値のほうが誤差が小さくなっていることが分かる。 In HCFC-225, as can be seen from the absorption spectrum 200 of HCFC-225 shown in FIG. 3, HCFC-225 is close to the high wavenumber side of the absorption band peculiar to the C—H group (near 2941 cm −1 ; near 3.4 μm). There is an infrared absorption band in the wave number range (2970-3090 cm −1 ), and there is little infrared absorption in the absorption band peculiar to the C—H group. By utilizing the infrared transmission characteristic unique to HCFC-225, an optical filter (infrared transmission filter) to be used, for example, an optical filter having an optical filter range 104 ′ as shown in FIGS. 6B and 6A is used. The selectivity on the high wavenumber side can be relaxed. That is, as described above, since the solvent itself has strong absorption in the wave number region indicated by X in FIG. 6B, in the wave number region indicated by X, the optical as if the solvent limits the infrared transmission range. It acts like a filter. In other words, in the present invention, the infrared transmission characteristic unique to the oil extraction solvent is treated in the same way as the spectral characteristic of the optical filter (infrared transmission filter) and processed, so that the high frequency side of the optical filter (infrared transmission filter) is increased. The selectable range can be relaxed. As a result, infrared absorption peculiar to the C—H group can be detected with high accuracy, and linearity is improved. In FIG. 4, ◯ indicates a measured value when HCFC-225 is used, and in FIG. 5, Δ indicates a measured value when chlorotrifluoroethylene dimer is used. 4 and 5, it can be seen that the error is smaller in the indicated value when HCFC-225 is used than in the indicated value when chlorotrifluoroethylene dimer is used.

以下、この発明の油分濃度測定方法の手順について説明する。まず、図1に示すように、油分を含んだ液体であるサンプルと、油分抽出用溶媒としてのHCFC−225とをそれぞれ所定量になるように計量する(ステップS1)。   Hereinafter, the procedure of the oil concentration measuring method of the present invention will be described. First, as shown in FIG. 1, a sample which is a liquid containing oil and HCFC-225 as an oil extraction solvent are weighed so as to have a predetermined amount (step S1).

前記サンプルおよびHCFC−225を攪拌槽1内で攪拌し、油分の抽出処理を行う。この処理によって、サンプル中の油分がHCFC−225に移行して抽出される(ステップS2)。なお、攪拌槽1として、例えば特開平7−308506号公報に開示されたものを用いるのが好ましい。   The sample and HCFC-225 are stirred in the stirring tank 1 to perform oil extraction processing. By this process, the oil content in the sample moves to HCFC-225 and is extracted (step S2). In addition, as the stirring tank 1, it is preferable to use what was disclosed by Unexamined-Japanese-Patent No. 7-308506, for example.

前記抽出後に、油分を含んだ溶媒層と水層とに分離させ、溶媒層のみを分析部に供給する(ステップS3)。   After the extraction, a solvent layer containing oil and a water layer are separated, and only the solvent layer is supplied to the analysis unit (step S3).

前記分析部において、NDIR法により、2800〜3100cm-1付近の吸収を測定し、油分濃度を得る(ステップS4)。 In the analysis unit, the absorption around 2800 to 3100 cm −1 is measured by the NDIR method to obtain the oil concentration (step S4).

図2は、この発明の油分濃度測定装置で用いられる油分濃度計10の構成を示すもので、この図において、11は前記油分を含んだ溶媒層(以下、試料Sという)が供給されるセルで、ステンレス鋼など耐腐蝕性に優れた素材よりなり、その両端部が赤外線透過性素材(例えば石英ガラスなど)よりなるセル窓12,13で封止されているとともに、試料Sを供給・排出するための試料入口14、試料出口15が設けられている。   FIG. 2 shows the structure of an oil concentration meter 10 used in the oil concentration measuring apparatus of the present invention. In this figure, 11 is a cell to which a solvent layer containing the oil (hereinafter referred to as sample S) is supplied. It is made of a material having excellent corrosion resistance such as stainless steel, and both ends thereof are sealed with cell windows 12 and 13 made of an infrared transmitting material (for example, quartz glass), and a sample S is supplied and discharged. A sample inlet 14 and a sample outlet 15 are provided.

16はセル11の一方のセル窓12側に設けられ、セル11に赤外光を照射するための赤外光源である。   Reference numeral 16 denotes an infrared light source which is provided on one cell window 12 side of the cell 11 and irradiates the cell 11 with infrared light.

17、18はセル11の他方のセル窓13側に、互いに並列的に設けられ、セル11を通過してきた赤外光を受光するための赤外線検出器としての測定用検出器、比較用検出器で、両検出器17,18はいずれも例えば焦電型赤外線検出器よりなる。   Reference numerals 17 and 18 are provided in parallel to each other on the other cell window 13 side of the cell 11, and a measurement detector and a comparison detector as infrared detectors for receiving infrared light passing through the cell 11. Both detectors 17 and 18 are, for example, pyroelectric infrared detectors.

19,20は測定用検出器17、比較用検出器20のそれぞれ前面(受光面側)に設けられる干渉フィルタ(バンドパスフィルタ)で、測定用検出器17側の干渉フィルタ19は、波数領域が例えば2800〜3100cm-1の赤外光のみを通過させる一方、それ以外の波数領域の赤外光は透過させないように構成されたものである。また、比較用検出器20側の干渉フィルタ20も、波数領域が例えば2800〜3100cm-1の赤外光のみを通過させる一方、それ以外の波数領域の赤外光は透過させないように構成されたものである。 Reference numerals 19 and 20 denote interference filters (bandpass filters) provided on the front surfaces (light-receiving surfaces) of the measurement detector 17 and the comparison detector 20, respectively. The interference filter 19 on the measurement detector 17 side has a wave number region. For example, only infrared light of 2800 to 3100 cm −1 is allowed to pass through, but infrared light in other wavenumber regions is not allowed to pass therethrough. The interference filter 20 on the comparison detector 20 side is also configured to pass only infrared light having a wave number region of, for example, 2800 to 3100 cm −1 , while not transmitting infrared light in other wave number regions. Is.

21は検出器側のセル窓13と干渉フィルタ19,20との間に設けられる光チョッパで、モータ22によって駆動され、セル11を通過してきた赤外光を所定の周期で断続するものである。   21 is an optical chopper provided between the detector-side cell window 13 and the interference filters 19 and 20, which is driven by a motor 22 to intermittently pass infrared light passing through the cell 11 at a predetermined cycle. .

23,24は測定用検出器17、比較用検出器18の出力をそれぞれ適宜処理する前置増幅器、25は前置増幅器23,24の出力をそれぞれ増幅およびA/D変換するアンプ、26はマイクロコンピュータなどよりなる演算部である。   23 and 24 are preamplifiers for appropriately processing the outputs of the measurement detector 17 and the comparison detector 18, respectively, 25 is an amplifier for amplifying and A / D converting the outputs of the preamplifiers 23 and 24, and 26 is a micro amplifier. It is an arithmetic unit composed of a computer or the like.

上述のNDIR法による油分濃度計10においては、測定用検出器17からは、試料S中に含まれる油分による油分吸収波数帯出力Iが出力される。また、比較用検出器18からは、油分の吸収を受けない比較出力I0 が出力される。そして、演算部26において、log(I0 /I)なる演算を行い、これに所定の定数を乗ずることにより油分濃度を得ることができる。 In the oil concentration meter 10 based on the NDIR method described above, the measurement detector 17 outputs an oil absorption waveband output I based on the oil contained in the sample S. Further, the comparison detector 18 outputs a comparison output I 0 that is not absorbed by oil. Then, the calculation unit 26 calculates log (I 0 / I) and multiplies it by a predetermined constant to obtain the oil concentration.

この発明の油分濃度計10による測定結果は、クロロトリフロロエチレンダイマーを用いた結果とよく一致していることが分かった。   It was found that the measurement result with the oil concentration meter 10 of the present invention was in good agreement with the result using the chlorotrifluoroethylene dimer.

なお、この発明で用いる油分濃度計として、例えば特開平8−334459号公報に開示されたものも用いることができる。この場合、測定用検出器の前面(受光面側)に設けられる干渉フィルタとしては上記実施の形態で用いたのと同じ干渉フィルタ19を備えるとともに、赤外光源の強度をある割合(例えば8%)だけ全波数領域にわたり均一に低下させるような特性を持つ、いわゆる、NDフィルタを比較用検出器の前面(受光面側)に設けることにより、上記実施の形態と同様に油分の濃度を定量することができる。また、この発明で用いる別構成の油分濃度計として、測定用セルと空気が封入された比較用セルを有し、上記実施の形態で用いたのと同じ干渉フィルタ19,20を測定用検出器、比較用検出器のそれぞれ前面(受光面側)に設けるものを用いても、上記実施の形態と同様に油分の濃度を定量することができる。   In addition, as an oil concentration meter used by this invention, what was disclosed by Unexamined-Japanese-Patent No. 8-33459, for example can also be used. In this case, as the interference filter provided on the front surface (light receiving surface side) of the measurement detector, the same interference filter 19 as used in the above embodiment is provided, and the intensity of the infrared light source is set to a certain ratio (for example, 8%). ), By providing a so-called ND filter having a characteristic of uniformly decreasing over the entire wave number region on the front surface (light-receiving surface side) of the comparison detector, the oil concentration is quantified in the same manner as in the above embodiment. be able to. In addition, as another oil concentration meter used in the present invention, a measurement cell and a comparison cell in which air is sealed are used, and the same interference filters 19 and 20 used in the above embodiment are used as a measurement detector. Even when the detectors provided on the respective front surfaces (light receiving surface side) of the comparison detector are used, the concentration of the oil component can be quantified as in the above embodiment.

また、この発明では、油分抽出用溶媒に比べて量が無視できる程度の極微量の油分の重量の測定を重量法またはマイクロバランス法で行うようにしている。すなわち、HCFC−225は、四塩化炭素、クロロトリフロロエチレンダイマーに比べ沸点が低い。HCFC−225の沸点は54℃、クロロトリフロロエチレンダイマーの沸点は134℃である。この物性を利用して、極微量の油分をHCFC−225に抽出させた後、HCFC−225を揮発させることで、HCFC−225中の油分濃度を高くすることができ、その結果、高感度の油分濃度の定量が可能となる。   In the present invention, the weight of a trace amount of oil that is negligible compared to the oil extraction solvent is measured by the weight method or the microbalance method. That is, HCFC-225 has a lower boiling point than carbon tetrachloride and chlorotrifluoroethylene dimer. The boiling point of HCFC-225 is 54 ° C., and the boiling point of chlorotrifluoroethylene dimer is 134 ° C. Utilizing this physical property, after extracting a very small amount of oil into HCFC-225, volatilizing HCFC-225, the oil concentration in HCFC-225 can be increased, resulting in high sensitivity. The oil concentration can be quantified.

前記重量の測定に用いる前記重量法は、例えば日本工業規格JIS K0102に準拠したn−ヘキサン抽出法を応用することにより可能となる。また、前記重量の測定に用いる前記マイクロバランス法としては、例えば特開平6−194290号公報に開示されるように、水晶振動子を用いた重量測定を挙げることができる。   The weight method used for the measurement of the weight can be achieved by applying an n-hexane extraction method based on, for example, Japanese Industrial Standard JIS K0102. Further, as the microbalance method used for the weight measurement, for example, as disclosed in Japanese Patent Laid-Open No. 6-194290, weight measurement using a crystal resonator can be exemplified.

ここで、例えば1ppm以下の低濃度の油分を含んだ抽出用溶媒を用意し、抽出用溶媒が半分の量になるまで大気中で1時間程抽出用溶媒を揮発させることで油分濃度を2倍にすることができる。抽出用溶媒を揮発させて例えば抽出用溶媒10mlを5mlにするのにHCFC−225の場合1時間程度の短時間で済む。一方、クロロトリフロロエチレンダイマーで同様のことを行うのにヒータを用意して行う必要があるとともに、揮発時間も長くなる。   Here, for example, an extraction solvent containing a low concentration of oil of 1 ppm or less is prepared, and the concentration of the oil is doubled by volatilizing the extraction solvent in the air for about 1 hour until the amount of the extraction solvent becomes half. Can be. For example, in the case of HCFC-225, it takes only a short time of about 1 hour to evaporate the extraction solvent so that 10 ml of the extraction solvent becomes 5 ml. On the other hand, in order to do the same with chlorotrifluoroethylene dimer, it is necessary to prepare a heater and the volatilization time becomes longer.

このように濃縮した抽出用溶媒をNDIR法で測定することにより、高感度の油分濃度の測定を可能にすることができる。   By measuring the extraction solvent thus concentrated by the NDIR method, it is possible to measure the oil concentration with high sensitivity.

他に、土壌中の油分については当該溶媒に抽出させることにより定量が可能となる。   In addition, the oil content in the soil can be quantified by extracting it with the solvent.

この発明の油分濃度測定方法における測定手順を概略的に示すフローチャートである。It is a flowchart which shows roughly the measurement procedure in the oil concentration measuring method of this invention. この発明で用いる油分濃度計の構成の一例を示す図である。It is a figure which shows an example of a structure of the oil concentration meter used by this invention. この発明で用いる油分抽出用溶媒の吸収スペクトルと、油分の濃度を定量するときに用いる吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of the solvent for oil extraction used in this invention, and the absorption spectrum used when quantifying the concentration of oil. この発明で得られる標準液濃度対指示値特性図である。It is a standard solution density | concentration vs indicator value characteristic view obtained by this invention. 従来例の標準液濃度対指示値特性図である。It is a standard solution density | concentration / indication value characteristic view of a conventional example. (A)は、従来例の動作原理および問題点を説明するための図である。(B)は、この発明の動作原理を説明するための図である。(A) is a figure for demonstrating the operation principle and problem of a prior art example. (B) is a figure for demonstrating the principle of operation of this invention. 従来例で用いた油分抽出用溶媒の吸収スペクトルと、油分の濃度を定量するときに用いる吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of the solvent for oil extraction used in the prior art example, and the absorption spectrum used when quantifying the concentration of the oil. 一般的な油分濃度測定装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of a general oil concentration measuring apparatus.

符号の説明Explanation of symbols

11 セル
16 赤外光源
17,18 赤外光検出器
19,20 光学フィルタ
200 油分抽出用溶媒の吸収スペクトル
11 cell 16 infrared light source 17, 18 infrared light detector 19, 20 optical filter 200 absorption spectrum of solvent for oil extraction

Claims (6)

油分を含んだ液体に油分抽出用溶媒を加えて油分を抽出した油分抽出用溶媒を赤外吸光法によって分析することにより、油分濃度を求めるようにした油分濃度測定方法において、前記油分抽出用溶媒としてハイドロクロロフルオロカーボンを用いることを特徴とする油分濃度測定方法。   In the oil concentration measurement method, wherein the oil concentration solvent is obtained by analyzing the oil extraction solvent obtained by adding the oil extraction solvent to the oil-containing liquid and extracting the oil content by infrared absorption method, the oil extraction solvent Hydrochlorofluorocarbon is used as the oil content concentration measuring method. 油分抽出用溶媒に含まれる極微量の油分の重量の測定を重量法またはマイクロバランス法で行う請求項1に記載の油分濃度測定方法。   The oil concentration measuring method according to claim 1, wherein the weight of a very small amount of oil contained in the oil extraction solvent is measured by a weight method or a microbalance method. 前記ハイドロクロロフルオロカーボンとして、ジクロロペンタフルオロプロパンを用いる請求項1または2に記載の油分濃度測定方法。   The oil concentration measuring method according to claim 1 or 2, wherein dichloropentafluoropropane is used as the hydrochlorofluorocarbon. 油分を含んだ液体に油分抽出用溶媒を加えて油分を抽出した油分抽出用溶媒を赤外吸光法によって分析する油分濃度測定装置において、前記油分抽出用溶媒としてハイドロクロロフルオロカーボンを用い、油分を抽出したハイドロクロロフルオロカーボンが供給されるセルと、その一端側に配置された赤外光源と、セルの他端側に配置された光学フィルタおよび赤外光検出器とを備えたことを特徴とする油分濃度測定装置。   In the oil concentration measuring device that analyzes the oil extraction solvent by adding the oil extraction solvent to the oil-containing liquid by infrared absorption, the oil is extracted using hydrochlorofluorocarbon as the oil extraction solvent. An oil component comprising: a cell supplied with the hydrochlorofluorocarbon, an infrared light source disposed on one end thereof, an optical filter and an infrared light detector disposed on the other end of the cell. Concentration measuring device. 光学フィルタは、所定の波数域の赤外光を透過させ、かつそれ以外の波数領域の赤外光は透過させないよう構成された干渉フィルタである請求項4に記載の油分濃度測定装置。   5. The oil concentration measuring apparatus according to claim 4, wherein the optical filter is an interference filter configured to transmit infrared light in a predetermined wave number region and not transmit infrared light in other wave number regions. 前記ハイドロクロロフルオロカーボンとして、ジクロロペンタフルオロプロパンを用いる請求項4または5に記載の油分濃度測定装置。   The oil concentration measuring apparatus according to claim 4 or 5, wherein dichloropentafluoropropane is used as the hydrochlorofluorocarbon.
JP2004339484A 2004-11-24 2004-11-24 Oil concentration measuring method and oil concentration measuring apparatus Expired - Fee Related JP4459791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004339484A JP4459791B2 (en) 2004-11-24 2004-11-24 Oil concentration measuring method and oil concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004339484A JP4459791B2 (en) 2004-11-24 2004-11-24 Oil concentration measuring method and oil concentration measuring apparatus

Publications (2)

Publication Number Publication Date
JP2006145498A true JP2006145498A (en) 2006-06-08
JP4459791B2 JP4459791B2 (en) 2010-04-28

Family

ID=36625352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339484A Expired - Fee Related JP4459791B2 (en) 2004-11-24 2004-11-24 Oil concentration measuring method and oil concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JP4459791B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018198A (en) * 2012-12-19 2013-04-03 常州大学 Illegal cooking oil concentration detection sensor based on capacitor and infrared photoelectric technology
JP2015049163A (en) * 2013-09-02 2015-03-16 株式会社堀場製作所 Oil content measurement device
JP2015121410A (en) * 2013-12-20 2015-07-02 旭硝子株式会社 Pil concentration measuring method and pil concentration measuring apparatus
JP2015165199A (en) * 2014-03-03 2015-09-17 株式会社日立製作所 Treated water oil content measuring method and treated water oil content measuring apparatus
WO2017199611A1 (en) * 2016-05-18 2017-11-23 株式会社堀場製作所 Oil content measurement method and oil content measurement device
JP2018081096A (en) * 2016-11-08 2018-05-24 住友金属鉱山株式会社 Method for analyzing oil content in metal compound powder
CN110646255A (en) * 2018-06-26 2020-01-03 株式会社堀场先进技术 Oil extraction agent

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018198A (en) * 2012-12-19 2013-04-03 常州大学 Illegal cooking oil concentration detection sensor based on capacitor and infrared photoelectric technology
JP2015049163A (en) * 2013-09-02 2015-03-16 株式会社堀場製作所 Oil content measurement device
JP2015121410A (en) * 2013-12-20 2015-07-02 旭硝子株式会社 Pil concentration measuring method and pil concentration measuring apparatus
JP2015165199A (en) * 2014-03-03 2015-09-17 株式会社日立製作所 Treated water oil content measuring method and treated water oil content measuring apparatus
WO2017199611A1 (en) * 2016-05-18 2017-11-23 株式会社堀場製作所 Oil content measurement method and oil content measurement device
JP2018081096A (en) * 2016-11-08 2018-05-24 住友金属鉱山株式会社 Method for analyzing oil content in metal compound powder
CN110646255A (en) * 2018-06-26 2020-01-03 株式会社堀场先进技术 Oil extraction agent
JP2020003480A (en) * 2018-06-26 2020-01-09 株式会社 堀場アドバンスドテクノ Oil component extractant
US11041786B2 (en) 2018-06-26 2021-06-22 Horiba Advanced Techno, Co., Ltd. Oil extraction agent containing trimeric or higher oligomers of chlorotrifluoroethylene
JP7263130B2 (en) 2018-06-26 2023-04-24 株式会社 堀場アドバンスドテクノ oil extractor

Also Published As

Publication number Publication date
JP4459791B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
CN202869961U (en) Mobile reference light path device for water quality analysis meter
JP5947709B2 (en) Spectroscopic analysis method and spectroscopic analysis apparatus
US8981314B2 (en) Method and apparatus for the optical determination of total organic carbon in aqueous streams
US7304742B1 (en) Flow-through aerosol photoacoustic systems and methods
KR101281105B1 (en) The method of quantitative analysis for uranium in an aqueous solution
JP4459791B2 (en) Oil concentration measuring method and oil concentration measuring apparatus
Wang et al. Tunable fiber laser based photoacoustic gas sensor for early fire detection
WO2002057754A1 (en) Method and system for detecting chemical substance
Matsumoto Measuring biogenic volatile organic compounds (BVOCs) from vegetation in terms of ozone reactivity
Thaler et al. Photoacoustic spectroscopy for the quantification of N2O in the off-gas of wastewater treatment plants
Song et al. Detection of herbicides in drinking water by surface-enhanced Raman spectroscopy coupled with gold nanostructures
JP7042742B2 (en) Wide range gas detection method using infrared gas detector
EP3149461A1 (en) Active, variable sample concentration method and apparatus for sub-ppb measurements and exemplary x-ray analysis applications thereof
JPH07270310A (en) Oil component densitometer
JP4048139B2 (en) Concentration measuring device
Camou et al. ppb-Level detection of benzene diluted in water with portable device based on bubbling extraction and UV spectroscopy
JP2015121410A (en) Pil concentration measuring method and pil concentration measuring apparatus
JP2003004616A (en) Soil contamination gas analyzer
JP6446457B2 (en) Method and apparatus for determining the siloxane content of a gas
Sthel et al. CO2 laser photoacoustic detection of ammonia emitted by ceramic industries
JP2004138467A (en) Ultraviolet absorption type measuring instrument and method for treating measurement specimen
JP2005091306A (en) Method and instrument for measuring concentration of oil component
Zuck et al. Detection of hazardous vapours in a dusty environment–development of a protective module for chemical sensor using a laboratory setup for systematically simulating realistic conditions
Lee et al. Detecting adulterants in milk with lower cost mid-infrared and Raman spectroscopy
JP4143514B2 (en) Oil content measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Ref document number: 4459791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees