JP2006143810A - Copolymer of lactic acid and method for producing the same - Google Patents

Copolymer of lactic acid and method for producing the same Download PDF

Info

Publication number
JP2006143810A
JP2006143810A JP2004333260A JP2004333260A JP2006143810A JP 2006143810 A JP2006143810 A JP 2006143810A JP 2004333260 A JP2004333260 A JP 2004333260A JP 2004333260 A JP2004333260 A JP 2004333260A JP 2006143810 A JP2006143810 A JP 2006143810A
Authority
JP
Japan
Prior art keywords
acid
polylactic acid
mol
aromatic
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004333260A
Other languages
Japanese (ja)
Other versions
JP4694178B2 (en
Inventor
Yoshitaka Nagara
佳孝 長柄
Masahiko Yoshimura
政彦 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2004333260A priority Critical patent/JP4694178B2/en
Publication of JP2006143810A publication Critical patent/JP2006143810A/en
Application granted granted Critical
Publication of JP4694178B2 publication Critical patent/JP4694178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding material which has the glass transition temperature higher than that of a homopolymer of lactic acid, and excellent heat resistance, and by which the molding cycle can be shortened. <P>SOLUTION: The copolymer of the lactic acid is obtained by copolymerizing (A) a constituent unit composed of the lactic acid with (B) an aromatic polyester constituent unit composed of at least one component selected from (b1) an aromatic carboxylic acid component, (b2) an aromatic alcohol component and (b3) an aromatic hydroxycarboxylic acid component, regulated so that the molar ratio (A)/(B) may be (20/80) to (95/5). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガラス転位温度(Tg)が65℃以上の耐熱性に優れた共重合ポリ乳酸に関するものである。   The present invention relates to a copolymerized polylactic acid having a glass transition temperature (Tg) of 65 ° C. or more and excellent heat resistance.

近年、環境問題に対する意識の高まりから、生分解性樹脂、特に、ポリ乳酸を利用した商品の開発が行われている。しかしながら、L−ポリ乳酸のTgは58℃と通常の樹脂に比べて低く、成形サイクルが長くなるなど成形材料として取り扱うには問題があった。(特許文献1参照)   In recent years, due to increasing awareness of environmental issues, products using biodegradable resins, particularly polylactic acid, have been developed. However, the Tg of L-polylactic acid is 58 ° C., which is lower than that of ordinary resins, and there is a problem in handling as a molding material such as a longer molding cycle. (See Patent Document 1)

特開2003−238788号JP 2003-238788 A

本発明の課題は、Tgがポリ乳酸よりも高く、成形サイクルの短縮が可能な成形材料として優れた特性を有する共重合ポリ乳酸を提供することにある。   An object of the present invention is to provide a copolymerized polylactic acid having a Tg higher than that of polylactic acid and having excellent characteristics as a molding material capable of shortening the molding cycle.

本発明者らは、上記の課題を解決するために鋭意研究した結果、ポリ乳酸に、芳香族ポリエステル構成単位を導入することにより、共重合ポリ乳酸のTgが、ポリ乳酸単独のTgよりも格段に上がることを見出し、さらには、その重合方法として、ポリ乳酸をアシドリシス後、アセチル化し、脱酢酸により縮重合することが有効であることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have introduced an aromatic polyester structural unit into polylactic acid, so that the Tg of the copolymerized polylactic acid is much higher than the Tg of polylactic acid alone. Further, as a polymerization method thereof, it was found that it is effective to acetylate polylactic acid after acidosis and then perform polycondensation by deacetic acid, and the present invention was completed.

すなわち、本発明の要旨は次の通りである。
(1)乳酸からなる構成単位(A)と、芳香族カルボン酸成分(b1)、芳香族アルコール成分(b2)、および芳香族ヒドロキシカルボン酸成分(b3)の少なくとも一つの成分からなる芳香族ポリエステル構成単位(B)が、(A)/(B)=20/80〜95/5(モル比)の割合で共重合されてなることを特徴とする共重合ポリ乳酸。
(2)ポリ乳酸を芳香族カルボン酸でアシドリシス後、芳香族アルコールと共に、アセチル化し、脱酢酸により縮重合することを特徴とする共重合ポリ乳酸の製造方法。
(3)ポリ乳酸を芳香族ヒドロキシカルボン酸でアシドリシス後、アセチル化し、脱酢酸により縮重合することを特徴とする共重合ポリ乳酸の製造方法。
(4)ポリ乳酸を芳香族カルボン酸と芳香族ヒドロキシカルボン酸でアシドリシス後、芳香族アルコールと共に、アセチル化し、脱酢酸により縮重合することを特徴とする共重合ポリ乳酸の製造方法。
That is, the gist of the present invention is as follows.
(1) An aromatic polyester comprising a structural unit (A) composed of lactic acid and at least one of an aromatic carboxylic acid component (b1), an aromatic alcohol component (b2), and an aromatic hydroxycarboxylic acid component (b3) A copolymer polylactic acid, wherein the structural unit (B) is copolymerized at a ratio of (A) / (B) = 20/80 to 95/5 (molar ratio).
(2) A method for producing a copolymerized polylactic acid, wherein the polylactic acid is acidified with an aromatic carboxylic acid, then acetylated with an aromatic alcohol, and subjected to condensation polymerization by deacetic acid.
(3) A method for producing a copolymerized polylactic acid, wherein the polylactic acid is acidified with an aromatic hydroxycarboxylic acid, then acetylated, and subjected to polycondensation by deacetic acid.
(4) A method for producing a copolymerized polylactic acid, characterized in that polylactic acid is acidified with an aromatic carboxylic acid and an aromatic hydroxycarboxylic acid, then acetylated with an aromatic alcohol, and subjected to polycondensation by deacetic acid.

本発明の共重合ポリ乳酸は、Tgがポリ乳酸よりも高く、成形サイクルの短縮が可能な成形材料として優れた特性を有する共重合ポリ乳酸が提供される。   The copolymerized polylactic acid of the present invention provides a copolymerized polylactic acid having a Tg higher than that of polylactic acid and excellent properties as a molding material capable of shortening the molding cycle.

以下、本発明を詳細に説明する。
本発明の共重合ポリ乳酸は、乳酸からなる構成単位(A)と、芳香族カルボン酸成分(b1)、芳香族アルコール成分(b2)、および芳香族ヒドロキシカルボン酸成分(b3)の少なくとも一つの成分からなる芳香族ポリエステル構成単位(B)が、(A)/(B)=20/80〜95/5(モル比)の割合で共重合されてなるものである。
Hereinafter, the present invention will be described in detail.
The copolymer polylactic acid of the present invention comprises at least one of a structural unit (A) comprising lactic acid, an aromatic carboxylic acid component (b1), an aromatic alcohol component (b2), and an aromatic hydroxycarboxylic acid component (b3). The aromatic polyester structural unit (B) composed of the components is copolymerized at a ratio of (A) / (B) = 20/80 to 95/5 (molar ratio).

本発明の共重合ポリ乳酸において、乳酸からなる構成単位(A)の割合は、共重合ポリ乳酸全体に対して、20〜95モル%であることが必要であり、30〜85モル%がより好ましく、40〜75モル%がさらに好ましい。
乳酸からなる構成単位(A)の割合が20モル%よりも少ない場合には、芳香族ポリエステル構成成分の適切な重合温度においてポリ乳酸が分解しやすくなり好ましくない。
In the copolymerized polylactic acid of the present invention, the proportion of the structural unit (A) composed of lactic acid needs to be 20 to 95 mol% with respect to the entire copolymerized polylactic acid, and more preferably 30 to 85 mol%. Preferably, 40 to 75 mol% is more preferable.
When the proportion of the structural unit (A) composed of lactic acid is less than 20 mol%, polylactic acid tends to decompose at an appropriate polymerization temperature of the aromatic polyester constituent component, which is not preferable.

本発明の共重合ポリ乳酸において、乳酸からなる構成単位(A)の共重合成分が、芳香族カルボン酸成分(b1)と芳香族アルコール成分(b2)の2成分からなる場合には、共重合ポリ乳酸全体に占める(b1)と(b2)のモル比の割合は、40:60〜60:40にすることが好ましく、45:55〜55:45にすることがより好ましく、50:50にすることが最も好ましい。各成分の割合が上記の範囲をはずれると、得られる共重合ポリ乳酸の重合度が上がらないので好ましくない。   In the copolymerized polylactic acid of the present invention, when the copolymer component of the structural unit (A) composed of lactic acid is composed of two components, an aromatic carboxylic acid component (b1) and an aromatic alcohol component (b2), copolymerization is performed. The ratio of the molar ratio of (b1) and (b2) to the whole polylactic acid is preferably 40:60 to 60:40, more preferably 45:55 to 55:45, and 50:50 Most preferably. If the proportion of each component is out of the above range, the degree of polymerization of the copolymerized polylactic acid obtained is not preferable.

本発明の共重合ポリ乳酸において、乳酸からなる構成単位(A)の共重合成分が、芳香族ヒドロキシカルボン酸成分(b3)を含む場合には、共重合ポリ乳酸全体に占める(b3)の割合は90モル%以下が好ましく、より好ましくは55モル%以下、35モル%以下とすることが最適である。   In the copolymerized polylactic acid of the present invention, when the copolymer component of the structural unit (A) comprising lactic acid contains the aromatic hydroxycarboxylic acid component (b3), the proportion of (b3) in the total copolymerized polylactic acid Is preferably 90 mol% or less, more preferably 55 mol% or less and 35 mol% or less.

本発明の共重合ポリ乳酸を構成する、乳酸からなる構成単位(A)としては、乳酸の構造単位がL−乳酸であるポリ(L−乳酸)、構造単位がD−乳酸であるポリ(D−乳酸)、およびこれらの混合物または共重合体を出発物質として用いることができる。   As the structural unit (A) comprising lactic acid constituting the copolymer polylactic acid of the present invention, poly (L-lactic acid) in which the structural unit of lactic acid is L-lactic acid and poly (D-lactic acid in which the structural unit is D-lactic acid) -Lactic acid), and mixtures or copolymers thereof can be used as starting materials.

ポリ乳酸の重合方法としては、縮重合法、開環重合法などの方法を採用することができる。例えば、縮重合法ではL−乳酸またはD−乳酸あるいはこれらの混合物を直接脱水縮重合することができる。また、開環重合法では乳酸の環状2量体であるラクチドを、オクチル酸錫等の触媒を使用して重合することができる。ラクチドにはL−乳酸の2量体であるL−ラクチド、D−乳酸の2量体であるD−ラクチド、さらにL−乳酸とD−乳酸からなるDL−ラクチドがあり、これらを必要に応じて混合して重合することができる。   As a polymerization method of polylactic acid, methods such as a condensation polymerization method and a ring-opening polymerization method can be employed. For example, in the condensation polymerization method, L-lactic acid, D-lactic acid or a mixture thereof can be directly subjected to dehydration condensation polymerization. In the ring-opening polymerization method, lactide, which is a cyclic dimer of lactic acid, can be polymerized using a catalyst such as tin octylate. Lactide includes L-lactide, which is a dimer of L-lactic acid, D-lactide, which is a dimer of D-lactic acid, and DL-lactide composed of L-lactic acid and D-lactic acid. Can be mixed and polymerized.

また、ポリ乳酸の分子量を増大させるために少量の鎖延長剤、例えば、ジイソシアネート化合物、エポキシ化合物、酸無水物などを使用することもできる。   Moreover, in order to increase the molecular weight of polylactic acid, a small amount of chain extender, for example, a diisocyanate compound, an epoxy compound, an acid anhydride, etc. can be used.

ポリ乳酸の重量平均分子量は通常5万〜100万の範囲にあるものを用いることができ、このような分子量を有するポリ乳酸は、たとえば、カーギルダウ社、三井化学等から販売されている。   A polylactic acid having a weight average molecular weight in the range of 50,000 to 1,000,000 can be used. Polylactic acid having such a molecular weight is sold by, for example, Cargill Dow, Mitsui Chemicals, and the like.

また、本発明において、乳酸からなる構成単位(A)を導入する方法として、出発物質にラクチドを用いる場合には、触媒添加し減圧にするなど、重合段階でラクチドが一部重合系外に放出されることが多いので、ラクチドを重合反応釜に投入する際は、目標組成よりも若干過剰に投入する必要がある。   In the present invention, as a method for introducing the structural unit (A) comprising lactic acid, when lactide is used as a starting material, a part of the lactide is released from the polymerization system in the polymerization stage, for example, by adding a catalyst and reducing the pressure. For this reason, when lactide is charged into the polymerization reaction kettle, it is necessary to charge it slightly in excess of the target composition.

本発明において用いられる、芳香族カルボン酸成分(b1)としては、テレフタル酸、イソフタル酸、オルトフタル酸、2,6−ナフタレンジカルボン酸、ビフェニルジカルボン酸、5−スルホイソフタル酸等が例示できる。これらは無水物であってもよい。上記した芳香族カルボン酸の中でも、テレフタル酸とイソフタル酸が特に好ましい。   Examples of the aromatic carboxylic acid component (b1) used in the present invention include terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, biphenyldicarboxylic acid, and 5-sulfoisophthalic acid. These may be anhydrous. Among the above aromatic carboxylic acids, terephthalic acid and isophthalic acid are particularly preferable.

本発明において用いられる、芳香族アルコール成分(b2)としては、ビスフェノールA、ビスフェノールS、ビスフェノールC、ビスフェノールZ、ビスフェノールAP、4,4′−ビフェノール等を用いることができる。上記した芳香族アルコールの中でも、ビスフェノールAが特に好ましい。   As the aromatic alcohol component (b2) used in the present invention, bisphenol A, bisphenol S, bisphenol C, bisphenol Z, bisphenol AP, 4,4′-biphenol and the like can be used. Among the above-mentioned aromatic alcohols, bisphenol A is particularly preferable.

本発明において用いられる、芳香族ヒドロキシカルボン酸成分(b3)としては、p−ヒドロキシ安息香酸、m−ヒドロキシ安息香酸、o−ヒドロキシ安息香酸等を例示することができる。上記した芳香族ヒドロキシカルボン酸の中でも、p−ヒドロキシ安息香酸が特に好ましい。   Examples of the aromatic hydroxycarboxylic acid component (b3) used in the present invention include p-hydroxybenzoic acid, m-hydroxybenzoic acid, o-hydroxybenzoic acid and the like. Of the above-mentioned aromatic hydroxycarboxylic acids, p-hydroxybenzoic acid is particularly preferable.

本発明の共重合ポリ乳酸の数平均分子量は4,000以上とすることが好ましく、8,000以上であることがより好ましく、12,000以上であることがさらに好ましく、15,000以上であることが特に好ましい。数平均分子量が4,000未満では、成形材料として用いることが困難である。   The number average molecular weight of the copolymerized polylactic acid of the present invention is preferably 4,000 or more, more preferably 8,000 or more, further preferably 12,000 or more, and 15,000 or more. It is particularly preferred. If the number average molecular weight is less than 4,000, it is difficult to use as a molding material.

また、共重合ポリ乳酸の分子量分布の分散度は、特に限定されないが、8以下が好ましく、5以下がより好ましい。ここで、分子量分布の分散度とは、重量平均分子量を数平均分子量で除した値のことである。   Further, the degree of dispersion of the molecular weight distribution of the copolymerized polylactic acid is not particularly limited, but is preferably 8 or less, and more preferably 5 or less. Here, the degree of dispersion of the molecular weight distribution is a value obtained by dividing the weight average molecular weight by the number average molecular weight.

また、共重合ポリ乳酸のガラス転移温度(Tg)は、少なくともポリ乳酸のTgである58℃よりも高くなければならない。   The glass transition temperature (Tg) of the copolymerized polylactic acid must be at least higher than 58 ° C., which is the Tg of polylactic acid.

本発明の共重合ポリ乳酸を得るための製造方法としては、アシドリシス工程、アセチル化工程、続いて、脱酢酸による縮重合工程を経る溶融重合法によって製造することができる。   As a production method for obtaining the copolymerized polylactic acid of the present invention, it can be produced by an acid polymerization process, an acetylation process, and then a melt polymerization process through a condensation polymerization process by deacetic acid.

アシドリシス工程は、カルボン酸末端基をもつモノマーでポリ乳酸をアシドリシス化する工程である。本発明の共重合ポリ乳酸が、乳酸からなる構成単位(A)と、芳香族カルボン酸成分(b1)および芳香族アルコール成分(b2)からなる場合(以下、構成(1)という)には芳香族カルボン酸によってアシドリシス化し、乳酸からなる構成単位(A)と芳香族ヒドロキシカルボン酸成分(b3)からなる場合(以下、構成(2)という)には芳香族ヒドロシシカルボン酸によってアシドリシス化し、乳酸からなる構成単位(A)と、芳香族カルボン酸成分(b1)および芳香族アルコール成分(b2)および芳香族ヒドロキシカルボン酸成分(b3)からなる場合(以下、構成(3)という)には芳香族カルボン酸と芳香族ヒドロキシカルボン酸両方で、ポリ乳酸をアシドリシス化する。
アシドリシス工程では、ポリ乳酸とアシドリシスするモノマーを反応容器に仕込み、攪拌しながら、200〜240℃で2〜8時間、解重合を行なう。アシドリシスするモノマーは一括で投入しても、また分割して投入してもいずれでもかまわない。
The acidolysis step is a step of acidifying polylactic acid with a monomer having a carboxylic acid end group. When the copolymerized polylactic acid of the present invention comprises a structural unit (A) comprising lactic acid, an aromatic carboxylic acid component (b1) and an aromatic alcohol component (b2) (hereinafter referred to as constitution (1)), the fragrance In the case where it is acidified with an aromatic carboxylic acid and composed of a structural unit (A) comprising lactic acid and an aromatic hydroxycarboxylic acid component (b3) (hereinafter referred to as constitution (2)), it is acidified with an aromatic hydroxycarboxylic acid, And the aromatic carboxylic acid component (b1), the aromatic alcohol component (b2) and the aromatic hydroxycarboxylic acid component (b3) (hereinafter referred to as the configuration (3)) Polylactic acid is acidified with both aromatic carboxylic acid and aromatic hydroxycarboxylic acid.
In the acidolysis step, polylactic acid and the acidolysis monomer are charged into a reaction vessel, and depolymerization is performed at 200 to 240 ° C. for 2 to 8 hours while stirring. The monomers that undergo acidosis may be added all at once or dividedly.

アセチル化工程は、ヒドロキシ末端を無水酢酸によって、アセチル化する工程である。構成(1)の場合には芳香族アルコールと無水酢酸を、構成(2)の場合は無水酢酸を、構成(3)の場合は芳香族アルコールと無水酢酸を反応容器に仕込み、攪拌しながら、100〜150℃で1〜8時間アセチル化を行なう。この工程において、アシドリシスされたポリ乳酸のヒドロキシ末端および芳香族アルコール、芳香族ヒドロキシカルボン酸のヒドロキシ末端がアセチル化される。ヒドロキシ末端をもつモノマーは、あらかじめアシドリシス工程で反応容器に投入しておいても、また、アセチル化工程前に投入してもいずれでもかまわない。   The acetylation step is a step of acetylating the hydroxy terminal with acetic anhydride. In the case of the configuration (1), aromatic alcohol and acetic anhydride are charged, in the case of the configuration (2), acetic anhydride is charged, and in the case of the configuration (3), the aromatic alcohol and acetic anhydride are charged into a reaction vessel, Acetylation is performed at 100 to 150 ° C. for 1 to 8 hours. In this step, the hydroxy terminal of the acidified polylactic acid and the hydroxy terminal of the aromatic alcohol or aromatic hydroxycarboxylic acid are acetylated. The monomer having a hydroxy terminus may be previously charged into the reaction vessel in the acidolysis step or may be charged before the acetylation step.

縮重合工程は、アセチル化されたポリ乳酸およびアセチル化した芳香族アルコールを脱酢酸して縮重合する工程である。例えば、200〜250℃まで重合温度を昇温し、さらに系内を130Pa以下の減圧にし、高真空下で3〜10時間縮重合反応を行なう。   The polycondensation step is a step of decondensing acetylated polylactic acid and acetylated aromatic alcohol to perform polycondensation. For example, the polymerization temperature is raised to 200 to 250 ° C., the pressure inside the system is reduced to 130 Pa or less, and the condensation polymerization reaction is performed under high vacuum for 3 to 10 hours.

本発明の共重合ポリ乳酸の分子量を制御する方法としては、重合時の共重合ポリ乳酸溶融物を所定の粘度で重合を終了する方法などが挙げられる。   Examples of the method for controlling the molecular weight of the copolymerized polylactic acid of the present invention include a method of terminating the polymerization of the copolymerized polylactic acid melt at the time of polymerization with a predetermined viscosity.

本発明の共重合ポリ乳酸を製造する際には、触媒を用いなくても重合は可能ではあるが、テトラブチルチタネ−トなどの有機チタン酸化合物、酢酸亜鉛、酢酸マグネシウムなどのアルカリ金属、アルカリ土類金属の酢酸塩、ヒドロキシブチルスズオキサイド、オクチル酸スズなどの有機錫化合物をアシドリシス工程などで用いてもかまわない。
その際の触媒使用量は、生成するポリマーの質量に対し、1.0質量%以下を用いるのが好ましい。1.0質量%を超える場合には、内容物への触媒の溶出が懸念される等の問題があるので好ましくない。
When the copolymerized polylactic acid of the present invention is produced, polymerization is possible without using a catalyst, but an organic titanate compound such as tetrabutyl titanate, an alkali metal such as zinc acetate and magnesium acetate, Organic tin compounds such as alkaline earth metal acetates, hydroxybutyltin oxide and tin octylate may be used in the acidolysis process.
In this case, the amount of the catalyst used is preferably 1.0% by mass or less based on the mass of the polymer to be produced. If it exceeds 1.0% by mass, there is a problem such as concern about elution of the catalyst into the contents, which is not preferable.

また、本発明の共重合ポリ乳酸には、必要に応じて硬化剤、各種添加剤、酸化チタン、亜鉛華、カーボンブラック等の顔料、染料、ポリエステル樹脂、ウレタン樹脂、オレフィン樹脂、アクリル樹脂、アルキド樹脂、セルロース誘導体等を配合することができる。   The copolymerized polylactic acid of the present invention includes a curing agent, various additives, pigments such as titanium oxide, zinc white, carbon black, dyes, polyester resins, urethane resins, olefin resins, acrylic resins, alkyds as necessary. Resins, cellulose derivatives and the like can be blended.

また、本発明の共重合ポリ乳酸には、必要に応じて、顔料分散剤、紫外線吸収剤、離型剤、顔料分散剤、滑剤等の添加剤を配合することができる。   The copolymerized polylactic acid of the present invention can be blended with additives such as a pigment dispersant, an ultraviolet absorber, a release agent, a pigment dispersant, and a lubricant, as necessary.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらによって限定されるものではない。
(1)共重合ポリ乳酸の構成
1H−NMR分析(バリアン社製,300MHz)より求めた。また、1H−NMRスペクトル上に帰属・定量可能なピークが認められない構成モノマーを含む樹脂については、封管中230℃で3時間メタノール分解を行った後に、ガスクロマトグラム分析に供し、定量分析を行った。
(2)共重合ポリ乳酸の数平均分子量
数平均分子量は、GPC分析(島津製作所製の送液ユニットLC−10ADvp型及び紫外−可視分光光度計SPD−6AV型を使用、検出波長:254nm、溶媒:クロロホルム、ポリスチレン換算)により求めた。
(3)共重合ポリ乳酸のガラス転移温度(Tg)
共重合ポリ乳酸10mgをサンプルとし、DSC(示差走査熱量測定)装置(パーキンエルマー社製 DSC7)を用いて昇温速度10℃/分の条件で測定を行ない、得られた昇温曲線中のガラス転移に由来する2つの折曲点温度の中間値を求め、これをTgとした。
実施例1
カーギルダウ社製ポリ乳酸6250D(L−ポリ乳酸)1184g(144モル%)とテレフタル酸266g(14モル%)からなる混合物をオートクレーブ中で、攪拌しながら、240℃で2時間加熱してアシドリシス反応を行った。次いで、系の温度を140℃に降温し、ビスフェノールA 365g(14モル%)と、無水酢酸408gを投入して、攪拌しながら、4時間加熱してアセチル化反応を行なった。続いて、系の温度を240℃に昇温し、系の圧力を徐々に減じて1.5時間後に13Paとし、攪拌しながら、重縮合反応を行なった。8時間後、系を窒素ガスで加圧状態にしてストランド状に樹脂を払い出し、水冷後、ペレタイザーでカッティングを行ない、ペレット状の共重合ポリ乳酸を得た。
得られた共重合ポリ乳酸の樹脂組成を調べたところ、乳酸/テレフタル酸/ビスフェノールA=72モル%/14モル%/14モル%であった。
実施例2
カーギルダウ社製ポリ乳酸6250D(L−ポリ乳酸)1840g(160モル%)とイソフタル酸266g(10モル%)からなる混合物をオートクレーブ中で、攪拌しながら、240℃で2時間加熱してアシドリシス反応を行った。次いで、系の温度を140℃に降温し、ビスフェノールA 365g(10モル%)と、無水酢酸408gを投入して、攪拌しながら、4時間加熱してアセチル化反応を行なった。続いて、系の温度を240℃に昇温し、系の圧力を徐々に減じて1.5時間後に13Paとし、攪拌しながら、重縮合反応を行なった。8時間後、系を窒素ガスで加圧状態にしてストランド状に樹脂を払い出し、水冷後、ペレタイザーでカッティングを行ない、ペレット状の共重合ポリ乳酸を得た。
得られた共重合ポリ乳酸の樹脂組成を調べたところ、乳酸/イソフタル酸/ビスフェノールA=80モル%/10モル%/10モル%であった。
実施例3
カーギルダウ社製ポリ乳酸4031D(L−ポリ乳酸)1184g(144モル%)とテレフタル酸133g(7モル%)とイソフタル酸133g(7モル%)からなる混合物をオートクレーブ中で、攪拌しながら、240℃で2時間加熱してアシドリシス反応を行った。次いで、系の温度を140℃に降温し、ビスフェノールA 365g(14モル%)と、無水酢酸408gを投入して、攪拌しながら、4時間加熱してアセチル化反応を行なった。続いて、系の温度を240℃に昇温し、系の圧力を徐々に減じて1.5時間後に13Paとし、攪拌しながら、重縮合反応を行なった。8時間後、系を窒素ガスで加圧状態にしてストランド状に樹脂を払い出し、水冷後、ペレタイザーでカッティングを行ない、ペレット状の共重合ポリ乳酸を得た。
得られた共重合ポリ乳酸の樹脂組成を調べたところ、乳酸/テレフタル酸/イソフタル酸/ビスフェノールA=72モル%/7モル%/7モル%/14モル%であった。
実施例4
カーギルダウ社製ポリ乳酸6250D(L−ポリ乳酸)136g(46モル%)とテレフタル酸186g(27モル%)とイソフタル酸80g(12モル%)からなる混合物をオートクレーブ中で、攪拌しながら、240℃で2時間加熱してアシドリシス反応を行った。次いで、系の温度を140℃に降温し、ビスフェノールA 365g(39モル%)と、無水酢酸408gを投入して、攪拌しながら、4時間加熱してアセチル化反応を行なった。続いて、系の温度を240℃に昇温し、系の圧力を徐々に減じて1.5時間後に13Paとし、攪拌しながら、重縮合反応を行なった。8時間後、系を窒素ガスで加圧状態にしてストランド状に樹脂を払い出し、水冷後、ペレタイザーでカッティングを行ない、ペレット状の共重合ポリ乳酸を得た。
得られた共重合ポリ乳酸の樹脂組成を調べたところ、乳酸/テレフタル酸/イソフタル酸/ビスフェノールA=22モル%/27モル%/12モル%/39モル%であった。
実施例5
カーギルダウ社製ポリ乳酸4031D(L−ポリ乳酸)7045g(188モル%)とテレフタル酸186g(2モル%)とイソフタル酸80g(1モル%)からなる混合物をオートクレーブ中で、攪拌しながら、240℃で2時間加熱してアシドリシス反応を行った。次いで、系の温度を140℃に降温し、ビスフェノールA 365g(3モル%)と、無水酢酸408gを投入して、攪拌しながら、4時間加熱してアセチル化反応を行なった。続いて、系の温度を240℃に昇温し、系の圧力を徐々に減じて1.5時間後に13Paとし、攪拌しながら、重縮合反応を行なった。8時間後、系を窒素ガスで加圧状態にしてストランド状に樹脂を払い出し、水冷後、ペレタイザーでカッティングを行ない、ペレット状の共重合ポリ乳酸を得た。
得られた共重合ポリ乳酸の樹脂組成を調べたところ、乳酸/テレフタル酸/イソフタル酸/ビスフェノールA=94モル%/2モル%/1モル%/3モル%であった。
実施例6
カーギルダウ社製ポリ乳酸6250D(L−ポリ乳酸)167g(84モル%)とp−ヒドロキシ安息香酸194g(29モル%)からなる混合物をオートクレーブ中で、攪拌しながら、240℃で1.5時間加熱したあと、さらにp−ヒドロキシ安息香酸194g(29モル%)を投入し、オートクレーブ中で、攪拌しながら、240℃でさらに2時間加熱してアシドリシス反応を行った。次いで、系の温度を140℃に降温し、無水酢酸204gを投入して、攪拌しながら、4時間加熱してアセチル化反応を行なった。続いて、系の温度を230℃に昇温し、系の圧力を徐々に減じて1.5時間後に13Paとし、攪拌しながら、重縮合反応を行なった。8時間後、系を窒素ガスで加圧状態にしてストランド状に樹脂を払い出し、水冷後、ペレタイザーでカッティングを行ない、ペレット状の共重合ポリ乳酸を得た。
得られた共重合ポリ乳酸の樹脂組成を調べたところ、乳酸/p−ヒドロキシ安息香酸=42モル%/58モル%であった。
実施例7
カーギルダウ社製ポリ乳酸4031D(L−ポリ乳酸)537g(140モル%)とp−ヒドロキシ安息香酸388g(30モル%)からなる混合物をオートクレーブ中で、攪拌しながら、240℃で2時間加熱してアシドリシス反応を行った。次いで、系の温度を140℃に降温し、無水酢酸204gを投入して、攪拌しながら、4時間加熱してアセチル化反応を行なった。続いて、系の温度を230℃に昇温し、系の圧力を徐々に減じて1.5時間後に13Paとし、攪拌しながら、重縮合反応を行なった。8時間後、系を窒素ガスで加圧状態にしてストランド状に樹脂を払い出し、水冷後、ペレタイザーでカッティングを行ない、ペレット状の共重合ポリ乳酸を得た。
得られた共重合ポリ乳酸の樹脂組成を調べたところ、乳酸/p−ヒドロキシ安息香酸=70モル%/30モル%であった。
実施例8
カーギルダウ社製ポリ乳酸6250D(L−ポリ乳酸)119g(68モル%)とテレフタル酸16g(4モル%)、イソフタル酸16g(4モル%)、ビスフェノールA 44g(8モル%)、p−ヒドロキシ安息香酸295g(50モル%)からなる混合物をオートクレーブ中で、攪拌しながら、240℃で2時間加熱してアシドリシス反応を行った。次いで、系の温度を140℃に降温し、無水酢酸196gを投入して、攪拌しながら、4時間加熱してアセチル化反応を行なった。続いて、系の温度を230℃に昇温し、系の圧力を徐々に減じて1.5時間後に13Paとし、攪拌しながら、重縮合反応を行なった。8時間後、系を窒素ガスで加圧状態にしてストランド状に樹脂を払い出し、水冷後、ペレタイザーでカッティングを行ない、ペレット状の共重合ポリ乳酸を得た。
得られた共重合ポリ乳酸の樹脂組成を調べたところ、乳酸/テレフタル酸/イソフタル酸/ビスフェノールA/p−ヒドロキシ安息香酸=34モル%/4モル%/4モル%/8モル%/50モル%であった。
比較例1
オートクレーブ中で、イソフタル酸266g(50モル%)、ビスフェノールA 365g(50モル%)と無水酢酸408gからなる混合物をオートクレーブ中で、攪拌しながら、系の温度を140℃で、攪拌しながら、4時間加熱してアセチル化反応を行なった。続いて、系の温度を320℃に昇温し、系の圧力を徐々に減じて1.5時間後に13Paとし、攪拌しながら、重縮合反応を行なった。8時間後、系を窒素ガスで加圧状態にしてストランド状に樹脂を払い出し、水冷後、ペレタイザーでカッティングを行ない、ペレット状の共重合ポリエステルを得た。
得られた共重合ポリエステルの樹脂組成を調べたところ、イソフタル酸/ビスフェノールA=50モル%/50モル%であった。
比較例2
カーギルダウ製ポリ乳酸4031Dの性能を評価した。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
(1) Composition of copolymerized polylactic acid
It calculated | required from < 1 > H-NMR analysis (The product made by a Varian, 300MHz). Also, the resin containing a constituent monomer is not observed attributable-quantifiable peaks on 1 H-NMR spectrum, after the 3 hours methanolysis at 230 ° C. in a sealed tube and subjected to gas chromatography analysis, quantitative analysis Went.
(2) Number average molecular weight of copolymerized polylactic acid The number average molecular weight is determined by GPC analysis (liquid feeding unit LC-10ADvp type and UV-visible spectrophotometer SPD-6AV type manufactured by Shimadzu Corporation), detection wavelength: 254 nm, solvent : Chloroform, polystyrene conversion).
(3) Glass transition temperature (Tg) of copolymer polylactic acid
Using a copolymerized polylactic acid 10 mg as a sample, measurement was performed using a DSC (Differential Scanning Calorimetry) apparatus (DSC7 manufactured by PerkinElmer Co., Ltd.) at a temperature rising rate of 10 ° C./min. An intermediate value between two bending point temperatures derived from the transition was determined, and this was defined as Tg.
Example 1
A mixture of 1184 g (144 mol%) of polylactic acid 6250D (L-polylactic acid) manufactured by Cargill Dow and 266 g (14 mol%) of terephthalic acid was heated in an autoclave at 240 ° C. for 2 hours to perform an acidolysis reaction. went. Next, the temperature of the system was lowered to 140 ° C., 365 g (14 mol%) of bisphenol A and 408 g of acetic anhydride were added, and the mixture was heated for 4 hours with stirring to carry out an acetylation reaction. Subsequently, the temperature of the system was raised to 240 ° C., the pressure of the system was gradually reduced to 13 Pa after 1.5 hours, and a polycondensation reaction was performed while stirring. After 8 hours, the system was pressurized with nitrogen gas, and the resin was discharged in a strand form. After cooling with water, cutting was performed with a pelletizer to obtain a pelletized copolymer polylactic acid.
When the resin composition of the obtained copolymer polylactic acid was examined, it was lactic acid / terephthalic acid / bisphenol A = 72 mol% / 14 mol% / 14 mol%.
Example 2
A mixture of 1840 g (160 mol%) of polylactic acid 6250D (L-polylactic acid) manufactured by Cargill Dow and 266 g (10 mol%) of isophthalic acid was heated in an autoclave at 240 ° C. for 2 hours to perform an acidolysis reaction. went. Next, the temperature of the system was lowered to 140 ° C., 365 g (10 mol%) of bisphenol A and 408 g of acetic anhydride were added, and the mixture was heated for 4 hours with stirring to carry out an acetylation reaction. Subsequently, the temperature of the system was raised to 240 ° C., the pressure of the system was gradually reduced to 13 Pa after 1.5 hours, and a polycondensation reaction was performed while stirring. After 8 hours, the system was pressurized with nitrogen gas, and the resin was discharged in a strand form. After cooling with water, cutting was performed with a pelletizer to obtain a pelletized copolymer polylactic acid.
When the resin composition of the obtained copolymer polylactic acid was examined, it was lactic acid / isophthalic acid / bisphenol A = 80 mol% / 10 mol% / 10 mol%.
Example 3
While stirring a mixture of 1184 g (144 mol%) of polylactic acid 4031D (L-polylactic acid), 133 g (7 mol%) of terephthalic acid and 133 g (7 mol%) of isophthalic acid (carol Dow) at 240 ° C. in an autoclave. The acidolysis reaction was carried out by heating for 2 hours. Next, the temperature of the system was lowered to 140 ° C., 365 g (14 mol%) of bisphenol A and 408 g of acetic anhydride were added, and the mixture was heated for 4 hours with stirring to carry out an acetylation reaction. Subsequently, the temperature of the system was raised to 240 ° C., the pressure of the system was gradually reduced to 13 Pa after 1.5 hours, and a polycondensation reaction was performed while stirring. After 8 hours, the system was pressurized with nitrogen gas, and the resin was discharged in a strand form. After cooling with water, cutting was performed with a pelletizer to obtain a pelletized copolymer polylactic acid.
When the resin composition of the obtained copolymer polylactic acid was examined, it was lactic acid / terephthalic acid / isophthalic acid / bisphenol A = 72 mol% / 7 mol% / 7 mol% / 14 mol%.
Example 4
While stirring a mixture of 136 g (46 mol%) of polylactic acid 6250D (L-polylactic acid), 186 g (27 mol%) of terephthalic acid and 80 g (12 mol%) of isophthalic acid manufactured by Cargill Dow in an autoclave at 240 ° C. The acidolysis reaction was carried out by heating for 2 hours. Subsequently, the temperature of the system was lowered to 140 ° C., 365 g (39 mol%) of bisphenol A and 408 g of acetic anhydride were added, and the mixture was heated for 4 hours with stirring to carry out an acetylation reaction. Subsequently, the temperature of the system was raised to 240 ° C., the pressure of the system was gradually reduced to 13 Pa after 1.5 hours, and a polycondensation reaction was performed while stirring. After 8 hours, the system was pressurized with nitrogen gas, and the resin was discharged in a strand form. After cooling with water, cutting was performed with a pelletizer to obtain a pelletized copolymer polylactic acid.
When the resin composition of the obtained copolymer polylactic acid was examined, it was lactic acid / terephthalic acid / isophthalic acid / bisphenol A = 22 mol% / 27 mol% / 12 mol% / 39 mol%.
Example 5
While stirring a mixture of 7045 g (188 mol%) of polylactic acid 4031D (L-polylactic acid), 186 g (2 mol%) of terephthalic acid, and 80 g (1 mol%) of isophthalic acid manufactured by Cargill Dow in an autoclave at 240 ° C. The acidolysis reaction was carried out by heating for 2 hours. Next, the temperature of the system was lowered to 140 ° C., 365 g (3 mol%) of bisphenol A and 408 g of acetic anhydride were added, and the mixture was heated for 4 hours with stirring to carry out an acetylation reaction. Subsequently, the temperature of the system was raised to 240 ° C., the pressure of the system was gradually reduced to 13 Pa after 1.5 hours, and a polycondensation reaction was performed while stirring. After 8 hours, the system was pressurized with nitrogen gas, and the resin was discharged in a strand form. After cooling with water, cutting was performed with a pelletizer to obtain a pelletized copolymer polylactic acid.
When the resin composition of the obtained copolymer polylactic acid was examined, it was lactic acid / terephthalic acid / isophthalic acid / bisphenol A = 94 mol% / 2 mol% / 1 mol% / 3 mol%.
Example 6
A mixture of 167 g (84 mol%) of polylactic acid 6250D (L-polylactic acid) manufactured by Cargill Dow and 194 g (29 mol%) of p-hydroxybenzoic acid was heated at 240 ° C. for 1.5 hours with stirring in an autoclave. Then, 194 g (29 mol%) of p-hydroxybenzoic acid was further added, and the mixture was further heated at 240 ° C. for 2 hours with stirring in an autoclave to carry out an acidolysis reaction. Next, the temperature of the system was lowered to 140 ° C., 204 g of acetic anhydride was added, and the mixture was stirred and heated for 4 hours to carry out an acetylation reaction. Subsequently, the temperature of the system was raised to 230 ° C., the pressure of the system was gradually reduced to 13 Pa after 1.5 hours, and a polycondensation reaction was performed while stirring. After 8 hours, the system was pressurized with nitrogen gas, and the resin was discharged in a strand form. After cooling with water, cutting was performed with a pelletizer to obtain a pelletized copolymer polylactic acid.
When the resin composition of the obtained copolymer polylactic acid was investigated, it was lactic acid / p-hydroxybenzoic acid = 42 mol% / 58 mol%.
Example 7
A mixture of 537 g (140 mol%) of polylactic acid 4031D (L-polylactic acid) manufactured by Cargill Dow and 388 g (30 mol%) of p-hydroxybenzoic acid was heated in an autoclave at 240 ° C. for 2 hours with stirring. An acidolysis reaction was performed. Next, the temperature of the system was lowered to 140 ° C., 204 g of acetic anhydride was added, and the mixture was stirred and heated for 4 hours to carry out an acetylation reaction. Subsequently, the temperature of the system was raised to 230 ° C., the pressure of the system was gradually reduced to 13 Pa after 1.5 hours, and a polycondensation reaction was performed while stirring. After 8 hours, the system was pressurized with nitrogen gas, and the resin was discharged in a strand form. After cooling with water, cutting was performed with a pelletizer to obtain a pelletized copolymer polylactic acid.
When the resin composition of the obtained copolymer polylactic acid was examined, it was lactic acid / p-hydroxybenzoic acid = 70 mol% / 30 mol%.
Example 8
119 g (68 mol%) of polylactic acid 6250D (L-polylactic acid) manufactured by Cargill Dow, 16 g (4 mol%) of terephthalic acid, 16 g (4 mol%) of isophthalic acid, 44 g (8 mol%) of bisphenol A, p-hydroxybenzoic acid The mixture consisting of 295 g (50 mol%) of acid was heated at 240 ° C. for 2 hours with stirring in an autoclave to carry out an acidolysis reaction. Next, the temperature of the system was lowered to 140 ° C., 196 g of acetic anhydride was added, and the mixture was heated for 4 hours with stirring to carry out an acetylation reaction. Subsequently, the temperature of the system was raised to 230 ° C., the pressure of the system was gradually reduced to 13 Pa after 1.5 hours, and a polycondensation reaction was performed while stirring. After 8 hours, the system was pressurized with nitrogen gas, and the resin was discharged in a strand form. After cooling with water, cutting was performed with a pelletizer to obtain a pelletized copolymer polylactic acid.
When the resin composition of the obtained copolymer polylactic acid was examined, lactic acid / terephthalic acid / isophthalic acid / bisphenol A / p-hydroxybenzoic acid = 34 mol% / 4 mol% / 4 mol% / 8 mol% / 50 mol %Met.
Comparative Example 1
In an autoclave, a mixture of 266 g (50 mol%) of isophthalic acid, 365 g (50 mol%) of bisphenol A and 408 g of acetic anhydride was stirred in the autoclave while the temperature of the system was 140 ° C. while stirring. Acetylation reaction was performed by heating for a period of time. Subsequently, the temperature of the system was raised to 320 ° C., the pressure of the system was gradually reduced to 13 Pa after 1.5 hours, and a polycondensation reaction was performed while stirring. After 8 hours, the system was pressurized with nitrogen gas to discharge the resin in the form of a strand. After cooling with water, cutting was performed with a pelletizer to obtain a pelletized copolymer polyester.
When the resin composition of the obtained copolyester was examined, it was found to be isophthalic acid / bisphenol A = 50 mol% / 50 mol%.
Comparative Example 2
The performance of Cargill Dow polylactic acid 4031D was evaluated.

実施例1〜8で得られた共重合ポリ乳酸と、比較例1〜2の樹脂の各組成およびその特性値を表1に示した。   Table 1 shows the respective compositions and characteristic values of the copolymerized polylactic acid obtained in Examples 1 to 8 and the resins of Comparative Examples 1 and 2.

実施例および比較例から、本発明の共重合ポリ乳酸は、ポリ乳酸に比べて、ガラス転位温度が高く、耐熱性に優れた樹脂であった。
From the examples and comparative examples, the copolymerized polylactic acid of the present invention was a resin having a high glass transition temperature and excellent heat resistance compared to polylactic acid.

Claims (4)

乳酸からなる構成単位(A)と、芳香族カルボン酸成分(b1)、芳香族アルコール成分(b2)、および芳香族ヒドロキシカルボン酸成分(b3)の少なくとも一つの成分からなる芳香族ポリエステル構成単位(B)が、(A)/(B)=20/80〜95/5(モル比)の割合で共重合されてなることを特徴とする共重合ポリ乳酸。 A structural unit (A) comprising lactic acid and an aromatic polyester structural unit comprising at least one of an aromatic carboxylic acid component (b1), an aromatic alcohol component (b2), and an aromatic hydroxycarboxylic acid component (b3) ( B) is a copolymerized polylactic acid obtained by copolymerization at a ratio of (A) / (B) = 20/80 to 95/5 (molar ratio). ポリ乳酸を芳香族カルボン酸でアシドリシス後、芳香族アルコールと共に、アセチル化し、脱酢酸により縮重合することを特徴とする共重合ポリ乳酸の製造方法。 A method for producing a copolymerized polylactic acid, comprising: acidifying a polylactic acid with an aromatic carboxylic acid, then acetylating it with an aromatic alcohol and subjecting it to condensation polymerization by deacetic acid. ポリ乳酸を芳香族ヒドロキシカルボン酸でアシドリシス後、アセチル化し、脱酢酸により縮重合することを特徴とする共重合ポリ乳酸の製造方法。 A method for producing a copolymerized polylactic acid, characterized in that polylactic acid is acidified with an aromatic hydroxycarboxylic acid, then acetylated, and subjected to polycondensation by deacetic acid. ポリ乳酸を芳香族カルボン酸と芳香族ヒドロキシカルボン酸でアシドリシス後、芳香族アルコールと共に、アセチル化し、脱酢酸により縮重合することを特徴とする共重合ポリ乳酸の製造方法。
A method for producing a copolymerized polylactic acid, characterized in that polylactic acid is acidified with an aromatic carboxylic acid and an aromatic hydroxycarboxylic acid, then acetylated with an aromatic alcohol, and subjected to condensation polymerization by deacetic acid.
JP2004333260A 2004-11-17 2004-11-17 Copolymerized polylactic acid and process for producing the same Expired - Fee Related JP4694178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004333260A JP4694178B2 (en) 2004-11-17 2004-11-17 Copolymerized polylactic acid and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004333260A JP4694178B2 (en) 2004-11-17 2004-11-17 Copolymerized polylactic acid and process for producing the same

Publications (2)

Publication Number Publication Date
JP2006143810A true JP2006143810A (en) 2006-06-08
JP4694178B2 JP4694178B2 (en) 2011-06-08

Family

ID=36623880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004333260A Expired - Fee Related JP4694178B2 (en) 2004-11-17 2004-11-17 Copolymerized polylactic acid and process for producing the same

Country Status (1)

Country Link
JP (1) JP4694178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242444A (en) * 2008-03-28 2009-10-22 Toray Ind Inc Method for producing polylactic acid block copolymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225624A (en) * 1988-03-04 1989-09-08 Mitsubishi Gas Chem Co Inc Manufacture of copolyester
JPH07501102A (en) * 1991-11-21 1995-02-02 サザン・リサーチ・インスティテュート Polymers obtained from oxycarboxylic acids and polycarboxylic acids
JPH08100057A (en) * 1994-09-29 1996-04-16 Dainippon Ink & Chem Inc Production of lactic acid copolymer
JP2002338666A (en) * 2001-05-16 2002-11-27 Teijin Ltd Process for producing biodegradable copolyester
JP2002338669A (en) * 2001-05-14 2002-11-27 Nippon Ester Co Ltd Process for producing liquid crystal polyester
JP2005220203A (en) * 2004-02-04 2005-08-18 Hitachi Ltd Polymer synthesis apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225624A (en) * 1988-03-04 1989-09-08 Mitsubishi Gas Chem Co Inc Manufacture of copolyester
JPH07501102A (en) * 1991-11-21 1995-02-02 サザン・リサーチ・インスティテュート Polymers obtained from oxycarboxylic acids and polycarboxylic acids
JPH08100057A (en) * 1994-09-29 1996-04-16 Dainippon Ink & Chem Inc Production of lactic acid copolymer
JP2002338669A (en) * 2001-05-14 2002-11-27 Nippon Ester Co Ltd Process for producing liquid crystal polyester
JP2002338666A (en) * 2001-05-16 2002-11-27 Teijin Ltd Process for producing biodegradable copolyester
JP2005220203A (en) * 2004-02-04 2005-08-18 Hitachi Ltd Polymer synthesis apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242444A (en) * 2008-03-28 2009-10-22 Toray Ind Inc Method for producing polylactic acid block copolymer

Also Published As

Publication number Publication date
JP4694178B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP5370994B2 (en) Soluble copolyester resin
JP3669995B2 (en)   Method for producing biodegradable polyester polymer using compressed gas
Llevot et al. Renewable (semi) aromatic polyesters from symmetrical vanillin-based dimers
JP2010503736A (en) Process for the production of polyesters based on dianhydrohexitol
Rydz et al. Forensic engineering of advanced polymeric materials. Part 1–degradation studies of polylactide blends with atactic poly [(R, S)-3-hydroxybutyrate] in paraffin
KR20040030800A (en) Polyhydroxycarboxylic acid and its production process
CN108250368B (en) Biodegradable pressure-sensitive adhesive and preparation method thereof
CN109776809B (en) Easily-crosslinked biodegradable resin and preparation method thereof
Atkinson et al. Thermal Properties and Degradation Behavior of Linear and Branched Poly (L‐lactide) s and Poly (L‐lactide‐co‐glycolide) s
CN104769036A (en) Polymer composition
WO2004033528A1 (en) High-molecular aliphatic polyester and process for producing the same
JP4975296B2 (en) Polylactic acid copolymer resin and method for producing the same
JP2013032424A (en) Copolymerized polyester resin, and coating material and adhesive using the same
CN103237830B (en) The unsaturated polyester resin of modification by acid and alkoxide component with lactic acid replacement polyester
CN108559067B (en) Long-chain branched polymer type processing aid and preparation method and application thereof
JP2011190349A (en) Soluble copolymerized polyester resin
JP4694178B2 (en) Copolymerized polylactic acid and process for producing the same
JP7116169B2 (en) Lactic acid-glycolic acid copolymer and method for producing the same
Lee et al. Synthesis and enzymatic degradability of an aliphatic/aromatic block copolyester: poly (butylene succinate)-multi-poly (butylene terephthalate)
WO2016098642A1 (en) Polyoxalate copolymer
JP5048320B2 (en) Copolyester resin
Bloom et al. Highly renewable, thermoplastic tetrapolyesters based on hydroquinone, p‐hydroxybenzoic acid or its derivatives, phloretic acid, and dodecanedioic acid
JP5576687B2 (en) Soluble copolyester resin
JP5574605B2 (en) Method for producing aliphatic polyester
Fang et al. Synthesis, characterization and degradation of well-defined crosslinkable aliphatic polyesters end-capped by biomesogenic units

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees