JP2006143556A - Manufacturing method for artificial aggregate, and artificial aggregate - Google Patents

Manufacturing method for artificial aggregate, and artificial aggregate Download PDF

Info

Publication number
JP2006143556A
JP2006143556A JP2004339000A JP2004339000A JP2006143556A JP 2006143556 A JP2006143556 A JP 2006143556A JP 2004339000 A JP2004339000 A JP 2004339000A JP 2004339000 A JP2004339000 A JP 2004339000A JP 2006143556 A JP2006143556 A JP 2006143556A
Authority
JP
Japan
Prior art keywords
aggregate
raw material
mixed
coal ash
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004339000A
Other languages
Japanese (ja)
Inventor
Tomonobu Ueyasu
知伸 上保
Katsushi Ono
勝史 小野
Hiroyuki Ninomiya
浩行 二宮
Norifumi Nagata
憲史 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004339000A priority Critical patent/JP2006143556A/en
Publication of JP2006143556A publication Critical patent/JP2006143556A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for an artificial aggregate using coal ashes as a main raw material, by which method the artificial aggregate having such a low water absorption coefficient and such high strength properties as a natural aggregate has is economically manufactured. <P>SOLUTION: The coal ashes, which are a main raw material, and an adding-component controlling agent and/or a forming aid are together charged into a crusher, and subjected to mixing and crushing which are simultaneously operated. Then the mixed and crushed product, as it is or a formed product of the mixed and crushed product is fired in a rotary kiln. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、石炭灰を主原料とした人工骨材の製造方法及び人工骨材に関し、特に、低吸水率、高強度性を有する石炭灰を主原料とした人工骨材の製造方法及び人工骨材に関するものである。   TECHNICAL FIELD The present invention relates to a method for producing an artificial aggregate using coal ash as a main raw material and an artificial bone, and in particular, a method for producing an artificial aggregate and an artificial bone using coal ash having a low water absorption rate and high strength as a main raw material. It relates to materials.

電力需要の増大に伴い、石炭灰の発生量は年々増大傾向にある。これと合わせて、石炭灰の有効利用に関わる技術開発が様々な分野で取り組まれている。
例えば、石炭灰に種々の副原料を加えて、これを焼成して緻密化し、コンクリート用などの骨材として利用する試みも数多くなされている。
With the increase in power demand, the amount of coal ash generated is increasing year by year. In conjunction with this, technological development related to the effective use of coal ash is being addressed in various fields.
For example, many attempts have been made to add various auxiliary raw materials to coal ash and to sinter and densify them to use as aggregates for concrete.

骨材の需要は莫大であることから、大量に発生する石炭灰の有効利用先として大きな期待が寄せられているが、炭種やボイラの形式・構造等によって発生する石炭灰の化学組成が大きく相違するため、製造工程上その取扱いが難しいこと、また、石炭灰に含まれる未燃カーボンが骨材組織の緻密化を阻害するなどの問題もあり、石炭灰を主原料とした焼成型の人工骨材は、まだ大きく普及していないのが現状である。   The demand for aggregates is enormous, so there is great expectation as an effective use destination of coal ash generated in large quantities. However, the chemical composition of coal ash generated by the coal type and boiler type / structure is large. Due to differences, the handling process is difficult in the manufacturing process, and unburned carbon contained in coal ash hinders densification of the aggregate structure. Aggregate is not yet widely used.

焼成型の人工骨材を製造するにあたり、石炭灰の性状によって焼成方法、生産性は大きく左右される。特に影響を与える因子となるのは未燃カーボンの含有量及びシリカ含有量といっても過言ではなく、これらの多少によって焼成コントロールなどが難しく、安定運転の妨げと骨材品質のバラツキの原因となる。   In producing a fired artificial aggregate, the firing method and productivity are greatly affected by the properties of coal ash. It is not an exaggeration to say that the unburnt carbon content and the silica content are the factors that have a particularly influential effect.Some of these are difficult to control the firing, which hinders stable operation and causes variations in aggregate quality. Become.

未燃カーボンが骨材組繊の緻密化を阻害することの最大の原因は、該成分が焼成の際に高温帯で爆発的に燃焼する事による。骨材組織の焼結過程において該成分の燃焼が生じると、気泡となって存在することになるが、それだけではなく周辺組織に歪みを与える事で骨材の破壊を招くこととなる。
また、シリカ含有量が多い場合には、焼成温度の変化に対する軟化、融着を引き起こし易く、温度コントロールが困難なものとなる。
The biggest cause of the unburned carbon inhibiting the densification of the aggregate fabric is that the component explosively burns in the high temperature zone during firing. When the component is burned during the sintering process of the aggregate tissue, it will be present as bubbles, but not only that, but the surrounding tissue will be distorted, resulting in destruction of the aggregate.
Moreover, when there is much silica content, it becomes easy to cause softening and fusion | bonding with respect to the change of a calcination temperature, and temperature control will become difficult.

そこで、特許文献1には、石炭灰を粉砕してブレーン比表面積を所定値のものとし、また成分を調整する添加材を原料粉末に含有させ、所定の見掛け比重及び強度を有する造粒物を成形し、該造粒物を焼成することによって、高品質の人工骨材を製造しようとする技術が開示されている。   Therefore, Patent Document 1 discloses a granulated product having a predetermined apparent specific gravity and strength by pulverizing coal ash so that the specific surface area of the brain is a predetermined value, and an additive for adjusting the ingredients is contained in the raw material powder. A technique for producing a high-quality artificial aggregate by molding and firing the granulated product is disclosed.

特開昭61−163152号公報JP-A-61-163152

しかしながら、上記特許文献1に開示された技術は、焼成する造粒物の品質を均一なもとしているため、焼成工程自体は安定し、かつ均一な人工骨材を製造できると考えられるが、この技術においては、所定の見掛け比重及び強度を有する造粒物の成形が煩雑な作業となり、経済的な製造方法では無かった。また、主原料である石炭灰のみの粉砕では、低吸水率、高強度の骨材とするには、その効果は十分なものでは無かった。   However, since the technique disclosed in Patent Document 1 is based on uniform quality of the granulated material to be fired, it is considered that the firing process itself is stable and a uniform artificial bone can be produced. In the technology, molding of a granulated product having a predetermined apparent specific gravity and strength is a complicated operation and is not an economical manufacturing method. Moreover, the pulverization of only the coal ash, which is the main raw material, has not been effective enough to produce a low water absorption and high strength aggregate.

本発明は、上述した背景技術に鑑み成されたものであって、その目的は、石炭灰を主原料とした人工骨材の製造方法であって、天然骨材並みの低吸水率、高強度性を有する人工骨材を、経済的に製造する方法を提供することにある。   The present invention has been made in view of the background art described above, and its purpose is a method for producing an artificial aggregate using coal ash as a main raw material, and has a low water absorption rate and high strength comparable to natural aggregates. An object of the present invention is to provide a method for economically manufacturing an artificial aggregate having a property.

本発明者等は、上記した目的を達成すべく鋭意研究を重ねた結果、原料の焼結性を高めて天然骨材並みの低吸水率、高強度性を得るには、主原料である石炭灰を微細化するだけでは不十分であり、添加する成分調整剤及び/又は成形助剤をも併せて微細化することで、焼結性及び焼成安定性が飛躍的に向上することを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have obtained coal, which is the main raw material, in order to improve the sinterability of the raw material and obtain low water absorption and high strength comparable to natural aggregates. It is not enough to make the ash finer, and it is found that the sinterability and firing stability are dramatically improved by making the component modifier and / or molding aid to be added together. The present invention has been completed.

即ち、本発明の第一は、主原料である石炭灰とともに添加する成分調整剤を粉砕機に投入し、混合と粉砕との同時操作である混合粉砕を行った後、該混合粉砕物をそのままロータリーキルンによって焼成する人工骨材の製造方法を提供するものである。
また、本発明の第二は、主原料である石炭灰とともに添加する成分調整剤及び/又は成形助剤を粉砕機に投入し、混合と粉砕との同時操作である混合粉砕を行った後、該混合粉砕物を成形し、得られた成形物をロータリーキルンによって焼成する人工骨材の製造方法を提供するものである。
That is, in the first aspect of the present invention, a component modifier added together with coal ash as the main raw material is put into a pulverizer, mixed pulverization, which is a simultaneous operation of mixing and pulverization, and then the mixed pulverized product is left as it is. A method for producing an artificial aggregate to be fired by a rotary kiln is provided.
The second aspect of the present invention is to add a component modifier and / or a molding aid to be added together with coal ash as a main raw material to a pulverizer, and after performing mixed pulverization, which is a simultaneous operation of mixing and pulverization, An object of the present invention is to provide a method for producing an artificial aggregate in which the mixed pulverized product is molded and the obtained molded product is fired by a rotary kiln.

ここで、上記混合粉砕物は、平均粒径が15μm以下であり、かつ88μm篩上残分が5質量%以下であることが好ましい。また、上記成分調整剤及び/又は成形助剤の添加量は、1〜20質量%であることが好ましい。   Here, it is preferable that the mixed pulverized product has an average particle size of 15 μm or less and a residue on the 88 μm sieve is 5% by mass or less. Moreover, it is preferable that the addition amount of the said component regulator and / or shaping | molding adjuvant is 1-20 mass%.

また、本発明は、上記本発明の方法によって製造された人工骨材であって、絶乾密度が1.5g/cm3以上、2.3g/cm3以下で、24時間吸水率が0.1質量%以上、5質量%以下で、直径が5mmから10mmの骨材の圧壊荷重が0.5kN以上、または、直径が10mmから15mmの骨材の圧壊荷重が1.0kN以上である人工骨材を提供するものである。 Further, the present invention is an artificial aggregate produced by the method of the present invention described above, having an absolutely dry density of 1.5 g / cm 3 or more and 2.3 g / cm 3 or less, and a 24-hour water absorption of 0. An artificial bone having a mass of 1 to 5% by mass and an aggregate having a diameter of 5 mm to 10 mm having a crushing load of 0.5 kN or more, or an aggregate having a diameter of 10 to 15 mm having a crushing load of 1.0 kN or more. The material is provided.

上記した本発明に係る人工骨材の製造方法によれば、主原料である石炭灰のみを粉砕するのではなく、石炭灰とともに、添加する成分調整剤及び/又は成形助剤をも粉砕機に投入し、混合と粉砕との同時操作である混合粉砕を行うこととしたため、原料の均質性が増し、このことによって焼結性、及び焼成安定性が飛踵的に向上し、低吸水率、高強度な人工骨材を、生産性よく製造することができる効果がある。   According to the above-described method for producing an artificial aggregate according to the present invention, not only the coal ash that is the main raw material is pulverized, but also the component modifier and / or molding aid to be added to the pulverizer together with the coal ash. Since the mixing and pulverization, which is a simultaneous operation of mixing and pulverization, is performed, the homogeneity of the raw materials is increased, and this improves the sinterability and firing stability dramatically, and has a low water absorption rate. There is an effect that a high-strength artificial aggregate can be manufactured with high productivity.

また、上記した本発明に係る人工骨材によれば、天然骨材と遜色のない高強度、低吸水率の骨材であるため、コンクリートの骨材として好適に使用でき、しかも、石炭火力発電所等からの廃棄物である石炭灰を主原料とするため、廃棄物の有効利用と言う観点からも優れた効果を奏する発明となる。   Further, according to the above-described artificial aggregate according to the present invention, since it is an aggregate having high strength and low water absorption that is comparable to natural aggregate, it can be suitably used as a concrete aggregate, and further, coal-fired power generation Since coal ash, which is waste from a place, is used as a main raw material, the invention has an excellent effect from the viewpoint of effective use of waste.

以下、上記した本発明に係る人工骨材の製造方法及び人工骨材の実施の形態を、詳細に説明する。   Hereinafter, embodiments of the method for manufacturing an artificial bone and the artificial bone according to the present invention will be described in detail.

本発明で使用する石炭灰は、石炭火力発電所等から排出されるものであって、電気集塵機などで回収されるフライアッシュやPFBC灰のことを言う。これらの石炭灰中には、未燃カーボンが含まれており、該未燃カーボンは、焼成過程で燃焼するが、燃焼の際に骨材中に気泡を発生させたり、極端な場合には爆裂させるなどの問題を生じさせるため、通常、未燃カーボンはできるだけ少ないほうが好ましいとされているが、本発明では、後述するように原料を混合粉砕して微細化するため、石炭灰中に取り込まれた未燃カーボンは表面に露出して燃焼し易くなり、脱カーボン反応は比較的低温帯で速やかに進行し、ペレットが高温帯に至るまで未燃カーボンが残存することがなく、結果として、高温帯での爆発的な燃焼が起きなくなる。従って、本発明で使用する石炭灰には、未燃カーボンに対する規制は設ける必要はない。   The coal ash used in the present invention is discharged from a coal-fired power plant or the like, and refers to fly ash or PFBC ash collected by an electric dust collector or the like. These coal ash contains unburned carbon, and the unburned carbon burns during the firing process, but it generates bubbles in the aggregate during combustion, and in extreme cases it is explosive. In general, it is preferable that the amount of unburned carbon is as small as possible. However, in the present invention, the raw material is mixed and pulverized and refined as described later, so that it is incorporated into coal ash. The unburned carbon is exposed to the surface and easily burns, and the decarbonization reaction proceeds quickly in a relatively low temperature zone, and the unburned carbon does not remain until the pellet reaches the high temperature zone. Explosive combustion in the belt will not occur. Therefore, the coal ash used in the present invention does not need to be regulated for unburned carbon.

また、本発明においては、上記石炭灰に、少なくとも成分調整剤及び/又は成形助剤を添加し、その化学組成を調整する。   In the present invention, at least a component modifier and / or a molding aid is added to the coal ash to adjust its chemical composition.

上記成分調整剤は、石炭灰の焼結性を向上させるために添加するものであって、使用する石炭灰の化学組成に応じて、種々の成分調整剤が添加される。
主要な成分調整剤としては、ケイ石、粘土、アルミナ、石灰石、ドロマイト等の種々の鉱物資源、或いはその加工品が挙げられる。また所望の成分が必要量含有されているものであれば、アルミ灰、ごみ焼却灰や下水汚泥焼却灰などの各種焼却灰、建設発生土等の廃棄物も使用できる。
The said component regulator is added in order to improve the sinterability of coal ash, and various component regulators are added according to the chemical composition of the coal ash to be used.
Examples of main component modifiers include various mineral resources such as silica, clay, alumina, limestone, and dolomite, or processed products thereof. Moreover, as long as a desired amount is contained, various incineration ash such as aluminum ash, garbage incineration ash and sewage sludge incineration ash, and waste such as construction generated soil can be used.

また、原料を粉末状態で焼成するのではなく、転動造粒や攪拌造粒、或いは押出し成形や加圧成形などの何らかの成形手段により、原料粉末を成形して焼成する場合には、成形性を付与するために石炭灰に成形助剤を添加する。
この成形助剤としては、各種の粘土鉱物を始め、各種セメントや石膏、ケイ酸ナトリウム、或いは有機質のバインダーやパルプ製造時に廃液に含まれるリグニンなどが挙げられる。
なお、粘土やセメントなどの無機質の成形助剤は、その化学成分から成分調整剤の機能を果たすものもあり、これらの添加によって石炭灰の成分調整がなされるのであれば、敢えて上記した成分調整剤を加える必要は無い。
In addition, when the raw material powder is molded and fired by some shaping means such as rolling granulation, stirring granulation, extrusion molding or pressure molding, instead of firing the raw material in a powder state, the moldability In order to impart the above, a molding aid is added to the coal ash.
Examples of the molding aid include various clay minerals, various cements and gypsum, sodium silicate, organic binders, and lignin contained in waste liquid during pulp production.
In addition, some inorganic molding aids such as clay and cement perform the function of component adjusters from their chemical components. If these components can be used to adjust the components of coal ash, the component adjustment described above is intentionally made. There is no need to add any agent.

上記した成分調整剤、或るいは成形助剤の添加量は、使用する石炭灰の性状に応じて決定されるが、推奨される添加量は、1〜20質量%であり、3〜17質量%がなお好ましい。
これは、1質量%に満たない添加量では、造粒物の緻密化が不十分となり、低吸水率、高強度の骨材が得られないためであり、逆に20質量%を越える量を添加すると、石炭灰の使用量が低滅してしまい、廃棄物の有効利用という観点から好ましくない。
The addition amount of the above-described component modifier or molding aid is determined according to the properties of the coal ash used, but the recommended addition amount is 1 to 20% by mass, and 3 to 17% by mass. % Is still preferred.
This is because if the addition amount is less than 1% by mass, the granulated product becomes insufficiently densified, and a low water absorption and high strength aggregate cannot be obtained. If added, the amount of coal ash used is reduced, which is not preferable from the viewpoint of effective use of waste.

本発明においては、上記骨材原料である石炭灰と、成分調整剤及び/又は成形助剤とを混合粉砕する。即ち、本発明では、主原料である石炭灰のみを粉砕するのではなく、石炭灰とともに添加する成分調整剤及び/又は成形助剤をも粉砕機に投入し、混合と粉砕との同時操作である混合粉砕を行う。
これは、混合粉砕することで、原料粉末の均質性が増し、このことによって焼結性が向上し、また焼成安定性も飛踵的に向上するためである。
In the present invention, the coal ash that is the aggregate raw material is mixed and pulverized with the component adjusting agent and / or the molding aid. That is, in the present invention, not only the coal ash as the main raw material is pulverized, but also component adjusting agents and / or molding aids added together with the coal ash are introduced into the pulverizer, and simultaneous operation of mixing and pulverization can be performed. Do some mixing and grinding.
This is because mixing and grinding increases the homogeneity of the raw material powder, which improves the sinterability and also improves the firing stability dramatically.

上記混合粉砕による石炭灰と成分調整剤及び/又は成形助剤の粉末度は、平均粒子経で15μm以下であり、かつ88μm篩上残分が5質量%以下となるように混合粉砕することが好ましい。
これは、平均粒子径が15μmを越える場合には、焼結性が十分には向上せず、また、88μm篩上残分が5質量%を越える場合にも、同様に焼結性の促進は望めないためである。焼結性や焼結安定性を十分に向上させるには、平均粒子径が12μm以下、88μm篩上残分が2質量%以下となるように混合粉砕することがより好ましい。
The fineness of the coal ash and the component modifier and / or the molding aid by the above-mentioned mixed pulverization may be mixed and pulverized so that the average particle size is 15 μm or less and the residue on the 88 μm sieve is 5% by mass or less. preferable.
This is because when the average particle size exceeds 15 μm, the sinterability is not sufficiently improved, and when the residue on the 88 μm sieve exceeds 5% by mass, the sinterability is promoted similarly. It is because it cannot be expected. In order to sufficiently improve the sinterability and sintering stability, it is more preferable to carry out mixing and pulverization so that the average particle size is 12 μm or less and the residue on the 88 μm sieve is 2 mass% or less.

上記石炭灰と成分調整剤及び/又は成形助剤の混合粉砕は、上記の粉末度が実現できる粉砕機であるならばとくに限定されるものではなく、バッチ式、連続式のボールミルを始め、ロッドミル、媒体撹拝式ミル、ローラ式の縦型ミルなど種々の混合粉砕手段を用いることができる。   The mixing and pulverization of the coal ash and the component modifier and / or the forming aid is not particularly limited as long as the pulverizer can achieve the above fineness, and includes a batch type and continuous type ball mill, a rod mill, and the like. Various mixing and grinding means such as a medium stirring mill and a roller type vertical mill can be used.

上記ようにして混合粉砕された原料は、そのままロータリーキルンに投入して焼成することができる。
一般に、焼結が進行した粒状、或いは塊状の焼成物を得るには、粉末焼成では困難といわれているが、本発明では、上記したように混合粉砕によって原料粉末の焼結性を、微細化と均質化によって高めているため、粉末状態のままでも十分に焼成できる点も大きな特徴である。
The raw material mixed and pulverized as described above can be directly put into a rotary kiln and fired.
In general, it is said that powder sintering is difficult to obtain a granular or massive sintered product that has been sintered, but in the present invention, as described above, the sinterability of the raw material powder is refined by mixing and grinding. It is also a great feature that it can be sufficiently fired even in a powder state.

また、製品の形状や粒度を任意にコントロールしたい場合には、原料系に上記した成形助剤を添加し、混合粉砕した後、転動造粒や攪拌造粒、或いは押出し成形や加圧成形などの種々の成形手段によって所望の成形体とし、該成形体をロータリーキルンに投入して焼成する。   Also, if you want to control the shape and particle size of the product arbitrarily, add the above-mentioned forming aid to the raw material system, mix and pulverize, then roll granulation, stirring granulation, extrusion molding, pressure molding, etc. A desired molded body is formed by the various molding means, and the molded body is put into a rotary kiln and fired.

焼成には、上記したようにロータリーキルンを使用する。ロータリーキルンは、安定した品質の骨材が連続して得られ易く、工業生産に向いていることに加え、上記した混合粉砕によって原料の微細化と均質化が高められているため、極めて安定的に骨材を製造することが可能となる。   A rotary kiln is used for firing as described above. The rotary kiln is extremely stable because it is easy to obtain stable quality aggregates continuously and is suitable for industrial production, as well as the refinement and homogenization of raw materials by the above-mentioned mixing and grinding. Aggregates can be manufactured.

このときの焼成温度は、使用する原料の熱的特性、とりわけ主成分である石炭灰の性状によって左右されるが、通常、1100〜1400℃が好ましい。
これは、焼成温度が1100℃未満では、十分な焼結反応が進まず、所望品質の骨材が得られないためであり、逆に1400℃を越えると、混合原料が溶融してしまい、運転に支障をきたすために好ましくない。
The firing temperature at this time depends on the thermal characteristics of the raw materials used, particularly the properties of the main component, coal ash, but usually 1100 to 1400 ° C. is preferred.
This is because when the firing temperature is less than 1100 ° C., a sufficient sintering reaction does not proceed and an aggregate of desired quality cannot be obtained. Conversely, when the firing temperature exceeds 1400 ° C., the mixed raw material is melted and the operation is continued. This is not preferable because it causes trouble.

ここで使用するロータリーキルンは、セメント焼成キルンのような排気系にサイクロンなどの原料循環予熱設備、プレヒーター、廃熱ボイラー等を付設していても、していなくても良い。また、燃料としては、重油、微粉炭、再生油、LPG、NPGなど一般的に用いられているものであれば、単体或いは混焼で使用しても良く、所定の焼成温度になるよう焚き込み量を調整する。近年、セメントキルンにおいては、廃プラスチックや廃タイヤなどが、燃料代替として用いられているが、そのようなものが燃料の一部として使用されていても良い。   The rotary kiln used here may or may not be provided with a material circulation preheating facility such as a cyclone, a preheater, a waste heat boiler, etc., in an exhaust system such as a cement firing kiln. Further, as fuel, if it is generally used, such as heavy oil, pulverized coal, regenerated oil, LPG, NPG, etc., it may be used alone or in a mixed firing, and the amount of squeezing so as to reach a predetermined firing temperature Adjust. In recent years, in cement kilns, waste plastics, waste tires, and the like have been used as fuel substitutes, but such ones may be used as part of the fuel.

上記のようなロータリーキルンによる混合粉砕原料の焼成によって、絶乾密度が1.5g/cm3以上、2.3g/cm3以下で、24時間吸水率が0.1質量%以上、5質量%以下で、直径5〜10mmの骨材の圧壊荷重が0.5kN以上、または、直径10〜15mmの骨材の圧壊荷重が1.0kN以上の人工骨材が得られ、これは、天然骨材と遜色のない高強度、低吸水率の骨材である。 By firing the mixed pulverized raw material by the rotary kiln as described above, the absolute dry density is 1.5 g / cm 3 or more and 2.3 g / cm 3 or less, and the 24-hour water absorption is 0.1 mass% or more and 5 mass% or less. Thus, an artificial aggregate having a crushing load of 5 to 10 mm in diameter of 0.5 kN or more or a crushing load of 10 to 15 mm in diameter of 1.0 kN or more is obtained. It is a high strength, low water absorption aggregate that is inferior.

以下、本発明の実施例を、比較例と共に説明する。   Examples of the present invention will be described below together with comparative examples.

表1に示す石炭灰A,Bを使用し、成分調整剤として普通ボルトランドセメント(表中「OPC」と表示。)、成形助剤としてベントナイトを添加して、表2に示す配合及び粉末度の原料を調製した。なお、原料の混合粉砕、或いは石炭灰のみ粉砕は、ボールミル(直径1.5m、長さ5m)を用いて行った。   Using coal ash A and B shown in Table 1, ordinary boltland cement (labeled as “OPC” in the table) as a component modifier, bentonite as a molding aid, and the formulation and fineness shown in Table 2 The raw materials were prepared. The raw materials were mixed and pulverized, or only the coal ash was pulverized using a ball mill (diameter 1.5 m, length 5 m).

Figure 2006143556
Figure 2006143556

Figure 2006143556
Figure 2006143556

上記配合及び粉末度に調整した原料を、それぞれ電気炉によりその易焼成性(最高密度と低吸水となる焼成温度幅)を確認した。
この電気炉試験における焼成温度に対する密度と吸水率との関係を、図1及び図2に示す。
The raw materials adjusted to the above-mentioned blending and fineness were each confirmed with an electric furnace for easy calcination (the maximum density and the calcination temperature range with low water absorption).
The relationship between the density and the water absorption rate with respect to the firing temperature in this electric furnace test is shown in FIGS.

図1から明らかなように、焼成温度の上昇に伴い絶乾密度も上昇し、極大点を経た後下降する。本発明では絶乾密度の範囲を1.5g/cm3以上、2.3g/cm3以下としているが、この密度範囲を実現する温度領域(図中「a」℃〜「b」℃)が絶乾密度を基準とした焼成温度幅となる。 As is clear from FIG. 1, the absolute dry density increases as the firing temperature increases, and decreases after passing through the maximum point. In the present invention, the absolute dry density range is 1.5 g / cm 3 or more and 2.3 g / cm 3 or less, and the temperature range (“a” ° C. to “b” ° C. in the figure) for realizing this density range is provided. The firing temperature range is based on the absolute dry density.

−方、24時間吸水率は図2の通りであり、焼成温度の上昇とともに低下し、或る温度域にて融着する(図中「d」℃)。本発明では24時間吸水率の範囲を0.1質量%以上、5質量%以下としているが、上限値の温度(「c」℃)から融着するときの温度(「d」℃)が24時間吸水率を基準とした焼成温度幅となる。   On the other hand, the 24-hour water absorption is as shown in FIG. 2, which decreases with an increase in the firing temperature and fuses in a certain temperature range (“d” ° C. in the figure). In the present invention, the range of the 24-hour water absorption is 0.1% by mass or more and 5% by mass or less, but the temperature (“d” ° C.) when fusing from the upper limit temperature (“c” ° C.) is 24. The firing temperature range is based on the time water absorption rate.

上述の如く、焼成温度幅は2つの基準から求められるが、最終的な焼成温度幅は以下に従って決定した。

焼成温度の下限 : 「a」℃又は「c」℃の高い方
焼成温度の上限 : 「b」℃又は「d」℃の低い方
焼成温度幅 : 焼成温度の上限−焼成温度の下限

上記の基準で決定した、各原料の焼成温度幅、及びこの電気炉試験により得られた各原料の最高絶乾密度を、表3に記載する。
As described above, the firing temperature range can be obtained from two criteria, and the final firing temperature range was determined as follows.

Lower limit of firing temperature: higher “a” ° C. or “c” ° C.
Upper limit of firing temperature: lower of “b” ° C. or “d” ° C.
Firing temperature range: Upper limit of firing temperature-Lower limit of firing temperature

Table 3 shows the firing temperature range of each raw material and the maximum dry density of each raw material obtained by this electric furnace test, determined according to the above criteria.

調製された原料を粉末のまま、或いはパンペレタイザー(直径1.8m、パンの深さ60cm)で粒径10〜30mmに成形し、直径1.5m、長さ20mのロータリーキルンを用いて焼成した。なお、成形した原料については、表2中「有」と表記し、粉末のまま投入したものについては、表2中「無」と表記した。   The prepared raw material was molded into a particle size of 10 to 30 mm as a powder or with a bread pelletizer (diameter 1.8 m, bread depth 60 cm), and fired using a rotary kiln having a diameter of 1.5 m and a length of 20 m. In addition, about the raw material which shape | molded, it described as "Yes" in Table 2, and about what was thrown in with powder, it described as "No" in Table 2.

得られた焼成ペレットの絶乾密度及び24時間吸水率を、JIS A 1135に準じた方法で測定し、さらに圧壊荷重を、JIS Z 8841に準じた方法で測定した。
なお、圧壊荷重試験に供したペレットは、直径10〜15mmの粒群を使用した。
各原料から得られた焼成ペレットの絶乾密度及び24時間吸水率、及び圧壊荷重の測定結果を、表3に併記する。
The absolutely dry density and 24-hour water absorption rate of the obtained fired pellets were measured by a method according to JIS A 1135, and the crushing load was measured by a method according to JIS Z 8841.
In addition, the particle | grain group with a diameter of 10-15 mm was used for the pellet used for the crushing load test.
Table 3 shows the measurement results of the absolute dry density, 24-hour water absorption rate, and crushing load of the fired pellets obtained from each raw material.

Figure 2006143556
Figure 2006143556

本発明に係る実施例、即ち、原料の混合粉砕を行った実施例1〜6では、焼成温度幅が広く、高密度、低吸水且つ高強度な人工骨材を得られることが確認された。
さらには、原料投入量が比較例と比して2倍程度となった。このような生産性の向上は、原料の混合粉砕コストを考慮しても、十分に余りありものであり、本発明の製造方法の有効性が確認された。
一方、原料の混合粉砕を行わなかった比較例1a〜6bでは、焼成温度幅が極めて狭く、頻繁な融着などの問題から安定運転が困難であり、いずれも低吸水、高強度化を達成する事は出来なかった。
In the examples according to the present invention, that is, in Examples 1 to 6 in which the raw materials were mixed and pulverized, it was confirmed that an artificial bone material having a wide firing temperature range, high density, low water absorption and high strength could be obtained.
Furthermore, the amount of raw material input was about twice that of the comparative example. Such an improvement in productivity is sufficient even when considering the cost of mixing and grinding the raw materials, and the effectiveness of the production method of the present invention was confirmed.
On the other hand, in Comparative Examples 1a to 6b in which the raw materials were not mixed and pulverized, the firing temperature range was extremely narrow, and stable operation was difficult due to problems such as frequent fusion, and both achieved low water absorption and high strength. I couldn't do it.

以上、本発明の実施例を比較例と共に記載したが、本発明は、何ら既述の実施例に限定されるものではなく、特許請求の範囲に記載した本発明の技術的思想の範囲内で、種々の変形、変更が可能であることは当然である。   As mentioned above, although the Example of this invention was described with the comparative example, this invention is not limited to the above-mentioned Example at all, and within the range of the technical idea of this invention described in the claim Of course, various modifications and changes are possible.

電気炉試験における焼成温度に対する絶乾密度の関係を概念的に示したグラフである。It is the graph which showed notionally the relationship of the absolute dry density with respect to the calcination temperature in an electric furnace test. 電気炉試験における焼成温度に対する24時間吸水率の関係を概念的に示したグラフである。It is the graph which showed notionally the relationship of the 24-hour water absorption with respect to the calcination temperature in an electric furnace test.

Claims (5)

主原料である石炭灰とともに添加する成分調整剤を粉砕機に投入し、混合と粉砕との同時操作である混合粉砕を行った後、該混合粉砕物をそのままロータリーキルンによって焼成することを特徴とする、人工骨材の製造方法。   A component modifier added together with coal ash which is the main raw material is put into a pulverizer, mixed pulverization which is a simultaneous operation of mixing and pulverization is performed, and then the mixed pulverized product is directly fired by a rotary kiln The manufacturing method of artificial aggregate. 主原料である石炭灰とともに添加する成分調整剤及び/又は成形助剤を粉砕機に投入し、混合と粉砕との同時操作である混合粉砕を行った後、該混合粉砕物を成形し、得られた成形物をロータリーキルンによって焼成することを特徴とする、人工骨材の製造方法。   The component adjuster and / or molding aid added together with the coal ash as the main raw material is put into a pulverizer, mixed and pulverized, which is a simultaneous operation of mixing and pulverization, and then the mixed pulverized product is molded and obtained. A method for producing an artificial aggregate, characterized in that the formed product is fired by a rotary kiln. 上記混合粉砕物が、平均粒径が15μm以下であり、かつ88μm篩上残分が5質量%以下であることを特徴とする、請求項1又は2に記載の人工骨材の製造方法。   The method for producing an artificial bone material according to claim 1 or 2, wherein the mixed pulverized product has an average particle diameter of 15 µm or less and a residue on the 88 µm sieve of 5 mass% or less. 上記成分調整剤及び/又は成形助剤の添加量が、1〜20質量%であることを特徴とする、請求項1〜3のいずれかに記載の人工骨材の製造方法。   The method for producing an artificial bone material according to any one of claims 1 to 3, wherein the additive amount of the component modifier and / or the molding aid is 1 to 20% by mass. 請求項1〜4のいずれかに記載の方法によって製造された人工骨材であって、絶乾密度が1.5g/cm3以上、2.3g/cm3以下で、24時間吸水率が0.1質量%以上、5質量%以下で、直径が5mmから10mmの骨材の圧壊荷重が0.5kN以上、または、直径が10mmから15mmの骨材の圧壊荷重が1.0kN以上であることを特徴とする、人工骨材。
An artificial aggregate produced by the method according to any one of claims 1 to 4, wherein the absolute dry density is 1.5 g / cm 3 or more and 2.3 g / cm 3 or less, and the water absorption rate for 24 hours is 0. .1 mass% or more and 5 mass% or less, the crushing load of the aggregate having a diameter of 5 mm to 10 mm is 0.5 kN or more, or the crushing load of the aggregate having a diameter of 10 mm to 15 mm is 1.0 kN or more. An artificial aggregate characterized by
JP2004339000A 2004-11-24 2004-11-24 Manufacturing method for artificial aggregate, and artificial aggregate Pending JP2006143556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004339000A JP2006143556A (en) 2004-11-24 2004-11-24 Manufacturing method for artificial aggregate, and artificial aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004339000A JP2006143556A (en) 2004-11-24 2004-11-24 Manufacturing method for artificial aggregate, and artificial aggregate

Publications (1)

Publication Number Publication Date
JP2006143556A true JP2006143556A (en) 2006-06-08

Family

ID=36623675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339000A Pending JP2006143556A (en) 2004-11-24 2004-11-24 Manufacturing method for artificial aggregate, and artificial aggregate

Country Status (1)

Country Link
JP (1) JP2006143556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205701A (en) * 2010-03-10 2011-10-05 精工爱普生株式会社 Heater unit and liquid ejection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913660A (en) * 1982-07-08 1984-01-24 宇部興産株式会社 Manufacture of artificial lightweight aggregate
JPH06263495A (en) * 1993-03-12 1994-09-20 Onoda Cement Co Ltd Production of lightweight aggregate
JPH1029841A (en) * 1996-07-16 1998-02-03 Sumitomo Metal Mining Co Ltd Production of artificial aggregate
JPH10194804A (en) * 1997-01-14 1998-07-28 Sumitomo Metal Mining Co Ltd Production of artificial aggregate
JP2001163646A (en) * 1999-12-10 2001-06-19 Nippon Matekusu Kk Artificial aggregate using coal ash as main raw material and producing method thereof
JP2003226563A (en) * 2002-02-05 2003-08-12 Taiheiyo Cement Corp Artificial aggregate and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913660A (en) * 1982-07-08 1984-01-24 宇部興産株式会社 Manufacture of artificial lightweight aggregate
JPH06263495A (en) * 1993-03-12 1994-09-20 Onoda Cement Co Ltd Production of lightweight aggregate
JPH1029841A (en) * 1996-07-16 1998-02-03 Sumitomo Metal Mining Co Ltd Production of artificial aggregate
JPH10194804A (en) * 1997-01-14 1998-07-28 Sumitomo Metal Mining Co Ltd Production of artificial aggregate
JP2001163646A (en) * 1999-12-10 2001-06-19 Nippon Matekusu Kk Artificial aggregate using coal ash as main raw material and producing method thereof
JP2003226563A (en) * 2002-02-05 2003-08-12 Taiheiyo Cement Corp Artificial aggregate and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205701A (en) * 2010-03-10 2011-10-05 精工爱普生株式会社 Heater unit and liquid ejection device
CN102205701B (en) * 2010-03-10 2015-03-04 精工爱普生株式会社 Heater unit and liquid ejection device

Similar Documents

Publication Publication Date Title
KR101941328B1 (en) Production method for cement composition
CA1332286C (en) Method of refining oxide nickel ore or the like
JPS61163152A (en) Manufacture of artificial lightweight aggregate
JP2007261880A (en) Sintered matter production method
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
JP2000143307A (en) Method for producing artificial aggregate and artificial aggregate produced by the same method
JPH0977543A (en) Artificial lightweight aggregate and its production
JP2006143556A (en) Manufacturing method for artificial aggregate, and artificial aggregate
JP7212553B2 (en) Cement manufacturing method
JP4377256B2 (en) Manufacturing method of artificial lightweight aggregate
JP6859804B2 (en) Sludge and powder treatment method, cement clinker manufacturing method and cement manufacturing method
JP4509269B2 (en) Artificial aggregate and method for producing the same
JP7372215B2 (en) Composition for fired body and method for producing fired body using the same
JP4315841B2 (en) Artificial aggregate firing method and firing apparatus
JP2007269549A (en) Method of producing artificial aggregate
JP2007261887A (en) Method and apparatus for manufacturing artificial aggregate
JP4579063B2 (en) Method for producing conglomerate-like artificial rock
JP2005219974A (en) Method of firing artificial aggregate
JPS5913660A (en) Manufacture of artificial lightweight aggregate
JP6692877B2 (en) Molded fuel, manufacturing method thereof, and calcination method of limestone
JP3635288B2 (en) Manufacturing method of artificial lightweight aggregate
JP2005255515A (en) Method for manufacturing sintered compact
JP2008156197A (en) Method for producing fired material
JP3369687B2 (en) Fly ash artificial aggregate
KR101945111B1 (en) Utility bead using coal ash and carbon powder and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629