JP2006142148A - Fluorine and nitrate nitrogen-containing wastewater treatment method - Google Patents

Fluorine and nitrate nitrogen-containing wastewater treatment method Download PDF

Info

Publication number
JP2006142148A
JP2006142148A JP2004332775A JP2004332775A JP2006142148A JP 2006142148 A JP2006142148 A JP 2006142148A JP 2004332775 A JP2004332775 A JP 2004332775A JP 2004332775 A JP2004332775 A JP 2004332775A JP 2006142148 A JP2006142148 A JP 2006142148A
Authority
JP
Japan
Prior art keywords
fluorine
nitrate nitrogen
sulfur
wastewater
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004332775A
Other languages
Japanese (ja)
Other versions
JP4541110B2 (en
Inventor
Katsuhiro Yamada
勝弘 山田
Yasuhiro Hirato
靖浩 平戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2004332775A priority Critical patent/JP4541110B2/en
Publication of JP2006142148A publication Critical patent/JP2006142148A/en
Application granted granted Critical
Publication of JP4541110B2 publication Critical patent/JP4541110B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove nitrate nitrogen and fluorine at the same time from wastewater containing hydrofluoric acid and nitric acid, or their ions. <P>SOLUTION: Fluorine and nitrate nitrogen-containing wastewater where the concentrations of the fluorine and nitrate nitrogen are 10-50,000 ppm, and their ratio (F/N weight ratio) is 0.1-1.4 is left in contact with an integrated wastewater treatment material containing 20-80 pts.wt. sulfur and 80-20 pts.wt. alkaline earth metal carbonate in presence of sulfur-oxidizing bacteria until the fluorine and nitrate nitrogen is removed by ≥70%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、生物化学的処理によって被処理液中の硝酸性窒素を除去すると同時に、フッ素を除去する方法に関するものである。   The present invention relates to a method for removing fluorine at the same time as removing nitrate nitrogen in a liquid to be treated by biochemical treatment.

一般にステンレスをはじめとする金属表面の洗浄などの表面処理液には、その効果を大きくするために硝酸とフッ酸が同時に使用されている。それらは、非常に有害であることから、近年、環境基準や排水基準は徐々に強化されており、適切に処理されなければならない。一般に、それらの排水は、前段のフッ素処理工程と後段の脱窒処理工程に分けられている。フッ素処理工程は、物理化学的なフッ化カルシウム法が主流であり、脱窒処理工程は、物理化学的方法と生物化学的方法がある。   In general, nitric acid and hydrofluoric acid are used at the same time in a surface treatment solution for cleaning metal surfaces including stainless steel in order to increase the effect. Since they are very harmful, in recent years, environmental standards and drainage standards have been gradually strengthened and must be handled appropriately. In general, the waste water is divided into a front-stage fluorine treatment process and a rear-stage denitrification process. As the fluorine treatment process, the physicochemical calcium fluoride method is the mainstream, and the denitrification treatment process includes a physicochemical method and a biochemical method.

フッ化カルシウム法は、まず排水が石灰処理されて、排水のpHをアルカリ側にすることによりフッ素をフッ化カルシウムとし、同時に重金属は水酸化物とすることでそれぞれスラリー化される。さらに凝集剤を投入したのち、ろ過またはフィルタープレス等でケーキ状にされて除去される。それらは適切に産廃処理またはリサイクルされる。次に、ろ過された排水は、酸やアルカリを添加して中和処理されたのち、イオン交換や電気分解、電気透析等の物理化学的処理または従属栄養細菌や独立栄養細菌を用いた生物化学的処理によって硝酸性窒素が除去されることになる。
本発明でいう硝酸性窒素は、NO3 -、NO2 -またはこれらのイオンを生じうるこれらの塩の窒素を意味する。本発明でいうフッ素は、F-またはF-イオンを生じうるフッ酸塩のフッ素を意味する。
In the calcium fluoride method, the waste water is first lime-treated, and the pH of the waste water is set to the alkali side, whereby fluorine is converted to calcium fluoride, and at the same time the heavy metal is converted to a hydroxide to be slurried. Further, after adding a flocculant, it is removed by being made into a cake by filtration or a filter press. They are properly disposed of or recycled. Next, the filtered wastewater is neutralized by adding acid or alkali, then physicochemical treatment such as ion exchange, electrolysis, electrodialysis, or biochemistry using heterotrophic bacteria or autotrophic bacteria. Nitrate nitrogen will be removed by mechanical treatment.
The nitrate nitrogen as used in the present invention means NO 3 , NO 2 or nitrogen of these salts capable of producing these ions. Fluorine as used in the present invention means a fluorine salt of a hydrofluoric acid salt that can generate F - or F - ions.

ここでフッ化カルシウム法については、石灰粉を投入するということから、粉はダマになりやすく、従って分散が難しく石灰粉の添加効率が悪くなりやすい。そのため、フッ素イオンの排水基準値(地域により異なるが、10ppm前後)を満足させるためには、多量の石灰粉を投入して排水を弱アルカリ側にさせる必要が生じる。フッ素を除去するためにそのような煩雑な工程が必要であり、また発生するスラッジ量、つまり産廃量が多いなど問題点がいくつか残されている。   Here, with respect to the calcium fluoride method, since lime powder is added, the powder tends to become lumpy, and therefore, it is difficult to disperse and the efficiency of adding lime powder tends to deteriorate. Therefore, in order to satisfy the drainage standard value of fluorine ions (depending on the region, around 10 ppm), it is necessary to add a large amount of lime powder to make the wastewater a weak alkali side. In order to remove fluorine, such a complicated process is necessary, and some problems such as a large amount of generated sludge, that is, a large amount of industrial waste remain.

次に脱窒処理方法としては、下記特許文献1〜4には、硫黄/炭酸カルシウムと硫黄酸化細菌を使用する生物化学的な方法で硝酸性窒素が効果的にできる技術が開示されている。この方法は、硫黄と炭酸カルシムを一体化した脱窒処理材に硫黄酸化細菌を存在させることにより、硝酸性窒素が流入すると硫黄は硫黄酸化細菌の働きで硫酸へ、硝酸性窒素は無害な窒素ガスに転換されることになる。そして同時に発生する硫酸は炭酸カルシムと反応して硫酸カルシウム(石膏)となり酸性化が防止されることになる。さらに、炭酸カルシウム中の炭酸は、独立栄養系硫黄酸化細菌の炭素源となるものである。   Next, as denitrification treatment methods, the following Patent Documents 1 to 4 disclose techniques capable of effectively producing nitrate nitrogen by a biochemical method using sulfur / calcium carbonate and sulfur-oxidizing bacteria. In this method, sulfur-oxidizing bacteria are present in the denitrification treatment material in which sulfur and calcium carbonate are integrated. When nitrate nitrogen flows in, sulfur acts as sulfur-oxidizing bacteria, and nitrate nitrogen is harmless nitrogen. It will be converted to gas. At the same time, the sulfuric acid generated reacts with calcium carbonate to form calcium sulfate (gypsum) and acidification is prevented. Furthermore, carbonic acid in calcium carbonate becomes a carbon source for autotrophic sulfur-oxidizing bacteria.

特開11-285377公報JP 11-285377 A 特開2000-93997号公報JP 2000-93997 特開2004-167471公報JP 2004-167471 A 特開2004-174328号公報JP 2004-174328 A

このように、フッ素除去と硝酸性窒素除去は、別々の工程で行なわれることから、処理に時間が必要となり、またシステムとしては必然的に大規模になってしまうことから、同時に処理できるシステムの開発が望まれている。
したがって、本発明の目的は、それらを同時に処理するシステムを提供することにある。
As described above, since fluorine removal and nitrate nitrogen removal are performed in separate steps, the processing requires time, and the system inevitably becomes large-scale. Development is desired.
Accordingly, it is an object of the present invention to provide a system for processing them simultaneously.

本発明者等は、かかる課題を解決するために鋭意検討を重ねた結果、処理されるべき排水がフッ酸や硝酸等を同時に含有する場合に、硫黄酸化細菌の存在下、硫黄とアルカリ土類金属炭酸塩を一体化させた処理材を用いることにより、硝酸性窒素とフッ素が同時に除去処理できることを見出し、本発明を完成した。   As a result of intensive studies to solve such problems, the present inventors have found that when wastewater to be treated contains hydrofluoric acid, nitric acid, etc. at the same time, sulfur and alkaline earth in the presence of sulfur-oxidizing bacteria. The present inventors have found that nitrate nitrogen and fluorine can be simultaneously removed by using a treatment material in which metal carbonate is integrated, and the present invention has been completed.

本発明は、フッ素および硝酸性窒素の濃度がいずれも10〜50000ppmであり、その比(F/N重量比)が0.1〜1.4であるフッ素および硝酸性窒素を含有する排水を、フッ素および硝酸性窒素が70%以上除去されるまで、イオウ酸化細菌存在下において硫黄20〜80重量部とアルカリ土類金属炭酸塩80〜20重量部を含む一体化された処理材と接触させることとを特徴とするフッ素および硝酸性窒素含有排水の処理方法である。   In the present invention, wastewater containing fluorine and nitrate nitrogen, each having a concentration of fluorine and nitrate nitrogen of 10 to 50000 ppm and a ratio (F / N weight ratio) of 0.1 to 1.4, Contact with an integrated treatment containing 20-80 parts by weight sulfur and 80-20 parts by weight alkaline earth metal carbonate in the presence of sulfur-oxidizing bacteria until at least 70% of the fluorine and nitrate nitrogen are removed. A method for treating wastewater containing fluorine and nitrate nitrogen.

以下、更に詳しく本発明について説明する。
本発明で処理する排水は、フッ素および硝酸性窒素の濃度がいずれも10〜50000ppm、好ましくは100〜10000ppmであり、その比(F/N重量比)が0.1〜1.4、好ましくは0.2〜1.0であるフッ素および硝酸性窒素を含有する排水である。本発明の方法で効率的に排水処理するためには、この排水のpHは3〜10の範囲にあることが好ましい。
このpH範囲外にある排水であるときは、予めpH調整処理することが有利である。また、本発明の方法で有利に処理できる排水としては、フッ酸と硝酸を使用する金属表面処理工程から排出される廃液を含む排水がある。
Hereinafter, the present invention will be described in more detail.
The wastewater treated in the present invention has a fluorine and nitrate nitrogen concentration of 10 to 50000 ppm, preferably 100 to 10000 ppm, and the ratio (F / N weight ratio) is 0.1 to 1.4, preferably The waste water contains fluorine and nitrate nitrogen which are 0.2 to 1.0. In order to efficiently perform wastewater treatment by the method of the present invention, the pH of this wastewater is preferably in the range of 3-10.
When the waste water is outside this pH range, it is advantageous to perform a pH adjustment treatment in advance. Further, as waste water that can be advantageously treated by the method of the present invention, there is waste water containing waste liquid discharged from a metal surface treatment process using hydrofluoric acid and nitric acid.

上記排水は、イオウ酸化細菌存在下において、硫黄20〜80重量部とアルカリ土類金属炭酸塩80〜20重量部を含む一体化物(以下、処理材という)と接触させて、フッ素および硝酸性窒素の70%以上、好ましくは90%以上が除去されるまで処理する。フッ素および硝酸性窒素の除去率は、処理材との接触時間や接触時の温度や処理材の量等の条件を変えることにより、調整可能である。   In the presence of sulfur-oxidizing bacteria, the waste water is brought into contact with an integrated product (hereinafter referred to as a treatment material) containing 20 to 80 parts by weight of sulfur and 80 to 20 parts by weight of an alkaline earth metal carbonate, and fluorine and nitrate nitrogen. 70% or more, preferably 90% or more is removed. The removal rate of fluorine and nitrate nitrogen can be adjusted by changing conditions such as the contact time with the treatment material, the temperature at the time of contact, the amount of the treatment material, and the like.

本発明では、フッ素と硝酸性窒素の両方を含有する被処理水を、硫黄酸化細菌によって生物的処理する脱窒槽等の脱窒系内に、処理材を存在させることが必要である。これにより硝酸性窒素とフッ素の同時除去が可能となる。この理由は以下のように推測される。   In the present invention, it is necessary that a treatment material be present in a denitrification system such as a denitrification tank in which treated water containing both fluorine and nitrate nitrogen is biologically treated with sulfur-oxidizing bacteria. Thereby, nitrate nitrogen and fluorine can be removed simultaneously. The reason is presumed as follows.

まず、硝酸イオンを含む排水が処理材と接触すると、硫黄酸化細菌が活動して処理材中の硫黄を硫酸に酸化すると同時に硝酸は窒素ガスとして除去される。一方、処理剤中のアルカリ土類金属炭酸塩は、硫酸に徐々に溶解してアルカリ土類金属硫酸塩となる。アルカリ土類金属がカルシウムの場合には硫酸カルシウムとなるが、それ自体が水へのかなりの溶解度を有することから排水中には必ずカルシウムイオンが存在することになる。また、アルカリ土類金属がマグネシウムイオンの場合には、硫酸マグネシウムとなるがそれは水への溶解度は非常に高いことから高濃度のマグネシウムイオンが存在することになる。その他、ストロンチウムやバリウム等のアルカリ土類金属も水への溶解度を有することから、それらの金属イオンは必ず存在することになる。そして、酸性の排水も次第にアルカリ土類金属イオンの発生により中和が進行していく。そこで、その排水中にフッ素イオンが共存する場合には、アルカリ土類金属イオンは速やかに難溶性のフッ化物(たとえば、フッ化カルシウムやフッ化マグネシウム)となり結晶化して沈殿することになる。   First, when waste water containing nitrate ions comes into contact with the treatment material, sulfur-oxidizing bacteria act to oxidize sulfur in the treatment material to sulfuric acid, and at the same time, nitric acid is removed as nitrogen gas. On the other hand, the alkaline earth metal carbonate in the treatment agent is gradually dissolved in sulfuric acid to become alkaline earth metal sulfate. When the alkaline earth metal is calcium, it becomes calcium sulfate, but since it has a considerable solubility in water, calcium ions are always present in the waste water. Further, when the alkaline earth metal is magnesium ion, it becomes magnesium sulfate, which has a very high solubility in water, so that a high concentration of magnesium ion is present. In addition, since alkaline earth metals such as strontium and barium have solubility in water, these metal ions are necessarily present. Further, neutralization of acidic waste water gradually proceeds due to generation of alkaline earth metal ions. Therefore, when fluorine ions coexist in the wastewater, the alkaline earth metal ions quickly become insoluble fluorides (for example, calcium fluoride and magnesium fluoride) and crystallize and precipitate.

本発明の方法で処理する排水は、フッ素イオンと硝酸イオンの両方存在していることが必要である。フッ素イオン除去に関しては、硝酸イオンが存在しない場合には、硫黄酸化細菌の活動が極端に低下して、処理材中に一体化されているアルカリ土類金属イオンが発生せず、フッ化カルシウムやフッ化マグネシウム等のフッ化物が生成しないからである。硝酸イオン濃度に関しては、硫黄酸化細菌が活動できる範囲であれば特に制限はないが、50000ppm以下が好ましい。しかし、それを超える高濃度の場合には、水で希釈して50000ppm以下の排水とすればなんら問題ない。従って、本システムに適用する硝酸イオンとしては10〜50000ppmの範囲とする。   The waste water to be treated by the method of the present invention needs to have both fluorine ions and nitrate ions. Regarding the removal of fluoride ions, in the absence of nitrate ions, the activity of sulfur-oxidizing bacteria is extremely reduced, so that alkaline earth metal ions integrated in the treatment material are not generated. This is because fluorides such as magnesium fluoride are not generated. The nitrate ion concentration is not particularly limited as long as sulfur-oxidizing bacteria can act, but it is preferably 50000 ppm or less. However, in the case of a high concentration exceeding that, there is no problem if it is diluted with water to obtain 50,000 ppm or less of drainage. Therefore, the nitrate ion applied to this system is in the range of 10 to 50000 ppm.

また、フッ素イオンに関しては、アルカリ土類金属イオンが存在すれば、直接的には微生物の活性には無関係であり、化学的にフッ化物となり結晶化する。しかし、アルカリ土類金属イオンが少なく、フッ素イオンがその等量を超える場合には、フッ素イオンは残存することになる。従って、除去されるフッ素イオンは、処理される硝酸性窒素に左右されることになり、そのフッ素イオンのモル数は、硝酸性窒素のモル数より低いことになる。しかしながら、フッ素イオンが硝酸性窒素より多くても、単にフッ素が残存するだけであり、特に微生物の活性、すなわち硝酸性窒素除去能力には影響はない。しかし、硝酸性窒素と同時にフッ素イオンを排水基準8ppm以下にするためには、排水中の含有するフッ素イオン濃度と硝酸性窒素濃度の比がそれぞれをFおよびNに換算して1.4以下であることが必要である。なお、この比の下限に関しては、脱窒素と脱フッ素を効率的に行うためには0.1以上とする。フッ素イオン濃度ついても、硝酸性窒素濃度と同じように、硫黄酸化細菌が活動できる範囲として、10ppm〜50000ppmの範囲とする。   As for fluorine ions, if alkaline earth metal ions are present, they are not directly related to the activity of microorganisms and chemically become fluoride and crystallize. However, if there are few alkaline earth metal ions and the fluorine ions exceed the equivalent amount, the fluorine ions will remain. Therefore, the fluorine ion to be removed depends on the nitrate nitrogen to be treated, and the number of moles of the fluorine ion is lower than the number of moles of nitrate nitrogen. However, even if there are more fluorine ions than nitrate nitrogen, only fluorine remains, and there is no effect on the activity of microorganisms, that is, nitrate nitrogen removal ability. However, in order to reduce the fluoride ion concentration to 8 ppm or less simultaneously with nitrate nitrogen, the ratio of the fluorine ion concentration and nitrate nitrogen concentration contained in the wastewater is 1.4 or less in terms of F and N, respectively. It is necessary to be. The lower limit of this ratio is 0.1 or more in order to efficiently perform denitrification and defluorination. The fluorine ion concentration is also in the range of 10 ppm to 50000 ppm as the range in which sulfur-oxidizing bacteria can act, like the nitrate nitrogen concentration.

処理される排水のpHは3〜10がよい。pHが3未満では、微生物が弱体化または死滅して脱窒反応が進行しないからである。また、逆にpHが10を超えると微生物の細胞膜が溶解して同じように弱体化または死滅して脱窒反応が進行しないからである。したがって、より好ましくは5〜9である。pH調整は酸、アルカリ又は塩を加えることにより調整可能である。   The pH of the wastewater to be treated is preferably 3-10. This is because if the pH is less than 3, the microorganism is weakened or killed and the denitrification reaction does not proceed. On the other hand, if the pH exceeds 10, the cell membrane of the microorganism is dissolved and weakened or killed in the same manner, and the denitrification reaction does not proceed. Therefore, it is more preferably 5-9. The pH adjustment can be adjusted by adding acid, alkali or salt.

本発明で使用する処理材の主成分は、硫黄とアルカリ(土類)炭酸塩である。硫黄成分は、例えば、石油脱硫や石炭脱硫プラントの回収硫黄や天然硫黄等の単体硫黄が挙げられる。その他、単体硫黄を含有する混合物であってもよい。   The main components of the treatment material used in the present invention are sulfur and alkali (earth) carbonate. Examples of the sulfur component include elemental sulfur such as recovered sulfur of natural petroleum desulfurization and coal desulfurization plants and natural sulfur. In addition, it may be a mixture containing elemental sulfur.

アルカリ(土類)炭酸塩は、硫黄酸化細菌の炭素源となる炭酸を有した化合物であり、カルシウム、マグネシウムなどのアルカリ土類金属の炭酸塩、ナトリウム、カリウム、リチウムなどのアルカリ金属の炭酸塩あるいは重炭酸塩又はそれらの混合物などがあげられる。しかし、本発明では、水処理に用いるために水不溶性である必要があり、従ってアルカリ土類金属の炭酸塩が適する。アルカリ土類金属炭酸塩としては、カルシウムを多量に含む石灰石(炭酸カルシウム)やマグネシウムとカルシウムを含有する苦石灰(ドロマイト)またはマグネシウムを多量に含む菱苦土石(マグネサイト)の粉末が天然品として存在することから有用である。これらは、適度に混ざったものでもかまわない。また、当然合成品であっても差し支えない。   Alkali (earth) carbonate is a compound that has carbonic acid as a carbon source for sulfur-oxidizing bacteria, and carbonates of alkaline earth metals such as calcium and magnesium, and carbonates of alkali metals such as sodium, potassium, and lithium. Alternatively, bicarbonate or a mixture thereof can be used. However, in the present invention, it is necessary to be insoluble in water for use in water treatment, and therefore alkaline earth metal carbonates are suitable. As alkaline earth metal carbonates, limestone containing a large amount of calcium (calcium carbonate), powder of limestone containing magnesium and calcium (dolomite) or rhododendron stone containing a large amount of magnesium (magnesite) are natural products. Useful because it exists. These may be mixed appropriately. Of course, it may be a synthetic product.

このときに使用される硫黄粉末及び炭酸塩の粒径としては、特に限定されないが、0.1μm〜200μm程度が好ましい。本来、微生物が硫黄を消費することを考えると、その接触面積を大きくするため粒子を小さくした方が好ましいが、あまりに小さすぎると一体化させるときの温度制御が難しくなり、また大きすぎると融着させるための時間が長くなることから上記範囲が適当となる。   Although it does not specifically limit as a particle size of the sulfur powder and carbonate used at this time, About 0.1-200 micrometers is preferable. Originally, considering that microorganisms consume sulfur, it is preferable to make the particles smaller in order to increase the contact area, but if it is too small, temperature control when integrating is difficult, and if it is too large, it is fused. The above-mentioned range is appropriate because the time required for this is long.

この場合に、硫黄と炭酸塩の混合の割合は、硫黄酸化細菌の増殖の促進およびそれに伴い発生する硫酸イオンを中和することが必要であることから、化合物中の硫黄含有量は、20〜80重量部、炭酸塩含有量は80〜20重量部の範囲とする。   In this case, since the mixing ratio of sulfur and carbonate is necessary to promote the growth of sulfur-oxidizing bacteria and neutralize the sulfate ions generated therewith, the sulfur content in the compound is 20 to 20%. 80 parts by weight and the carbonate content is in the range of 80 to 20 parts by weight.

この範囲外では、短期間的には脱窒は進行するもの、硫黄含有量が20重量部未満で、炭酸塩が80重量部を超える場合には、微生物が硫黄を消費して、硫黄が消滅すると同時に脱窒反応はストップして大過剰の炭酸塩のみが残存することになる。また逆に、硫黄含有量が80重量部を超え、炭酸塩が20重量部未満の場合には、脱窒と同時に発生する硫酸イオンを中和するアルカリ土類金属イオンがかなり不足して酸性化が起こり、微生物の活性が極端に低下するからである。   Outside this range, although denitrification proceeds in a short period of time, if the sulfur content is less than 20 parts by weight and the carbonate exceeds 80 parts by weight, the microorganisms consume sulfur and the sulfur disappears. At the same time, the denitrification reaction is stopped and only a large excess of carbonate remains. Conversely, when the sulfur content exceeds 80 parts by weight and the carbonate is less than 20 parts by weight, the alkaline earth metal ions that neutralize the sulfate ions generated simultaneously with denitrification are considerably insufficient and acidified. This is because the activity of microorganisms is extremely reduced.

本発明で使用する処理材は、脱窒能力を有する必要があるので、特許文献1〜4等に記載の脱窒処理材と同様にして製造することができる。硫黄粉末と炭酸塩粉末を一体化して処理材とする方法としては、硫黄を加熱溶融してアルカリ土類金属と一体化させて処理材とする方法、硫黄粉末とアルカリ土類金属粉末を有機バインダーで一体化させて処理材とする方法などがあるが、その方法は特に限定されるものではなく、効率よく硝酸が脱窒されるために一体化されたもので、アルカリ土類金属イオンを放出するものであればよい。   Since the treatment material used in the present invention needs to have a denitrification ability, it can be produced in the same manner as the denitrification treatment materials described in Patent Documents 1 to 4 and the like. As a method of integrating sulfur powder and carbonate powder into a treatment material, sulfur is heated and melted and integrated with alkaline earth metal to form a treatment material, and sulfur powder and alkaline earth metal powder are combined with an organic binder. However, the method is not particularly limited, and it is integrated for efficient denitrification of nitric acid, releasing alkaline earth metal ions. Anything to do.

本発明の処理材は、処理材の上に棲む脱窒細菌と被処理水の接触面積が大きいものほど脱窒性能が向上するので、できるだけ表面積の大きいものがよく、特に粒状が好ましい。粒の大きさは、1〜100mm程度、好ましくは2〜50mm程度であるが、無定形でもよいし、球状、筒状、円筒状でもよく、また種々の担体に被着させてもよく、脱窒処理の目的や処理方法により適宜使い分けてよい。なお、粒より細かい粉末であれば、接触面積はより大きくなり脱窒効果も高いが、取り扱いにくく使用に際して流亡しやすくなる。   The treatment material of the present invention has a surface area that is as large as possible because the larger the contact area between the denitrifying bacteria and the water to be treated that is on the treatment material, the better the denitrification performance. The size of the grains is about 1 to 100 mm, preferably about 2 to 50 mm, but may be amorphous, spherical, cylindrical or cylindrical, and may be deposited on various carriers. It may be properly used depending on the purpose of nitrogen treatment and the treatment method. If the powder is finer than the particles, the contact area is larger and the denitrification effect is higher, but it is difficult to handle and tends to be washed away during use.

本発明の処理材には、必要に応じて水酸化アルミニウムや水酸化マグネシウムなどの難燃剤や酸化鉄、活性炭等の硫化水素発生防止剤、さらには、処理中のpH変化を抑えるために、少量の水酸化マグネシウム、酸化マグネシウム、珪酸カルシウム、珪酸マグネシウムまたはフライアッシュ、ベントナイト、製鉄スラグ、コンクリート粉砕物などの中和剤、さらには、ゼオライトやロックール等の微生物保持材、ベントナイトやタルク等の成形改良材等を添加してもよい。また、ガラスバルーン、シラス、シラスバルーン、火山礫など中空粒子や発砲粒子を添加して比重調整を行うこともできる。   In the treatment material of the present invention, a flame retardant such as aluminum hydroxide or magnesium hydroxide, a hydrogen sulfide generation inhibitor such as iron oxide or activated carbon, and a small amount as necessary to suppress pH change during treatment. Of magnesium hydroxide, magnesium oxide, calcium silicate, magnesium silicate or fly ash, bentonite, iron slag, concrete pulverized materials, etc., and microbial retention materials such as zeolite and rock ole, bentonite and talc Materials and the like may be added. Further, the specific gravity can be adjusted by adding hollow particles such as glass balloons, shirasu, shirasu balloons, and volcanic gravel, or firing particles.

本発明の脱窒処理材を使用して硝酸性窒素とフッ素を除去する方法としては、処理材を被処理水(排水)に接触または浸漬することが必要である。処理材を浸漬しただけでも反応が進行して脱窒、脱フッ素されるが、処理材の表面に窒素ガスが付着して脱窒効率が低下することから、付着した窒素ガスを除去するために、処理材又は処理液を適度に動かすことが好ましい。また、窒素ガス以外に水に難溶性の石膏やフッ化カルシウムが材料に付着しないためにも処理材又は処理液を動かすことが好ましい。つまり、本システムに使用される処理材を攪拌したり、流動したり、振動したり、あるいは処理水を循環したりすることがよい。そして、70%以上の除去率が達成されたら、好ましくは定められた基準濃度にまで除去されたら、接触を終了させる。   As a method for removing nitrate nitrogen and fluorine using the denitrification treatment material of the present invention, it is necessary to contact or immerse the treatment material in water to be treated (drainage). Even if the treatment material is immersed, the reaction proceeds to denitrify and defluorinate, but nitrogen gas adheres to the surface of the treatment material and the denitrification efficiency decreases, so that the attached nitrogen gas is removed. It is preferable to move the treatment material or treatment liquid appropriately. Moreover, it is preferable to move the treatment material or the treatment liquid so that gypsum and calcium fluoride which are hardly soluble in water other than nitrogen gas do not adhere to the material. That is, it is preferable to stir, flow, vibrate, or circulate the treated water for the treatment material used in the present system. When the removal rate of 70% or more is achieved, the contact is terminated when the removal rate is preferably reduced to a predetermined reference concentration.

本発明の排水の処理方法によれば、フッ酸と硝酸またはこれらのイオンを含有する排水から、硝酸性窒素とフッ素を同時に除去処理できる。   According to the wastewater treatment method of the present invention, nitrate nitrogen and fluorine can be simultaneously removed from wastewater containing hydrofluoric acid and nitric acid or ions thereof.

処理材の作成には、イオウとしては200メッシュ(軽井沢精錬社製)の粉体を、アルカリ土類金属炭酸塩としては、ドロマイトタンカル200メッシュ(MgCO3含有量38%、CaCO3含有量62%;駒形石灰工業社製)の粉体を用いた。また硫化水素防止及び活性化剤として比表面積30m2/g(リモナイト工業社製)の酸化鉄主体の黄土粉体を用いた。また、それらを一体化するために用いた有機バインダーは中央理化工業(株)製アクリル系エマルジョン樹脂(製品名:ES-45)を使用した。組成は表1に示した。
一体化の方法は、(株)ダルトン製の万能混合機で粉体、有機バインダーおよび水を混合混練後、(株)ダルトン製のディスクペレッター(半乾式押し出し機)により5Mmφ、長さ5〜10mmに造粒し、90℃で10時間乾燥して処理材を作成した。
The creation of a process material, a powder of 200 mesh as a sulfur (manufactured by Karuizawa refining Co.) Examples of the alkaline earth metal carbonate, dolomite Tankaru 200 mesh (MgCO 3 content 38%, CaCO 3 content 62% ; Manufactured by Komagata Lime Industry Co., Ltd.). Further, an iron oxide-based ocher powder having a specific surface area of 30 m 2 / g (manufactured by Limonite Kogyo Co., Ltd.) was used as a hydrogen sulfide prevention and activation agent. The organic binder used to integrate them was Chuo Rika Kogyo Co., Ltd. acrylic emulsion resin (product name: ES-45). The composition is shown in Table 1.
The method of integration is as follows. After mixing and kneading the powder, organic binder and water with a universal mixer manufactured by Dalton Co., Ltd., the disk pelleter (semi-dry extruder) manufactured by Dalton Co., Ltd. Granulated to 10 mm and dried at 90 ° C. for 10 hours to prepare a treated material.

処理材への硫黄酸化細菌の担持は、ポリビンに処理材1kgと硝酸カリウム溶液(硝酸性窒素濃度で200mg−N/kg)500gおよび硫黄酸化細菌培養汚泥を50g添加し、硝酸性窒素濃度が10mg−N/kg以下になった時点で硝酸カリウムを硝酸性窒素濃度で200mg−N/kgになるように添加して、3週間担持培養を行った。評価に際しては、かるく水洗浄した。   The treatment material is loaded with sulfur-oxidizing bacteria by adding 1 kg of the treatment material, 500 g of potassium nitrate solution (200 mg-N / kg in nitrate nitrogen concentration) and 50 g of sulfur-oxidizing bacteria culture sludge to polybin, and the nitrate nitrogen concentration is 10 mg- When N / kg or less was reached, potassium nitrate was added to a nitrate nitrogen concentration of 200 mg-N / kg, and the support culture was carried out for 3 weeks. In the evaluation, it was washed with light water.

実施例1〜3、比較例1〜4
250mlのポリビンに、前記のようにして得た菌を担持処理した処理材200gと、表1に示したモデル排水100gを入れ、1日後に硝酸性窒素及びフッ素濃度をイオンクロマトグラフィーで測定して、除去性能の評価を行い、その結果を表1に示した。
Examples 1-3, Comparative Examples 1-4
In a 250 ml polybin, 200 g of the treatment material carrying the bacteria obtained as described above and 100 g of the model waste water shown in Table 1 were put, and after 1 day, nitrate nitrogen and fluorine concentrations were measured by ion chromatography. The removal performance was evaluated, and the results are shown in Table 1.

表において、組成中の各成分の配合量を示す数字は重量部である。また、N濃度は硝酸性窒素濃度を示し、F濃度はフッ素濃度を示し、各単位は、(mg-N/kg)または(mg-F/kg)である。下記表1から明らかなように、実施例は、同一工程で硝酸性窒素と同時にフッ素イオンが除去されており、それらは比較例に比べて、高い処理能力を有していることは明らかである。   In the table, the numbers indicating the amount of each component in the composition are parts by weight. Further, N concentration indicates nitrate nitrogen concentration, F concentration indicates fluorine concentration, and each unit is (mg-N / kg) or (mg-F / kg). As is clear from Table 1 below, in the examples, fluorine ions are removed simultaneously with nitrate nitrogen in the same step, and it is clear that they have a higher throughput than the comparative examples. .

Figure 2006142148
Figure 2006142148

Claims (3)

フッ素および硝酸性窒素の濃度がいずれも10〜50000ppmであり、その比(F/N重量比)が0.1〜1.4であるフッ素および硝酸性窒素を含有する排水を、フッ素および硝酸性窒素が70%以上除去されるまで、イオウ酸化細菌存在下において硫黄20〜80重量部とアルカリ土類金属炭酸塩80〜20重量部を含む一体化された処理材と接触させることを特徴とするフッ素および硝酸性窒素含有排水の処理方法。   The waste water containing fluorine and nitrate nitrogen having a concentration of fluorine and nitrate nitrogen of 10 to 50000 ppm and a ratio (F / N weight ratio) of 0.1 to 1.4 is treated with fluorine and nitrate. Until nitrogen is removed by 70% or more, in the presence of sulfur-oxidizing bacteria, contact is made with an integrated treatment material containing 20 to 80 parts by weight of sulfur and 80 to 20 parts by weight of alkaline earth metal carbonate. Treatment method for wastewater containing fluorine and nitrate nitrogen. 処理される排水のpHが3〜10である請求項1記載の排水の処理方法。   The wastewater treatment method according to claim 1, wherein the wastewater to be treated has a pH of 3 to 10. 処理される排水が、フッ酸と硝酸を使用する金属表面処理工程から排出される廃液を含む排水である請求項1記載の排水の処理方法。   The wastewater treatment method according to claim 1, wherein the wastewater to be treated is wastewater containing waste liquid discharged from a metal surface treatment step using hydrofluoric acid and nitric acid.
JP2004332775A 2004-11-17 2004-11-17 Method of treating wastewater containing fluorine and nitrate nitrogen Expired - Fee Related JP4541110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332775A JP4541110B2 (en) 2004-11-17 2004-11-17 Method of treating wastewater containing fluorine and nitrate nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332775A JP4541110B2 (en) 2004-11-17 2004-11-17 Method of treating wastewater containing fluorine and nitrate nitrogen

Publications (2)

Publication Number Publication Date
JP2006142148A true JP2006142148A (en) 2006-06-08
JP4541110B2 JP4541110B2 (en) 2010-09-08

Family

ID=36622429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332775A Expired - Fee Related JP4541110B2 (en) 2004-11-17 2004-11-17 Method of treating wastewater containing fluorine and nitrate nitrogen

Country Status (1)

Country Link
JP (1) JP4541110B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115708A (en) * 2009-12-02 2011-06-16 Nippon Steel Engineering Co Ltd Method for denitrification of sewage
JP2011206674A (en) * 2010-03-30 2011-10-20 Nippon Steel Engineering Co Ltd Cleaning material and method of cleaning water containing nitrate-nitrogen
JP2015129223A (en) * 2014-01-08 2015-07-16 地方独立行政法人青森県産業技術センター Fluorine treatment material and treatment method
CN112479486A (en) * 2020-11-10 2021-03-12 南京大学 Denitrification and defluorination co-treatment method for low-nitrogen and fluorine wastewater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101387623B1 (en) * 2013-03-26 2014-04-23 재원산업 주식회사 Disposal method of waste electrolyte

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311279A (en) * 2002-04-23 2003-11-05 Kurita Water Ind Ltd Apparatus and method for treating waste water
JP2004154759A (en) * 2002-09-10 2004-06-03 Nippon Steel Chem Co Ltd Nitrate nitrogen denitrifying treatment material
JP2004167471A (en) * 2002-11-05 2004-06-17 Nippon Steel Chem Co Ltd Water treatment material, nitrate nitrogen treating material, and its production method
JP2004174328A (en) * 2002-11-25 2004-06-24 Nippon Steel Chem Co Ltd Method and apparatus for removing nitrate nitrogen in water and denitrification treatment material
JP2004298763A (en) * 2003-03-31 2004-10-28 Nippon Steel Chem Co Ltd Method and apparatus for removing nitrate nitrogen
JP2004305980A (en) * 2003-04-10 2004-11-04 Miyama Kk Biological denitrification treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311279A (en) * 2002-04-23 2003-11-05 Kurita Water Ind Ltd Apparatus and method for treating waste water
JP2004154759A (en) * 2002-09-10 2004-06-03 Nippon Steel Chem Co Ltd Nitrate nitrogen denitrifying treatment material
JP2004167471A (en) * 2002-11-05 2004-06-17 Nippon Steel Chem Co Ltd Water treatment material, nitrate nitrogen treating material, and its production method
JP2004174328A (en) * 2002-11-25 2004-06-24 Nippon Steel Chem Co Ltd Method and apparatus for removing nitrate nitrogen in water and denitrification treatment material
JP2004298763A (en) * 2003-03-31 2004-10-28 Nippon Steel Chem Co Ltd Method and apparatus for removing nitrate nitrogen
JP2004305980A (en) * 2003-04-10 2004-11-04 Miyama Kk Biological denitrification treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115708A (en) * 2009-12-02 2011-06-16 Nippon Steel Engineering Co Ltd Method for denitrification of sewage
JP2011206674A (en) * 2010-03-30 2011-10-20 Nippon Steel Engineering Co Ltd Cleaning material and method of cleaning water containing nitrate-nitrogen
JP2015129223A (en) * 2014-01-08 2015-07-16 地方独立行政法人青森県産業技術センター Fluorine treatment material and treatment method
CN112479486A (en) * 2020-11-10 2021-03-12 南京大学 Denitrification and defluorination co-treatment method for low-nitrogen and fluorine wastewater

Also Published As

Publication number Publication date
JP4541110B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
US5645730A (en) Acid wastewater treatement
JPH0634993B2 (en) Three-phase fluidized bed water purification method
CN113149263B (en) Method for treating acidic wastewater by resource utilization of sodium-based desulfurized fly ash
JP4541110B2 (en) Method of treating wastewater containing fluorine and nitrate nitrogen
KR101294490B1 (en) Treatment agent and process for production thereof, and treatment method
JP2009254920A (en) Heavy metal treating agent and method of making heavy metal-contaminated matter harmless
KR101002191B1 (en) Method for reducing sludge and wastewater and for treating gas
JP2007044589A (en) Waste water treatment method, and sulfur-containing denitrification material
JP2000343097A (en) Nitrate nitrogen denitrification substrate and its production
JP2006224087A (en) Treatment method of wastewater containing nitrate nitrogen
WO1997012662A1 (en) Waste gas and dust treatment method
JP4602025B2 (en) Nitrate nitrogen treatment material and waste water treatment method
JP5135552B2 (en) Method for producing steelmaking slag for water injection
JP6610855B2 (en) Processing method of heavy metal treatment material and heavy metal containing fly ash cleaning liquid
KR20110109914A (en) Material for decontaminating water containing nitrate nitrogen, and method for decontaminating water containing nitrate nitrogen
JP5527688B2 (en) Hazardous waste treatment agent and treatment method using the same.
JP4391392B2 (en) Method for producing granules for nitrate nitrogen treatment
EP2133310A1 (en) Gypsum stabilisation method
JP2004089931A (en) Dephosphorization and ammonia-removal method, manufacturing method for ammonia fertilizer and manufacturing method for molten solidified matter
JP2003071493A (en) Composition for removing nitrate nitrogen, etc., and production method therefor
JP3791789B2 (en) Combustion exhaust gas / drainage purification method and system
JP2010253462A (en) Method of insolubilizing harmful substance
JP5733944B2 (en) Heavy metal immobilizing agent and method for treating heavy metal contaminants using the same
JP2010172790A (en) Nitrate nitrogen-removing composition and method of producing the same
JP2005103522A (en) Substance treating agent and substance treating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160702

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees