JP2006140682A - Carrier phase synchronizing circuit - Google Patents

Carrier phase synchronizing circuit Download PDF

Info

Publication number
JP2006140682A
JP2006140682A JP2004327488A JP2004327488A JP2006140682A JP 2006140682 A JP2006140682 A JP 2006140682A JP 2004327488 A JP2004327488 A JP 2004327488A JP 2004327488 A JP2004327488 A JP 2004327488A JP 2006140682 A JP2006140682 A JP 2006140682A
Authority
JP
Japan
Prior art keywords
circuit
phase
signal
received signal
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004327488A
Other languages
Japanese (ja)
Other versions
JP4335121B2 (en
Inventor
Yosuke Akimoto
陽介 秋元
Yasushi Shirato
裕史 白戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004327488A priority Critical patent/JP4335121B2/en
Publication of JP2006140682A publication Critical patent/JP2006140682A/en
Application granted granted Critical
Publication of JP4335121B2 publication Critical patent/JP4335121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently improve deterioration in BER characteristic caused by phase noise in a multi-valued QAM environment by effectively using frequency resources. <P>SOLUTION: A carrier phase synchronizing circuit includes a 1st APC circuit which inputs a quadrature demodulated received signal and outputs a 1st received signal with its carrier phase error estimated and compensated and a 1st phase error signal indicating phase synchronism precision, a 2nd APC circuit which has different carrier phase compensation characteristics from the 1st APC circuit, inputs a quadrature demodulated received signal, and outputs a 2nd received signal with its carrier phase error estimated and compensated and a 2nd phase error signal indicating phase synchronism precision, a comparing circuit which inputs the 1st and the 2nd phase error signals and makes a large-small comparison between them, and a selecting circuit which selects and outputs a received signal having higher phase synchronism precision between the 1st and the 2nd received signals with the carrier phase errors compensated according to the result of the comparison between the phase error signals by the comparing circuit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、振幅位相変調方式または位相変調方式において、受信機でのキャリア同期誤差に起因するビット誤り率(BER:Bit Error Rate) 特性の劣化を軽減するキャリア位相同期回路に関する。   The present invention relates to a carrier phase synchronization circuit that reduces deterioration of a bit error rate (BER) characteristic caused by a carrier synchronization error in a receiver in an amplitude phase modulation system or a phase modulation system.

ディジタル通信において、直交する2つの振幅変調信号により情報を表現するQAM(Quadrature Amplitude Modulation)方式は、限られた帯域幅で効率よくデータを転送することができる。QAM方式では、位相方向だけでなく同相・直交成分の振幅レベルに情報を重畳して伝送することにより、1シンボル当たりのビット数の増加が可能であり、高速通信が要求されているCATVやFWA(Fixed Wireless Access)などの分野で利用されている。   In digital communication, a QAM (Quadrature Amplitude Modulation) system that expresses information using two orthogonal amplitude modulation signals can efficiently transfer data with a limited bandwidth. In the QAM system, the number of bits per symbol can be increased by superimposing and transmitting information not only on the phase direction but also on the amplitude level of the in-phase / quadrature components, and CATV and FWA, which require high-speed communication. (Fixed Wireless Access) and other fields.

QAM方式では、送信機側のローカル発振器と周波数・位相同期のとれた信号を受信機側で再生し、同期検波を用いた復調を行うことによりベースバンド帯の同相・直交信号を得る。このとき、送受ローカル信号の位相同期(以下、「キャリア位相同期」という)が不十分であると、復調信号の配置は所定の位置から回転して得られる。例えば、16QAMにおいて15度の位相回転が生じている場合、図3に示すような信号点の配置になる。位相誤差がある場合にこのような位相回転が生じると、受信信号から閾値までの距離(識別余裕)が低下し、BER特性の劣化が生じる。   In the QAM system, a signal that is synchronized in frequency and phase with a local oscillator on the transmitter side is reproduced on the receiver side, and demodulation using synchronous detection is performed to obtain a baseband in-phase / quadrature signal. At this time, if the phase synchronization of the transmission and reception local signals (hereinafter referred to as “carrier phase synchronization”) is insufficient, the arrangement of the demodulated signals is obtained by rotating from a predetermined position. For example, when a phase rotation of 15 degrees occurs in 16QAM, the signal points are arranged as shown in FIG. If such a phase rotation occurs when there is a phase error, the distance (identification margin) from the received signal to the threshold value decreases, and the BER characteristics deteriorate.

キャリア位相同期の誤差によるBER特性の劣化は、変調多値数の増加とともに顕著になる。具体的には、図4に示す16QAMと図5に示す64QAMにおいて、最も外側の信号点とそれに隣接する信号点の位相を比較すると、16QAMでは信号点401と402の位相差が26.6度であるのに対して、64QAMでは信号点501と502の位相差が 9.5度まで減少する。このため、振幅の多値化の度合いを大きくするほど、キャリア位相同期を高精度に行う必要がある。   The deterioration of the BER characteristic due to the carrier phase synchronization error becomes remarkable as the modulation multi-level number increases. Specifically, in 16QAM shown in FIG. 4 and 64QAM shown in FIG. 5, when the phase of the outermost signal point and the signal point adjacent thereto are compared, the phase difference between signal points 401 and 402 is 26.6 degrees in 16QAM. On the other hand, in 64QAM, the phase difference between signal points 501 and 502 decreases to 9.5 degrees. For this reason, it is necessary to perform carrier phase synchronization with higher accuracy as the degree of multi-level amplitude increases.

ところで、キャリア位相同期の精度を劣化させる要因として、送受信機における局部発振周波数のゆらぎ(位相雑音)がある。位相雑音φ(t) が重畳した受信信号r(t) は、同相・直交成分の変調信号i(t),q(i) 、角周波数ω、時刻t、白色雑音n(t) を用いて、 r(t) =i(t)cos(ωt+φ(t))−q(t)sin(ωt+φ(t))+n(t) …(1)
により与えられる。例えば、64QAMの受信信号は、図6のように位相雑音の影響により元の信号点が位相方向に広がった形になる。通常、位相雑音φ(t) の帯域は数十〜数百kHz程度であり、シンボルレートが数MHz以上の高速通信では緩やかな位相の変化として影響が現れる。
By the way, as a factor that degrades the accuracy of carrier phase synchronization, there is fluctuation of local oscillation frequency (phase noise) in a transceiver. The received signal r (t) on which the phase noise φ (t) is superimposed is obtained by using the in-phase / quadrature component modulation signals i (t) and q (i), the angular frequency ω, the time t, and the white noise n (t). , R (t) = i (t) cos (ωt + φ (t)) − q (t) sin (ωt + φ (t)) + n (t) (1)
Given by. For example, a received signal of 64QAM has a form in which the original signal point spreads in the phase direction due to the influence of phase noise as shown in FIG. Usually, the band of the phase noise φ (t) is about several tens to several hundreds of kHz, and an influence appears as a gradual phase change in high-speed communication with a symbol rate of several MHz or more.

位相雑音が含まれた受信信号のキャリア位相同期には、自動位相制御(APC:Automatic Phase Control)回路の適用が有効である。APC回路では、位相補償後の受信信号とそのシンボル判定後の信号点から、位相差を逐次的に算出・補正することによりキャリア位相誤差の補償を実現している。ただし、APC回路では、シンボルレートに対して緩やかに変動するキャリア位相を安定かつ高精度に補償可能であるが、位相変動が速くなるにつれてAPC回路のキャリア位相補償の精度は低下する。そのため、位相雑音の周波数帯域によっては、APC回路だけでは十分な位相同期が実現できない問題点があった。   Application of an automatic phase control (APC) circuit is effective for carrier phase synchronization of a received signal including phase noise. The APC circuit realizes carrier phase error compensation by sequentially calculating and correcting the phase difference from the received signal after phase compensation and the signal point after symbol determination. However, although the APC circuit can stably and highly accurately compensate for the carrier phase that varies gently with respect to the symbol rate, the accuracy of the carrier phase compensation of the APC circuit decreases as the phase variation increases. Therefore, depending on the frequency band of the phase noise, there is a problem that sufficient phase synchronization cannot be realized only by the APC circuit.

これに対して、APC回路と併用することで位相雑音を軽減する手法が提案されている(非特許文献1)。従来は図9に示すように、熱雑音に対するシンボル判定誤りの特性が最良となるように、同相・直交平面上において信号点の閾値901を直線で表していた。提案されている手法は、信号点の閾値901を、熱雑音と位相雑音の両面から最良となるように決定される曲線902に置き換えたものである。ここで、閾値を表す線は、振幅が大きくなるほど位相方向に識別余裕を大きくとるように広がったものとなる。これにより、受信機側のみの変更で熱雑音と位相雑音の環境下におけるシンボル判定を最適にすることが可能であり、BER特性を改善することができる。   On the other hand, a method of reducing phase noise by using it together with an APC circuit has been proposed (Non-Patent Document 1). Conventionally, as shown in FIG. 9, the threshold value 901 of the signal point is represented by a straight line on the in-phase / orthogonal plane so that the symbol determination error characteristic with respect to thermal noise is the best. The proposed approach replaces the signal point threshold 901 with a curve 902 that is determined to be best from both thermal and phase noise aspects. Here, the line representing the threshold becomes wider so as to increase the identification margin in the phase direction as the amplitude increases. Thereby, it is possible to optimize the symbol determination under the environment of thermal noise and phase noise by changing only the receiver side, and the BER characteristics can be improved.

また、位相雑音の別な補償手法として、図10に示す送信機200と受信機210からなるシステムが提案されている(非特許文献2)。図10において、送信機200は、ローカル発振器201、中間周波数帯の信号の入力端子202、ミキサ203、バンドパスフィルタ204、アンプ205、アンテナ206により構成される。受信機210は、アンテナ211、アンプ212、バンドパスフィルタ213、ミキサ214、中間周波数帯の信号の出力端子215により構成される。送信機200は送信側のローカル信号aを変調信号bと同時に送信し、受信機210はローカル発振器を用いずに受信信号を二乗検波することでダウンコンバージョンを行うことを特徴としている。これにより、ローカル信号に含まれる位相雑音とまったく同じ位相雑音が含まれたリファレンス信号を用いた復調が可能となり、位相雑音を完全にキャンセルすることができる。
倉掛卓也 他、位相雑音の影響を低減するQAMシンボル判定法、2003年電子情報通信学会通信ソサイエティ大会、B-8-8 、2003年 庄司洋三 他、ミリ波自己ヘテロダイン通信システムの提案、電子情報通信学会技術研究報告、RCS2000-30、2000年
As another compensation method for phase noise, a system including a transmitter 200 and a receiver 210 shown in FIG. 10 has been proposed (Non-Patent Document 2). 10, the transmitter 200 includes a local oscillator 201, an intermediate frequency band signal input terminal 202, a mixer 203, a bandpass filter 204, an amplifier 205, and an antenna 206. The receiver 210 includes an antenna 211, an amplifier 212, a band-pass filter 213, a mixer 214, and an output terminal 215 for intermediate frequency band signals. The transmitter 200 transmits the local signal a on the transmission side simultaneously with the modulated signal b, and the receiver 210 performs down-conversion by square-detecting the received signal without using a local oscillator. As a result, demodulation using a reference signal including exactly the same phase noise as that included in the local signal becomes possible, and the phase noise can be completely canceled.
Takuya Kurakake et al., QAM Symbol Judgment Method to Reduce the Effect of Phase Noise, 2003 IEICE Communication Society Conference, B-8-8, 2003 Yozo Shoji et al., Proposal of millimeter-wave self-heterodyne communication system, IEICE technical report, RCS2000-30, 2000

非特許文献1の方法では、白色雑音レベルと位相雑音レベルの相対値の変化により、最適な閾値が変化する。したがって、最適な設計をすることが困難であった。また、位相雑音に対する特性を高めるために閾値を歪ませることにより、熱雑音に対するBER特性が劣化し、大きな改善効果が得られない問題点があった。   In the method of Non-Patent Document 1, the optimum threshold value changes due to a change in the relative value of the white noise level and the phase noise level. Therefore, it has been difficult to make an optimal design. In addition, by distorting the threshold value in order to enhance the characteristics against phase noise, there is a problem that the BER characteristics against thermal noise deteriorates and a large improvement effect cannot be obtained.

非特許文献2の方法では、送信側のローカル発振器の位相雑音情報を直接送信するため、ローカル信号(図10のa)を送るための周波数帯域が別途必要になる。したがって、周波数リソースが限られた領域には適用が困難であった。   In the method of Non-Patent Document 2, since the phase noise information of the local oscillator on the transmission side is directly transmitted, a frequency band for transmitting the local signal (a in FIG. 10) is required separately. Therefore, it has been difficult to apply to a region where frequency resources are limited.

本発明は、多値QAM環境で位相雑音によって生じるBER特性の劣化を、周波数リソースを有効に利用して効率よく改善することができるキャリア位相同期回路を提供することを目的とする。   An object of the present invention is to provide a carrier phase synchronization circuit that can efficiently improve the deterioration of BER characteristics caused by phase noise in a multilevel QAM environment by effectively using frequency resources.

第1の発明は、直交復調した受信信号を入力し、キャリア位相誤差を推定・補償した第1の受信信号と、位相同期精度を表す第1の位相誤差信号を出力する第1のAPC回路と、第1のAPC回路とキャリア位相補償特性が異なり、直交復調した受信信号を入力し、キャリア位相誤差を推定・補償した第2の受信信号と位相同期精度を表す第2の位相誤差信号を出力する第2のAPC回路と、第1の位相誤差信号および第2の位相誤差信号を入力し、その大小比較を行う比較回路と、比較回路における各位相誤差信号の比較結果に応じて、キャリア位相誤差を補償した第1の受信信号および第2の受信信号のうち、位相同期精度の高い方の受信信号を選択して出力する選択回路とを備える。   According to a first aspect of the present invention, a first received signal obtained by inputting a quadrature demodulated received signal and estimating / compensating a carrier phase error, and a first APC circuit that outputs a first phase error signal representing phase synchronization accuracy are provided. The carrier phase compensation characteristic is different from that of the first APC circuit, the orthogonally demodulated received signal is input, and the second received signal obtained by estimating and compensating the carrier phase error and the second phase error signal indicating the phase synchronization accuracy are output. The second APC circuit, the comparison circuit for inputting the first phase error signal and the second phase error signal and comparing the magnitudes thereof, and the carrier phase according to the comparison result of each phase error signal in the comparison circuit A selection circuit configured to select and output a received signal having a higher phase synchronization accuracy out of the first received signal and the second received signal in which the error is compensated;

第1の発明は、キャリア位相補償特性の相関が低い2つのAPC回路を用い、位相同期精度の高い方のAPC回路出力を随時選択することを特徴とする。互いに独立なキャリア位相補償を行うAPC回路では、一方の同期状態が悪化してBER特性が劣化している場合でも、他方は正常に同期がとれている可能性がある。このため、位相同期精度の高い方のAPC回路を選択することができ、キャリア位相に起因したビット誤りを回避でき、BER特性を改善することができる。   The first invention is characterized in that two APC circuits having a low correlation of carrier phase compensation characteristics are used, and an APC circuit output having a higher phase synchronization accuracy is selected at any time. In an APC circuit that performs carrier phase compensation that is independent of each other, even if one of the synchronization states deteriorates and the BER characteristic deteriorates, the other may be normally synchronized. For this reason, the APC circuit with higher phase synchronization accuracy can be selected, bit errors due to the carrier phase can be avoided, and the BER characteristics can be improved.

第2の発明は、送信側で誤り訂正用の冗長ビットを付加したディジタル信号を受信し、直交復調した受信信号を入力し、キャリア位相誤差を推定・補償した第1の受信信号を出力する第1のAPC回路と、第1のAPC回路とキャリア位相補償特性が異なり、直交復調した受信信号を入力し、キャリア位相誤差を推定・補償した第2の受信信号を出力する第2のAPC回路と、第1の受信信号のシンボル判定を行う第1のシンボル判定回路と、第2の受信信号のシンボル判定を行う第2のシンボル判定回路と、第1のシンボル判定回路でシンボル判定された受信信号の誤り訂正を行うとともに、受信信号の誤りの数が訂正可能な範囲内であったか否かを示す第1の誤り訂正可否信号を出力する第1の誤り訂正回路と、第2のシンボル判定回路でシンボル判定された受信信号の誤り訂正を行うとともに、受信信号の誤りの数が訂正可能な範囲内であったか否かを示す第2の誤り訂正可否信号を出力する第2の誤り訂正回路と、第1の誤り訂正可否信号および第2の誤り訂正可否信号を入力し、いずれか一方が誤り訂正可を示す場合にはその誤り訂正回路で誤り訂正された受信信号を選択する選択信号を出力し、両方とも誤り訂正可を示す場合または両方とも誤り訂正否を示す場合には第1の誤り訂正回路で誤り訂正された受信信号を選択する選択信号を出力する判定回路と、判定回路から出力される選択信号に応じて、第1の誤り訂正回路または第2の誤り訂正回路で誤り訂正された受信信号を選択して出力する選択回路とを備える。   According to a second aspect of the present invention, a digital signal to which redundant bits for error correction are added is received on the transmission side, a reception signal obtained by orthogonal demodulation is input, and a first reception signal in which carrier phase error is estimated and compensated is output. A first APC circuit having a carrier phase compensation characteristic different from that of the first APC circuit, receiving a quadrature demodulated received signal, and outputting a second received signal in which a carrier phase error is estimated and compensated; The first symbol determination circuit that performs symbol determination of the first reception signal, the second symbol determination circuit that performs symbol determination of the second reception signal, and the reception signal that has been subjected to symbol determination by the first symbol determination circuit A first error correction circuit that outputs a first error correction enable / disable signal indicating whether or not the number of errors in the received signal is within a correctable range, and a second symbol determination circuit A second error correction circuit that performs error correction on the received signal determined as a symbol and outputs a second error correction enable / disable signal indicating whether or not the number of errors in the received signal is within a correctable range; 1 error correction enable / disable signal and 2nd error correction enable / disable signal are input, and when either one indicates error correction enable, a selection signal for selecting a reception signal error-corrected by the error correction circuit is output, When both indicate that error correction is possible or when both indicate error correction failure, a determination circuit that outputs a selection signal for selecting a reception signal that has been error-corrected by the first error correction circuit, and a determination circuit that outputs the selection signal A selection circuit that selects and outputs the received signal that has been error-corrected by the first error correction circuit or the second error correction circuit in accordance with the selection signal.

第2の発明は、第1の発明におけるAPC回路の位相同期精度を表す手段として、誤り訂正回路を用いることを特徴とする。誤り訂正回路は、生じた誤りを訂正する機能と、生じた誤りの訂正はできないものの検出ができる機能をもつ。これにより、誤り訂正回路から出力される誤り訂正可否信号は、APC回路における位相同期状態を表す指標とすることができる。本発明では、これを利用して位相同期精度の高い方のAPC回路を選択する。   The second invention is characterized in that an error correction circuit is used as means for representing the phase synchronization accuracy of the APC circuit in the first invention. The error correction circuit has a function of correcting an error that has occurred and a function of detecting an error that cannot be corrected. Thus, the error correction availability signal output from the error correction circuit can be used as an index representing the phase synchronization state in the APC circuit. In the present invention, this is used to select the APC circuit with higher phase synchronization accuracy.

第1の発明および第2の発明において、第1のAPC回路は、位相変動に対する追従特性の高いキャリア位相補償特性を有する構成であり、第2のAPC回路は、位相変動に対する追従特性の低いキャリア位相補償特性を有する構成とする。   In the first and second inventions, the first APC circuit has a carrier phase compensation characteristic having a high tracking characteristic with respect to phase fluctuation, and the second APC circuit is a carrier having a low tracking characteristic with respect to phase fluctuation. The configuration has phase compensation characteristics.

APC回路は、補償可能な位相誤差の帯域を追従パラメータにより設定可能である。追従パラメータが大きいAPC回路は変動の速い位相変化に強く、追従パラメータが小さいAPC回路は変動の緩やかな位相変化に強い。これを利用することにより、2つのAPC回路のキャリア位相補償特性の相関を小さくすることができる。   The APC circuit can set the phase error band that can be compensated by the tracking parameter. An APC circuit with a large follow-up parameter is strong against phase changes with fast fluctuations, and an APC circuit with a small follow-up parameter is strong against phase changes with slow fluctuations. By utilizing this, the correlation between the carrier phase compensation characteristics of the two APC circuits can be reduced.

本発明は、キャリア位相補償特性の相関が小さい2つのAPC回路を用い、位相同期精度の高い方のAPC回路を選択することにより、位相雑音に起因するビット誤りを軽減できる。これにより、位相雑音の特性が必ずしもよくない安価な発振器を用いることが可能となり、ディジタル通信システムのコスト低減を図ることができる。   The present invention can reduce bit errors caused by phase noise by using two APC circuits having a small correlation of carrier phase compensation characteristics and selecting an APC circuit with higher phase synchronization accuracy. This makes it possible to use an inexpensive oscillator that does not necessarily have good phase noise characteristics, and can reduce the cost of the digital communication system.

(第1の実施形態)
図1は、本発明のキャリア位相同期回路の第1の実施形態を示す。図において、キャリア周波数オフセットが補償された受信信号は、キャリア位相補償特性が互いに異なる2つのAPC回路101,102に入力される。APC回路101,102は、キャリア位相誤差を補償した受信信号と、位相同期精度を表す位相誤差信号を出力する。比較回路107は、APC回路101,102からそれぞれ出力される位相誤差信号を入力し、その大小比較を行う。選択回路108は、APC回路101,102から出力されるキャリア位相誤差を補償した受信信号を入力し、比較回路107における各位相誤差信号の比較結果に応じて、位相同期精度の高い方の受信信号を選択して出力する。
(First embodiment)
FIG. 1 shows a first embodiment of the carrier phase synchronization circuit of the present invention. In the figure, a received signal whose carrier frequency offset is compensated is input to two APC circuits 101 and 102 having different carrier phase compensation characteristics. The APC circuits 101 and 102 output a reception signal compensated for the carrier phase error and a phase error signal representing the phase synchronization accuracy. The comparison circuit 107 receives the phase error signals output from the APC circuits 101 and 102, respectively, and compares the magnitudes thereof. The selection circuit 108 receives the reception signal compensated for the carrier phase error output from the APC circuits 101 and 102, and receives the signal having the higher phase synchronization accuracy according to the comparison result of each phase error signal in the comparison circuit 107. Select to output.

APC回路101,102は、キャリア位相と残留したキャリア周波数オフセットに起因する位相変動、および位相雑音による位相変動を推定して補償する。ここでは、LMS(Least Mean Square)アルゴリズムの適用を想定し、その場合のAPC回路の動作について図7を参照して説明する。また、本実施形態では、64QAMが適用されるものとする。   The APC circuits 101 and 102 estimate and compensate for the phase fluctuation caused by the carrier phase and the residual carrier frequency offset, and the phase fluctuation caused by the phase noise. Here, assuming the application of the LMS (Least Mean Square) algorithm, the operation of the APC circuit in that case will be described with reference to FIG. In this embodiment, 64QAM is applied.

APC回路に入力された受信信号701は、その時点での位相推定値702だけ位相を補償し、受信信号703となる。この位相補償後の受信信号703は、最も近い64QAMの信号704に判定され、これを基準信号として受信信号703との位相誤差705を算出する。これに追従特性を示すステップサイズパラメータを乗算し、位相の推定値を更新する。この作業を逐次繰り返すことにより位相補償が実現される。ただし、シンボル同期が確立して正しくシンボル判定が行われる前はAPC回路は正しく動作しないため、初期引き込み段階ではシンボル判定後の基準信号704の代わりに既知信号を用いることとする。また、APC回路101,102のステップサイズパラメータは互いに異なり、キャリア位相補償特性が互いに独立になっている。   The received signal 701 input to the APC circuit is compensated for the phase by the phase estimation value 702 at that time, and becomes a received signal 703. The phase-compensated received signal 703 is determined to be the closest 64QAM signal 704, and a phase error 705 from the received signal 703 is calculated using this signal as a reference signal. This is multiplied by the step size parameter indicating the tracking characteristic, and the estimated value of the phase is updated. Phase compensation is realized by sequentially repeating this operation. However, since the APC circuit does not operate correctly before the symbol synchronization is correctly established after the symbol synchronization is established, a known signal is used instead of the reference signal 704 after the symbol determination in the initial pull-in stage. Further, the step size parameters of the APC circuits 101 and 102 are different from each other, and the carrier phase compensation characteristics are independent from each other.

以上の手順により、APC回路101,102はそれぞれキャリア位相誤差を補償した受信信号を出力するとともに、位相補償後の受信信号703と基準信号704の差である位相誤差信号を出力する。比較回路107は、APC回路101,102からそれぞれ出力される位相誤差信号の大小比較を行い、位相同期精度の高い方を示す信号を選択する選択信号を出力する。選択回路108は、比較回路107から出力される選択信号に応じて、APC回路101,102から出力される受信信号のうち位相同期精度の高い方の受信信号を選択して出力する。これにより、キャリア位相同期精度の高いAPC回路を随時選択することができ、BER特性を改善することができる。   Through the above procedure, the APC circuits 101 and 102 each output a reception signal compensated for the carrier phase error, and also output a phase error signal that is the difference between the phase-compensated reception signal 703 and the reference signal 704. The comparison circuit 107 compares the phase error signals output from the APC circuits 101 and 102, respectively, and outputs a selection signal for selecting a signal indicating the one with higher phase synchronization accuracy. The selection circuit 108 selects and outputs the reception signal with higher phase synchronization accuracy among the reception signals output from the APC circuits 101 and 102 according to the selection signal output from the comparison circuit 107. Thereby, an APC circuit with high carrier phase synchronization accuracy can be selected at any time, and BER characteristics can be improved.

(第2の実施形態)
図2は、本発明のキャリア位相同期回路の第2の実施形態を示す。図において、キャリア周波数オフセットが補償された受信信号は、キャリア位相補償特性が互いに異なる2つのAPC回路101,102に入力される。APC回路101,102はキャリア位相誤差を補償した受信信号を出力し、シンボル判定回路103,104で64QAMにおける信号点のうち最も近いシンボルに判定される。シンボル判定された受信信号は、それぞれ誤り訂正回路105,106に入力される。誤り訂正回路105,106では、シンボル判定された受信信号の誤り訂正を行うとともに、誤り訂正の可否を示す誤り訂正可否信号を出力する。判定回路109は、誤り訂正回路105,106からそれぞれ出力される誤り訂正可否信号を入力し、比較する。選択回路108は、誤り訂正回路105,106から出力される受信信号を入力し、判定回路109における各誤り訂正可否信号の判定結果に応じて、位相同期精度の高い方の受信信号を選択して出力する。
(Second Embodiment)
FIG. 2 shows a second embodiment of the carrier phase synchronization circuit of the present invention. In the figure, the received signal whose carrier frequency offset is compensated is input to two APC circuits 101 and 102 having different carrier phase compensation characteristics. The APC circuits 101 and 102 output the received signal compensated for the carrier phase error, and the symbol determination circuits 103 and 104 determine the closest symbol among the signal points in 64QAM. The received signals subjected to symbol determination are input to error correction circuits 105 and 106, respectively. The error correction circuits 105 and 106 perform error correction of the received signal determined as a symbol and output an error correction enable / disable signal indicating whether or not error correction is possible. The decision circuit 109 receives and compares the error correction availability signals output from the error correction circuits 105 and 106, respectively. The selection circuit 108 receives the reception signals output from the error correction circuits 105 and 106, selects the reception signal with higher phase synchronization accuracy according to the determination result of each error correction enable / disable signal in the determination circuit 109. Output.

本実施形態では、誤り訂正符号にリードソロモン符号を用いるものとする。送信側でリードソロモン符号に符号化された64QAMの信号は、受信後にキャリア周波数オフセットが補償され、APC回路101,102に入力される。APC回路101,102は、キャリア位相と残留したキャリア周波数オフセットに起因する位相変動、および位相雑音による位相変動を推定して補償する。ここでは、第1の実施形態と同様に、ステップサイズパラメータの異なるLMSアルゴリズムを適用し、位相補償後の受信信号を出力する。   In this embodiment, a Reed-Solomon code is used as the error correction code. The 64QAM signal encoded in the Reed-Solomon code on the transmission side is compensated for the carrier frequency offset after being received, and is input to the APC circuits 101 and 102. The APC circuits 101 and 102 estimate and compensate for the phase fluctuation caused by the carrier phase and the residual carrier frequency offset, and the phase fluctuation caused by the phase noise. Here, as in the first embodiment, an LMS algorithm with a different step size parameter is applied, and a received signal after phase compensation is output.

シンボル判定回路103,104でシンボル判定された受信信号は、誤り訂正回路105,106で誤り訂正される。このとき、誤り訂正回路105,106は、受信信号に含まれる誤りの数が訂正可能な範囲内か否かを示す誤り訂正可否信号を出力する。誤り訂正可否信号は、シンボル判定された受信信号に誤りがない場合またはすべての誤りが訂正可能であった場合に「1」、そうでない場合に「0」となる。誤り訂正が正しく行われたか否かは、誤りパターンを表すベクトルであるシンドロームを計算することにより判定する。受信信号をY、検査行列をHとすると、シンドロームSは、
S=YHt …(2)
により算出される。ただし、添え字tは行列の転置を表す。誤り訂正後の受信信号に対して式(2) を適用すると、誤り訂正後の受信信号に誤りが生じていない場合はシンドロームが0ベクトルとなるため、誤りが訂正されたか否かを判定することができる。
The received signals subjected to symbol determination by the symbol determination circuits 103 and 104 are error-corrected by error correction circuits 105 and 106. At this time, the error correction circuits 105 and 106 output an error correction enable / disable signal indicating whether or not the number of errors included in the received signal is within a correctable range. The error correction availability signal is “1” when there is no error in the symbol-determined received signal or when all errors can be corrected, and “0” otherwise. Whether or not error correction is correctly performed is determined by calculating a syndrome that is a vector representing an error pattern. If the received signal is Y and the check matrix is H, the syndrome S is
S = YH t (2)
Is calculated by Note that the subscript t represents transposition of the matrix. When equation (2) is applied to the received signal after error correction, if there is no error in the received signal after error correction, the syndrome is 0 vector, so it is determined whether the error has been corrected or not. Can do.

判定回路109は、誤り訂正回路105,106から出力される誤り訂正可否信号の判定結果により、キャリア位相補償の精度を比較する。ここでは、APC回路101をマスタとし、APC回路102をスレーブとする場合の動作について説明する。まず、誤り訂正回路105から出力される誤り訂正可否信号を判定し、APC回路101から出力される受信信号に誤りがない場合、または誤り訂正が可能であった場合には、誤り訂正回路105から出力される受信信号を選択する信号を出力する。一方、APC回路101で誤り訂正不能な誤りが生じていた場合には、誤り訂正回路106から出力される誤り訂正可否信号を判定する。このとき、APC回路102から出力される受信信号に誤りがない場合、または誤り訂正が可能であった場合には、誤り訂正回路106から出力される受信信号を選択する信号を出力する。また、双方で誤り訂正不能な誤りが生じていた場合には、マスタであるAPC101に対応する誤り訂正回路105から出力される受信信号を選択する信号を出力する。選択回路108は、判定回路109から出力される選択信号に応じて、誤り訂正回路105,106から出力される受信信号の一方を選択して出力する。   The determination circuit 109 compares the accuracy of carrier phase compensation based on the determination result of the error correction availability signal output from the error correction circuits 105 and 106. Here, an operation when the APC circuit 101 is a master and the APC circuit 102 is a slave will be described. First, an error correction enable / disable signal output from the error correction circuit 105 is determined, and if there is no error in the received signal output from the APC circuit 101, or if error correction is possible, the error correction circuit 105 A signal for selecting a reception signal to be output is output. On the other hand, when an error that cannot be corrected has occurred in the APC circuit 101, an error correction enable / disable signal output from the error correction circuit 106 is determined. At this time, if there is no error in the reception signal output from the APC circuit 102 or if error correction is possible, a signal for selecting the reception signal output from the error correction circuit 106 is output. In addition, when an error that cannot be corrected in both has occurred, a signal for selecting a reception signal output from the error correction circuit 105 corresponding to the master APC 101 is output. The selection circuit 108 selects and outputs one of the reception signals output from the error correction circuits 105 and 106 according to the selection signal output from the determination circuit 109.

このような選択処理を行うことにより、最悪でもAPC回路101を単体で用いた場合と同等のBER特性が得られる。また、APC回路101と102のビット誤りが独立に起これば、位相同期精度の高い方の受信信号を選択することができるので、BER特性を改善することができる。   By performing such a selection process, the BER characteristic equivalent to the case where the APC circuit 101 is used alone can be obtained at worst. If bit errors of APC circuits 101 and 102 occur independently, it is possible to select a received signal with higher phase synchronization accuracy, so that the BER characteristics can be improved.

図8は、本発明のキャリア位相同期回路を64QAMに適用した場合のBER特性を示す。ここでは、APC回路101,102にVLMS(Variable-gain Least Mean Squares)アルゴリズムを適用しており、それぞれのステップサイズパラメータを0.15、0.05としている。比較のため、APC回路101,102を単体で用いた場合のBER特性を併せて示す。これによると、誤り訂正が効果的になるCNRの高い領域において、単体のAPC回路を用いた場合より、本実施形態のように位相同期精度の高い方の受信信号を選択する方の特性がよくなることがわかる。たとえば、BERが10-3の点に注目すると、CNRを 0.5dB改善した場合と同等の効果を実現することができる。 FIG. 8 shows BER characteristics when the carrier phase synchronization circuit of the present invention is applied to 64QAM. Here, a VLMS (Variable-gain Least Mean Squares) algorithm is applied to the APC circuits 101 and 102, and the step size parameters are 0.15 and 0.05, respectively. For comparison, the BER characteristics when the APC circuits 101 and 102 are used alone are also shown. According to this, in the high CNR region where error correction is effective, the characteristics of selecting the received signal with the higher phase synchronization accuracy as in the present embodiment is improved as compared with the case where a single APC circuit is used. I understand that. For example, paying attention to the point where the BER is 10 −3 , it is possible to achieve the same effect as when the CNR is improved by 0.5 dB.

本発明のキャリア位相同期回路の第1の実施形態を示す図。The figure which shows 1st Embodiment of the carrier phase synchronizing circuit of this invention. 本発明のキャリア位相同期回路の第2の実施形態を示す図。The figure which shows 2nd Embodiment of the carrier phase synchronizing circuit of this invention. 16QAMの信号点配置に15度の位相誤差が生じた状態を示す図。The figure which shows the state which produced the phase error of 15 degree | times in the signal point arrangement | positioning of 16QAM. 16QAMの信号点配置を示す図。The figure which shows the signal point arrangement | positioning of 16QAM. 64QAMの信号点配置を示す図。The figure which shows the signal point arrangement | positioning of 64QAM. 位相雑音を含む64QAMの信号点配置を模式的に示す図。The figure which shows typically signal point arrangement | positioning of 64QAM containing phase noise. LMSアルゴリズムによるキャリア位相補償の仕組みを模式的に示す図。The figure which shows typically the structure of the carrier phase compensation by a LMS algorithm. 本発明のキャリア位相同期回路を64QAMに適用した場合のBER特性を示す図。The figure which shows the BER characteristic at the time of applying the carrier phase synchronizing circuit of this invention to 64QAM. 従来法における64QAMの閾値を示す図。The figure which shows the threshold value of 64QAM in a conventional method. 従来法における送受信機の構成例を示す図。The figure which shows the structural example of the transmitter / receiver in the conventional method.

符号の説明Explanation of symbols

101,102 自動位相制御(APC)回路
103,104 シンボル判定回路
105,106 誤り訂正回路
107 比較回路
108 選択回路
109 判定回路
200 送信機
201 ローカル発振器
202 中間周波数帯の信号の入力端子
203,214 ミキサ
204,213 バンドパスフィルタ
205,212 アンプ
206,211 アンテナ
210 受信機
215 中間周波数帯の信号の出力端子
401,402 16QAMの信号点
501,502 64QAMの信号点
701 APC回路における位相補償前の受信信号
702 LMSアルゴリズムによるキャリア位相の推定値
703 LMSアルゴリズムによりキャリア位相補償された受信信号
704 シンボル判定した信号点
705 残留するキャリア位相
101, 102 Automatic phase control (APC) circuit 103, 104 Symbol determination circuit 105, 106 Error correction circuit 107 Comparison circuit 108 Selection circuit 109 Determination circuit 200 Transmitter 201 Local oscillator 202 Intermediate frequency band signal input terminal 203, 214 Mixer 204, 213 Band pass filter 205, 212 Amplifier 206, 211 Antenna 210 Receiver 215 Intermediate frequency band signal output terminal 401, 402 16QAM signal point 501, 502 64QAM signal point 701 Received signal before phase compensation in APC circuit 702 Estimated value of carrier phase by LMS algorithm 703 Received signal compensated for carrier phase by LMS algorithm 704 Symbol determined signal point 705 Residual carrier phase

Claims (3)

直交復調した受信信号のキャリア位相誤差を補償するキャリア位相同期回路において、 前記受信信号を入力し、キャリア位相誤差を推定・補償した第1の受信信号と、位相同期精度を表す第1の位相誤差信号を出力する第1の自動位相制御回路と、
前記第1の自動位相制御回路とキャリア位相補償特性が異なり、前記受信信号を入力し、キャリア位相誤差を推定・補償した第2の受信信号と位相同期精度を表す第2の位相誤差信号を出力する第2の自動位相制御回路と、
前記第1の位相誤差信号および前記第2の位相誤差信号を入力し、その大小比較を行う比較回路と、
前記比較回路における各位相誤差信号の比較結果に応じて、キャリア位相誤差を補償した前記第1の受信信号および前記第2の受信信号のうち、位相同期精度の高い方の受信信号を選択して出力する選択回路と
を備えたことを特徴とするキャリア位相同期回路。
In a carrier phase synchronization circuit that compensates for a carrier phase error in a quadrature demodulated received signal, the first received signal is input, and the first received signal that is estimated and compensated for the carrier phase error, and a first phase error that represents the phase synchronization accuracy A first automatic phase control circuit for outputting a signal;
The carrier phase compensation characteristic is different from that of the first automatic phase control circuit, the received signal is input, and the second received signal obtained by estimating and compensating the carrier phase error and the second phase error signal indicating the phase synchronization accuracy are output. A second automatic phase control circuit,
A comparison circuit that inputs the first phase error signal and the second phase error signal and compares the magnitudes thereof;
According to the comparison result of each phase error signal in the comparison circuit, the received signal having the higher phase synchronization accuracy is selected from the first received signal and the second received signal compensated for the carrier phase error. A carrier phase synchronization circuit comprising: a selection circuit for outputting.
送信側で誤り訂正用の冗長ビットを付加したディジタル信号を受信し、直交復調した受信信号のキャリア位相誤差を補償するキャリア位相同期回路において、
前記受信信号を入力し、キャリア位相誤差を推定・補償した第1の受信信号を出力する第1の自動位相制御回路と、
前記第1の自動位相制御回路とキャリア位相補償特性が異なり、前記受信信号を入力し、キャリア位相誤差を推定・補償した第2の受信信号を出力する第2の自動位相制御回路と、
前記第1の受信信号のシンボル判定を行う第1のシンボル判定回路と、
前記第2の受信信号のシンボル判定を行う第2のシンボル判定回路と、
前記第1のシンボル判定回路でシンボル判定された受信信号の誤り訂正を行うとともに、受信信号の誤りの数が訂正可能な範囲内であったか否かを示す第1の誤り訂正可否信号を出力する第1の誤り訂正回路と、
前記第2のシンボル判定回路でシンボル判定された受信信号の誤り訂正を行うとともに、受信信号の誤りの数が訂正可能な範囲内であったか否かを示す第2の誤り訂正可否信号を出力する第2の誤り訂正回路と、
前記第1の誤り訂正可否信号および前記第2の誤り訂正可否信号を入力し、いずれか一方が誤り訂正可を示す場合にはその誤り訂正回路で誤り訂正された受信信号を選択する選択信号を出力し、両方とも誤り訂正可を示す場合または両方とも誤り訂正否を示す場合には第1の誤り訂正回路で誤り訂正された受信信号を選択する選択信号を出力する判定回路と、
前記判定回路から出力される選択信号に応じて、前記第1の誤り訂正回路または前記第2の誤り訂正回路で誤り訂正された受信信号を選択して出力する選択回路と
を備えたことを特徴とするキャリア位相同期回路。
In the carrier phase synchronization circuit that receives a digital signal with redundant bits for error correction on the transmission side and compensates for the carrier phase error of the orthogonally demodulated reception signal,
A first automatic phase control circuit that inputs the received signal and outputs a first received signal in which a carrier phase error is estimated and compensated;
A second automatic phase control circuit that has a carrier phase compensation characteristic different from that of the first automatic phase control circuit, inputs the received signal, and outputs a second received signal in which a carrier phase error is estimated and compensated;
A first symbol determination circuit that performs symbol determination of the first received signal;
A second symbol determination circuit for performing symbol determination of the second received signal;
A first error correction enable / disable signal indicating whether or not the number of errors in the received signal is within a correctable range is output while performing error correction on the received signal determined by the first symbol determining circuit. 1 error correction circuit;
A second error correction enable / disable signal indicating whether or not the number of errors in the received signal is within a correctable range is output while performing error correction on the received signal determined by the second symbol determining circuit. Two error correction circuits;
The first error correction enable / disable signal and the second error correction enable / disable signal are input, and when either one indicates error correction enable, a selection signal for selecting a received signal error-corrected by the error correction circuit is provided. A determination circuit that outputs a selection signal for selecting a reception signal that has been error-corrected by the first error correction circuit when both output indicate error correction possible or both indicate error correction failure;
A selection circuit that selects and outputs a reception signal that has been error-corrected by the first error correction circuit or the second error correction circuit in accordance with a selection signal output from the determination circuit. Carrier phase synchronization circuit.
請求項1または請求項2に記載のキャリア位相同期回路において、
前記第1の自動位相制御回路は、位相変動に対する追従特性の高いキャリア位相補償特性を有する構成であり、
前記第2の自動位相制御回路は、位相変動に対する追従特性の低いキャリア位相補償特性を有する構成である
ことを特徴とするキャリア位相同期回路。
In the carrier phase synchronization circuit according to claim 1 or 2,
The first automatic phase control circuit is configured to have a carrier phase compensation characteristic with a high follow-up characteristic with respect to phase fluctuations,
The carrier phase synchronization circuit, wherein the second automatic phase control circuit has a carrier phase compensation characteristic having a low follow-up characteristic with respect to phase fluctuation.
JP2004327488A 2004-11-11 2004-11-11 Carrier phase synchronization circuit Active JP4335121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327488A JP4335121B2 (en) 2004-11-11 2004-11-11 Carrier phase synchronization circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327488A JP4335121B2 (en) 2004-11-11 2004-11-11 Carrier phase synchronization circuit

Publications (2)

Publication Number Publication Date
JP2006140682A true JP2006140682A (en) 2006-06-01
JP4335121B2 JP4335121B2 (en) 2009-09-30

Family

ID=36621182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327488A Active JP4335121B2 (en) 2004-11-11 2004-11-11 Carrier phase synchronization circuit

Country Status (1)

Country Link
JP (1) JP4335121B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183503B1 (en) * 2016-06-17 2017-08-23 Nttエレクトロニクス株式会社 Phase compensation device, phase compensation method, and communication device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183503B1 (en) * 2016-06-17 2017-08-23 Nttエレクトロニクス株式会社 Phase compensation device, phase compensation method, and communication device
JP2017225075A (en) * 2016-06-17 2017-12-21 Nttエレクトロニクス株式会社 Phase compensation device, phase compensation method, and communication device

Also Published As

Publication number Publication date
JP4335121B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
US7577213B2 (en) Hierarchical 8PSK performance
US8750424B2 (en) Signal receiving apparatus, signal receiving method and signal receiving program
US10439732B2 (en) Receiving device and phase-error compensation method
CN102546495A (en) Method and device for frequency offset compensation
JP2008005357A (en) Dc offset removing apparatus and dc offset removing method
JP4930424B2 (en) Phase tracking circuit, radio receiver, signal processing method, and program used for signal processing
JP2007067614A (en) Radio communication system, radio communication terminal, base station, radio communication method and program
JP5251988B2 (en) Dual-polarization transmission system, dual-polarization transmission method, receiver, transmitter, receiver, and transmitter
JP2009147522A (en) Multilevel qam demodulator, multilevel qam demodulation method, and wireless communication system
JP4335121B2 (en) Carrier phase synchronization circuit
US7369622B2 (en) Diversity circuit demodulating OFDM-method signals and diversity receiving apparatus having said diversity circuit therein
US10103816B2 (en) Method and system for decoding a modulated signal
KR101999116B1 (en) Method for transmitting and receiving radio signal using iq imbalance
JP4207845B2 (en) Modulation / demodulation method and circuit
CN111355501B (en) System and method for correcting quadrature error of broadband transmitter of TDD system
JP5637034B2 (en) Receiving apparatus and receiving method
JP5577912B2 (en) Cross polarization interference compensation device
JP4769315B2 (en) Digital modulation signal demodulation circuit
JP2021141442A (en) Wireless receiving device
WO2015005197A1 (en) Demodulation circuit, receiver and demodulation method
JP5168111B2 (en) Demodulator having phase uncertainty elimination function and carrier slip compensation method thereof
JP2020068504A (en) Adaptive equalizer and carrier recovery circuit
JP2012204929A (en) Reception device and reception method
JP2004187123A (en) Communication method
WO2004032440A1 (en) Reception device and blind reception method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4335121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350