JP2006138229A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2006138229A
JP2006138229A JP2004327143A JP2004327143A JP2006138229A JP 2006138229 A JP2006138229 A JP 2006138229A JP 2004327143 A JP2004327143 A JP 2004327143A JP 2004327143 A JP2004327143 A JP 2004327143A JP 2006138229 A JP2006138229 A JP 2006138229A
Authority
JP
Japan
Prior art keywords
exhaust valve
cold
engine
internal combustion
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004327143A
Other languages
Japanese (ja)
Other versions
JP4396487B2 (en
Inventor
Ryosuke Hiyoshi
亮介 日吉
Shinichi Takemura
信一 竹村
Susumu Ishizaki
晋 石崎
Takeshi Arinaga
毅 有永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004327143A priority Critical patent/JP4396487B2/en
Publication of JP2006138229A publication Critical patent/JP2006138229A/en
Application granted granted Critical
Publication of JP4396487B2 publication Critical patent/JP4396487B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly activate a catalyst device by increasing exhaust gas temperature at cold engine and secure an acceleration responsiveness from an idling condition. <P>SOLUTION: Variable valve trains capable of variably controlling lift/operating angle and center angle are provided on both of an intake valve and an exhaust valve of an internal combustion engine. The lift/operating angle of the exhaust valve gets small and exhaust valve open timing is retarded after bottom dead center as characteristics 104, 105 at the time of cold engine as compared with characteristics 101 after warming up in idling. Consequently, exhaust gas is compressed in a cylinder to raise temperature and increase pumping loss. The intake valve gets characteristics to increase engine load at cold engine. Lift characteristics of the exhaust valve is preferentially variably controlled like the characteristics 104→the characteristics 102 at a time of acceleration from the cold engine condition. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、排気系に触媒装置を備えた内燃機関に関し、特に、排気弁の可変制御により触媒装置の早期昇温を実現する技術に関する。   The present invention relates to an internal combustion engine having a catalyst device in an exhaust system, and more particularly to a technique for realizing an early temperature increase of the catalyst device by variable control of an exhaust valve.

排気系に設けられた排気浄化用の触媒装置を機関の始動後に早期に活性化させるために、排気弁のバルブリフト特性を可変制御し、排気温度を上昇させるようにした技術が、特許文献1および特許文献2に開示されている。特許文献1の技術は、排気弁を電磁駆動機構によって開閉駆動する構成であり、冷機時には、排気弁の開時期を下死点よりも遅角させて、排気ガスを圧縮したときの圧縮温度によって排気温度を上昇させ、触媒温度の早期昇温を図っている。また特許文献2の技術は、排気弁の可変動弁機構として、バルブリフト特性の作動角とその中心角とを可変制御し得る機構を備えており、冷機時には、作動角を小さくするとともに中心角の位相を進角させて、排気弁開時期および排気弁閉時期の双方を進角させるようになっている。これにより、排気温度を上昇させるとともに機関温度も上昇させるという構成となっている。
特開2001−289075号公報 特開2001−355469号公報
Patent Document 1 discloses a technique for variably controlling the valve lift characteristic of an exhaust valve and increasing the exhaust temperature in order to activate the exhaust purification catalyst device provided in the exhaust system early after the engine is started. And Patent Document 2. The technology of Patent Document 1 is a configuration in which the exhaust valve is driven to open and close by an electromagnetic drive mechanism. The exhaust gas temperature is raised to increase the catalyst temperature quickly. The technology of Patent Document 2 includes a mechanism that can variably control the operating angle of the valve lift characteristic and its central angle as a variable valve mechanism of the exhaust valve. When the engine is cold, the operating angle is reduced and the central angle is reduced. Is advanced to advance both the exhaust valve opening timing and the exhaust valve closing timing. Thus, the exhaust temperature is raised and the engine temperature is also raised.
JP 2001-289075 A JP 2001-355469 A

しかしながら、上記特許文献1の技術では、排気弁の開時期をリタードすることによって排気温度を上昇させているが、排気弁として電磁弁を使用しているため、バルブリフト量は常に大きく、排気の押出損失は増大しない。そのため、特にアイドル状態において、機関回転速度を上昇させることなくエンジン負荷を上昇させることができないため、排気温度の上昇幅は、それほど大きなものとはならない。   However, in the technique of Patent Document 1, the exhaust temperature is raised by retarding the opening timing of the exhaust valve. However, since the solenoid valve is used as the exhaust valve, the valve lift amount is always large, Extrusion loss does not increase. Therefore, particularly in the idle state, the engine load cannot be increased without increasing the engine rotation speed, and therefore, the increase range of the exhaust temperature is not so large.

このようにリフト量が大きい電磁弁からなる排気弁を用いて、その可変制御によってエンジン負荷を増大させるためには、排気弁の開弁期間(作動角)を短縮して排気の押出損失を増大させる必要がある。しかし適切な排気弁開時期に設定するためには排気弁閉時期が上死点前に設定されてしまうことになるので、残留ガス増加による燃焼悪化によって未燃HCの排出量が増加するという問題が生じる。一方、残留ガスを低減するために排気弁閉時期を上死点近傍に設定すると、排気弁開時期も上死点近傍に設定されることになるため、既燃ガスを再圧縮した後の高圧下で排気弁を開くことになり、電磁弁を作動させるためのアクチュエータ容量を大きくする必要が生じるといった新たな問題が生じる。   In order to increase the engine load by variable control using an exhaust valve composed of a solenoid valve having a large lift, the exhaust valve opening period (operating angle) is shortened to increase the exhaust extrusion loss. It is necessary to let However, in order to set an appropriate exhaust valve opening timing, the exhaust valve closing timing will be set before the top dead center, so that the amount of unburned HC emissions increases due to combustion deterioration due to an increase in residual gas. Occurs. On the other hand, if the exhaust valve closing timing is set near top dead center in order to reduce residual gas, the exhaust valve opening timing is also set near top dead center, so the high pressure after recompressing the burned gas The exhaust valve is opened below, and a new problem arises that it is necessary to increase the actuator capacity for operating the solenoid valve.

また特許文献2の技術では、冷機時に排気弁閉時期を上死点前に進角させるため、残留ガス量増加による燃焼安定性の悪化によって点火時期を大きくリタードすることができず、排気温度を効果的に上昇させることができない。また、冷機時の排気弁開時期が暖機状態における排気弁開時期よりも進角しているため、下死点後にリタードする場合に比べて、排気の圧縮仕事が行われず、また排気の押出損失が減少するため、軸トルクを一定に維持しつつエンジン負荷を大きくすることができず、排気温度を効果的に上昇させることができない。   In the technique of Patent Document 2, since the exhaust valve closing timing is advanced before the top dead center when the engine is cold, the ignition timing cannot be largely retarded due to the deterioration of combustion stability due to the increase in the residual gas amount, and the exhaust temperature is reduced. It cannot be raised effectively. In addition, since the exhaust valve opening timing during cold operation is more advanced than the exhaust valve opening timing during warm-up, the exhaust compression work is not performed and the exhaust extrusion is not performed as compared with the case of retarding after bottom dead center. Since the loss is reduced, the engine load cannot be increased while maintaining the shaft torque constant, and the exhaust temperature cannot be increased effectively.

本発明は、請求項1に記載のように、排気系に設けられた排気浄化用の触媒装置と、排気弁のリフト量および開閉時期を変更する排気弁リフト特性変更手段と、吸気弁のリフト量および開閉時期を変更する吸気弁リフト特性変更手段と、機関の冷機状態を検出する冷機検出手段と、を有し、機関の冷機時に、エンジン負荷が軸トルクよりも大となるように排気弁のリフト特性を制御するとともに、軸トルクが要求軸トルクを満たすように吸気弁のリフト特性を制御して、排気温度を上昇させる内燃機関において、冷機時アイドリング状態から加速開始するときに、軸トルクが増大するように、吸気弁のリフト特性よりも排気弁のリフト特性を優先的に可変制御することを特徴としている。   According to the present invention, the exhaust purification catalyst device provided in the exhaust system, the exhaust valve lift characteristic changing means for changing the lift amount and opening / closing timing of the exhaust valve, and the lift of the intake valve are provided. An intake valve lift characteristic changing means for changing the amount and opening / closing timing, and a cooler detecting means for detecting the cold state of the engine, and the exhaust valve so that the engine load becomes larger than the shaft torque when the engine is cold. In the internal combustion engine that raises the exhaust temperature by controlling the lift characteristics of the intake valve so that the shaft torque satisfies the required shaft torque, the shaft torque when starting acceleration from the cold idling state Is characterized in that the lift characteristic of the exhaust valve is variably controlled with priority over the lift characteristic of the intake valve.

例えば、機関が冷機状態かつアイドリング状態にあるときには、排気弁のリフト特性として、排気弁リフト量が暖機時に比べて小さくかつ排気弁開時期が大幅に遅延化するように設定される。これにより、膨張行程後に既燃焼ガスが再度圧縮されてから排気弁が開き排気行程が始まることになるため、再圧縮仕事が行われ、また、排気弁リフト量が小さい状態で排気ガスが排出されることによって押出損失が増大するので、エンジン負荷(燃料量、吸入空気量)に比較して、実際に出力される軸トルクが減少する。一方、吸気弁のリフト特性は、アイドル回転速度の維持に必要な要求軸トルクを満たすように、暖機後の状態よりも吸入空気量が増大する特性となる。従って、軸トルクに比較してエンジン負荷が大幅に大きくなり、排気ガス温度も暖機時に比べて大幅に上昇する。   For example, when the engine is in a cold state and in an idling state, the exhaust valve lift characteristic is set so that the exhaust valve lift amount is smaller than that during warm-up and the exhaust valve opening timing is greatly delayed. As a result, the exhaust valve is opened after the already burned gas is compressed again after the expansion stroke, and the exhaust stroke starts. Therefore, the recompression work is performed, and the exhaust gas is discharged with a small exhaust valve lift amount. As a result, the extrusion loss increases, so that the actually output shaft torque decreases compared to the engine load (fuel amount, intake air amount). On the other hand, the lift characteristic of the intake valve is a characteristic in which the intake air amount increases more than the state after the warm-up so as to satisfy the required shaft torque necessary for maintaining the idle rotation speed. Therefore, the engine load is significantly increased as compared with the shaft torque, and the exhaust gas temperature is significantly increased as compared with the warm-up time.

このような冷機時アイドリング状態から加速を開始するときに、本発明では、吸気弁のリフト特性は冷機時の大きなエンジン負荷を維持するように保ちつつ、排気弁のリフト特性を優先的に可変制御し、実際に出力される軸トルクを増大させる。これにより、高温の排気ガスとして排出されるエネルギとエンジン軸トルクとなるエネルギとの配分を適切に制御でき、要求された軸トルクを発生しつつ、そのときに可能な最大限の排気ガス上昇効果が得られる。   In the present invention, when starting acceleration from such a cold idling state, in the present invention, the lift characteristics of the intake valve are maintained so as to maintain a large engine load during cold, and the lift characteristics of the exhaust valve are preferentially variably controlled. Then, the actually output shaft torque is increased. This makes it possible to properly control the distribution of the energy discharged as high-temperature exhaust gas and the energy that becomes the engine shaft torque, while generating the required shaft torque and the maximum possible exhaust gas increase effect at that time Is obtained.

図1は、請求項1に係る発明の説明図であって、例えば、暖機後であれば、アイドリング状態のときに、排気弁および吸気弁は、符号101で示すリフト特性であり、軸トルクの増加に伴い、特性102さらには特性103のようにリフト特性が変化していく。なお、各々のリフト特性は、円の上方が上死点、円の下方が下死点の一般的なバルブタイミングチャートとして示したものであり、周知のように、図左側の円弧が排気弁、図右側の円弧が吸気弁の開弁期間である。また、この例では、後述するように、リフト量と作動角が同時に増減変化する機構を用いたものとしており、従って作動角が大であるほどリフト量も大となる。そして、図1は、縦軸を軸トルク、横軸をエンジン負荷として、各々の円の位置が、そのときの軸トルクおよびエンジン負荷を表している。   FIG. 1 is an explanatory diagram of the invention according to claim 1. For example, after warm-up, the exhaust valve and the intake valve have lift characteristics indicated by reference numeral 101 in the idling state, and shaft torque With the increase, the lift characteristic changes like the characteristic 102 and the characteristic 103. Each lift characteristic is shown as a general valve timing chart with the top dead center above the circle and the bottom dead center below the circle. As is well known, the arc on the left side of the figure is the exhaust valve, The arc on the right side of the figure is the intake valve opening period. Further, in this example, as will be described later, a mechanism is used in which the lift amount and the operating angle increase and decrease at the same time. Therefore, the lift amount increases as the operating angle increases. In FIG. 1, the vertical axis represents the axial torque and the horizontal axis represents the engine load, and the position of each circle represents the axial torque and the engine load at that time.

これに対し、機関が冷機状態であると、アイドリング状態のときに、排気弁および吸気弁のリフト特性は、特性104や特性105のように制御される。つまり、軸トルクは低く、かつエンジン負荷は大となる。そして、このようなアイドリング状態から加速を開始する際に、本発明では、排気弁のリフト特性が優先的に変化する。例えば、アイドリング状態のときに特性104の状態にあれば、特性104→特性102(厳密には暖機後の特性102とは異なる)のように変化する。アイドリング状態のときに特性105の状態にあれば、特性105→特性106(同じく厳密には暖機後の特性106とは異なる)のように変化する。   On the other hand, when the engine is in the cold state, the lift characteristics of the exhaust valve and the intake valve are controlled like the characteristics 104 and 105 when the engine is in the idling state. That is, the shaft torque is low and the engine load is large. And when starting acceleration from such an idling state, in this invention, the lift characteristic of an exhaust valve changes preferentially. For example, if the state is the state of the characteristic 104 in the idling state, the characteristic changes as follows: characteristic 104 → characteristic 102 (strictly different from the characteristic 102 after warm-up). If it is in the state of the characteristic 105 in the idling state, it changes as follows: characteristic 105 → characteristic 106 (also strictly different from the characteristic 106 after warming up).

より具体的な請求項2の発明においては、冷機状態の排気弁リフト量が、暖機後の排気弁リフト量よりも小さく、かつ冷機状態の排気弁開時期が、暖機後の排気弁開時期よりも遅い。図2は、この請求項2の発明の説明図であって、特性202あるいは特性203として例示する冷機時のリフト特性では、特性201として例示する暖機後のリフト特性に比較して、排気弁のリフト量(換言すれば作動角)が相対的に小さなものとなっており、さらに、排気弁開時期が相対的に遅角している。なお、特性201〜203は、いずれもアイドリング状態のときのリフト特性の例である。   More specifically, the exhaust valve lift amount in the cold state is smaller than the exhaust valve lift amount after the warm-up, and the exhaust valve opening timing in the cold state is the exhaust valve open time after the warm-up. Slower than time. FIG. 2 is an explanatory diagram of the invention of claim 2. In the lift characteristic at the time of cooling exemplified as the characteristic 202 or the characteristic 203, the exhaust valve is compared with the lift characteristic after warm-up exemplified as the characteristic 201. The lift amount (in other words, the operating angle) is relatively small, and the exhaust valve opening timing is relatively retarded. Each of the characteristics 201 to 203 is an example of a lift characteristic when in an idling state.

このように冷機時の排気弁リフト量を暖機後の排気弁リフト量よりも小さくすることで、高温・高圧の排気ガスが、わずかに開いた排気弁の隙間からピストンの上昇によって強制的に排出されるため、排気行程における排気ガスの押出損失が大幅に増加する。そのため、暖機後と同等の軸トルクを維持するためには、吸入空気量および燃料の増量が必要となり、エンジン負荷が増加する。従って、より大量でかつ高温の排気ガスが排出され、触媒の早期活性化を行うことが可能となる。しかも排気弁の開時期を下死点以降にまで遅らせるようにすると、膨張行程で燃焼した既燃ガスが下死点後に再度圧縮されて高温・高圧となり、排気の押出仕事がリフト量の小リフト化のみの場合よりもさらに増加する。そのため、さらに高温の排気ガスが排出されるようになり、排気系における触媒装置の温度が急速に上昇する。   Thus, by making the exhaust valve lift amount during cold operation smaller than the exhaust valve lift amount after warming up, high-temperature and high-pressure exhaust gas is forcibly forced by the lift of the piston through the gap between the slightly open exhaust valves. Since the exhaust gas is discharged, the extrusion loss of the exhaust gas in the exhaust stroke is greatly increased. Therefore, in order to maintain the same shaft torque as after warm-up, it is necessary to increase the intake air amount and the fuel amount, and the engine load increases. Accordingly, a larger amount of high-temperature exhaust gas is discharged, and the catalyst can be activated early. Moreover, if the exhaust valve is opened later than the bottom dead center, the burnt gas burned in the expansion stroke is compressed again after the bottom dead center to become high temperature and high pressure, and the exhaust extrusion work is a small lift. It is further increased compared to the case of only conversion. Therefore, even higher temperature exhaust gas is discharged, and the temperature of the catalyst device in the exhaust system rises rapidly.

請求項3に係る発明は、冷機時に非アイドリング状態から減速するときに、軸トルクが減少するように、吸気弁のリフト特性よりも排気弁のリフト特性を優先的に可変制御することを特徴とする。図3は、この請求項3の発明の説明図であって、特性301は暖機後のアイドリング状態のときのリフト特性の例を、特性302、303は、冷機時のアイドリング状態のときのリフト特性の例を、それぞれ示している。特性304および特性305は、冷機時の非アイドリング状態のときの特性例であって、この状態から減速したときに、排気弁のリフト特性を、特性302、303へ近づくように優先的に変化させる。例えば、排気弁のリフト量を小さくし、かつ開時期を遅角させる。   The invention according to claim 3 is characterized in that the lift characteristic of the exhaust valve is preferentially variably controlled over the lift characteristic of the intake valve so that the shaft torque is reduced when the vehicle is decelerated from the non-idling state when cold. To do. FIG. 3 is an explanatory diagram of the invention of claim 3, wherein the characteristic 301 is an example of the lift characteristic in the idling state after warm-up, and the characteristics 302 and 303 are the lift in the idling state at the time of cooling. Examples of characteristics are shown respectively. Characteristic 304 and characteristic 305 are characteristic examples in a non-idling state when the engine is cold, and when the vehicle is decelerated from this state, the lift characteristic of the exhaust valve is preferentially changed so as to approach the characteristics 302 and 303. . For example, the lift amount of the exhaust valve is reduced and the opening timing is retarded.

このように減速時に排気弁のリフト特性を優先的に可変制御することで、基本的に、吸気弁のリフト特性は吸入空気量が減少しないようにそのまま維持され、エンジン負荷が減少せずに軸トルクが抑制されることになる。従って、排気ガス温度上昇効果が増大する。   In this way, by variably controlling the lift characteristic of the exhaust valve during deceleration, the lift characteristic of the intake valve is basically maintained as it is so that the intake air amount does not decrease, and the engine load is not reduced. Torque is suppressed. Therefore, the effect of increasing the exhaust gas temperature is increased.

また請求項4に係る発明は、冷機時かつ非アイドリング状態からの減速時に燃料カットが行われるときに、急減速時の排気弁開時期の方が緩減速時の排気弁開時期よりも相対的に遅角側となるように制御することを特徴としている。   In the invention according to claim 4, when the fuel cut is performed when the engine is cold and the vehicle is decelerated from the non-idling state, the exhaust valve opening timing at the time of sudden deceleration is relative to the exhaust valve opening timing at the time of slow deceleration. It is characterized in that it is controlled so as to be on the retard side.

図4は、この請求項4の発明の説明図であって、減速開始前には特性401の状態にあり、この状態から最終的に特性402へと変化するが、その過程において、急減速であれば特性403のようになり、緩減速であれば、特性404のようになる。このように急減速時に排気弁開時期をより大きく遅角させることで、膨張行程終了後の再圧縮仕事が大となり、エンジンブレーキ作用を増大することができる。   FIG. 4 is an explanatory diagram of the invention of claim 4 and is in the state of the characteristic 401 before the start of deceleration, and finally changes from this state to the characteristic 402. If there is, a characteristic 403 is obtained, and if it is a slow deceleration, a characteristic 404 is obtained. Thus, by retarding the opening timing of the exhaust valve more greatly at the time of sudden deceleration, the recompression work after the end of the expansion stroke becomes large, and the engine braking action can be increased.

また請求項5に係る発明は、冷機時かつ非アイドリング状態からの減速時に燃料カットが行われるときに、急減速時の排気弁リフト量・作動角の方が緩減速時の排気弁リフト量・作動角よりも相対的に小さくなるように制御することを特徴としている。   Further, in the invention according to claim 5, when the fuel cut is performed at the time of cooling and when decelerating from the non-idling state, the exhaust valve lift amount / operating angle at the time of sudden deceleration is greater than the exhaust valve lift amount at the time of slow deceleration. It is characterized by being controlled so as to be relatively smaller than the operating angle.

図5は、この請求項5の発明の説明図であって、減速開始前には特性501の状態にあり、この状態から最終的に特性502へと変化するが、その過程において、急減速であれば特性503のようになり、緩減速であれば、特性504のようになる。このように急減速時にリフト量を小さくすることで、膨張行程終了後の既燃ガス排出時に排気弁開口面積が小さくなるため、排気ガス押出損失が増大し、エンジンブレーキ作用を増大することができる。   FIG. 5 is an explanatory diagram of the invention of claim 5 and is in the state of the characteristic 501 before the start of deceleration, and finally changes from this state to the characteristic 502. If there is, it becomes like the characteristic 503, and if it is slow deceleration, it becomes like the characteristic 504. By reducing the lift amount during sudden deceleration in this way, the exhaust valve opening area is reduced when the burned gas is discharged after the end of the expansion stroke, so that the exhaust gas extrusion loss increases and the engine braking action can be increased. .

さらに請求項6に係る発明は、冷機時かつ非アイドリング状態からの減速時に燃料カットが行われるときに、急減速時の吸気弁リフト量・作動角の方が緩減速時の吸気弁リフト量・作動角よりも相対的に大きくなるように制御することを特徴としている。   Further, in the invention according to claim 6, when the fuel cut is performed at the time of cooling and when decelerating from the non-idling state, the intake valve lift amount at the time of sudden deceleration and the operating angle are the intake valve lift amount at the time of slow deceleration, It is characterized by being controlled to be relatively larger than the operating angle.

図6は、この請求項6の発明の説明図であって、減速開始前には特性601の状態にあり、この状態から最終的に特性602へと変化するが、その過程において、急減速であれば特性603のようになり、緩減速であれば、特性604のようになる。このように急減速時に吸気弁のリフト量および作動角を大きくすることで、吸入空気量が増大し、排気弁のリフト量の縮小および排気弁開時期の遅角化によるエンジンブレーキ作用がさらに増大する。   FIG. 6 is an explanatory diagram of the invention of claim 6 and is in the state of the characteristic 601 before the start of deceleration, and finally changes from this state to the characteristic 602. If there is, a characteristic 603 is obtained, and if it is a slow deceleration, a characteristic 604 is obtained. By increasing the lift amount and operating angle of the intake valve during sudden deceleration in this way, the intake air amount is increased, and the engine braking action is further increased by reducing the exhaust valve lift amount and retarding the exhaust valve opening timing. To do.

請求項7に係る発明は、冷機時急減速時に燃料カットが行われるときに、排気弁リフト量・作動角を、冷機時アイドリング時の排気弁リフト量・作動角に制御することを特徴としている。   The invention according to claim 7 is characterized in that the exhaust valve lift amount / operating angle is controlled to the exhaust valve lift amount / operating angle at the time of cold idling when fuel cut is performed at the time of rapid deceleration during cold engine. .

図7は、この請求項7の発明の説明図であって、減速開始前には特性701の状態にあり、この状態から最終的に特性702へと変化するが、その過程において、特性703のようになる。このように制御することによって、燃料カット後、エンジン回転速度が急速に低下して燃料噴射が再開され、アイドル時の機関回転速度・軸トルク状態に復帰しようとするときに、失火したり機関回転速度が変動することなく、ただちにアイドル状態に復帰することができる。   FIG. 7 is an explanatory diagram of the invention of claim 7 and is in the state of the characteristic 701 before the start of deceleration, and finally changes from this state to the characteristic 702. In the process, the characteristic 703 It becomes like this. By controlling in this way, after the fuel cut, the engine speed is rapidly reduced and fuel injection is resumed. When trying to return to the engine speed / shaft torque state during idling, misfire or engine speed It is possible to return to the idle state immediately without changing the speed.

請求項8に係る発明は、冷機時アイドリング時の方が暖機後アイドリング時よりも、吸気弁リフト量・作動角が大きく、かつ排気弁リフト量・作動角が小さいことを特徴としている。図8は、この請求項8の発明の説明図であって、特性801が暖機後アイドリング状態のときの特性例、特性802が冷機時アイドリング状態のときの特性例、である。このように、冷機時アイドリング時の方が暖機時アイドリング時よりも吸気弁リフト量・作動角が大きくなるようにすることによって、冷機時アイドリング時の方が暖機時アイドリング時よりもエンジン負荷が増大する。さらに冷機時アイドリング時の方が暖機時アイドリングよりも排気弁リフト量・作動角が小さくなるようにすることによって、冷機時アイドリング時のエンジン負荷の方が大きいにもかかわらず軸トルクは暖機時アイドリング時と同等にすることができ、かつエンジン負荷が大きいことによって排気ガス温度を暖気時アイドリング時よりも上昇させることができる。   The invention according to claim 8 is characterized in that the intake valve lift amount / operating angle is larger and the exhaust valve lift amount / operating angle is smaller when idling when the engine is cold than when idling after warming up. FIG. 8 is an explanatory diagram of the invention of claim 8, showing a characteristic example when the characteristic 801 is in the idling state after warm-up, and a characteristic example when the characteristic 802 is in the idling state during cold. In this way, by making the intake valve lift amount and operating angle larger during idling during cold engine operation than during idling during warm engine operation, engine load during idling during cold engine operation is greater than during idling during warm engine operation. Will increase. Furthermore, by making the exhaust valve lift and operating angle smaller when idling during cold engine operation than when idling during warm engine operation, the shaft torque is warmed up even though the engine load during idling during cold engine operation is greater. The exhaust gas temperature can be made higher than that during idling due to the large engine load due to the fact that it can be made equivalent to that during idling.

請求項9に係る発明は、冷機時アイドリング状態から加速開始するときに、急加速要求であれば、吸気弁のリフト特性と排気弁のリフト特性の双方を同時に可変制御することを特徴とする。図9は、この請求項9の発明の説明図であって、冷機時アイドリング状態では、特性901もしくは特性902のような設定となり、例えば特性901の状態から加速したときに、緩減速であれば、排気弁のリフト特性を優先的に可変制御することで、特性901→特性903→特性904のように変化する。これに対し、急加速であれば、排気弁のリフト特性および吸気弁のリフト特性の双方を同時に可変制御することで、特性901→特性905→特性904のように変化する。このように制御することによって、急速に軸トルクが増大するため、急加速要求に応じることができる。   The invention according to claim 9 is characterized in that both the lift characteristics of the intake valve and the lift characteristics of the exhaust valve are variably controlled at the same time if a rapid acceleration is requested when acceleration is started from the idling state during cold. FIG. 9 is an explanatory diagram of the invention of claim 9. In the idling state at the time of cold, the setting is the characteristic 901 or the characteristic 902. For example, when accelerating from the state of the characteristic 901, the deceleration is slow. By changing the lift characteristic of the exhaust valve preferentially and variably, the characteristic changes from 901 → characteristic 903 → characteristic 904. On the other hand, in the case of rapid acceleration, both the lift characteristic of the exhaust valve and the lift characteristic of the intake valve are variably controlled at the same time, so that the characteristic changes as 901 → characteristic 905 → characteristic 904. By controlling in this way, the shaft torque increases rapidly, so that it is possible to respond to a rapid acceleration request.

請求項10に係る発明は、機関の温度もしくは触媒の温度の少なくとも一方を検出し、これらの暖機状態に対応する所定の設定値と検出温度との乖離量が大きいほど、軸トルクに対するエンジン負荷の比率が大となるように排気弁のリフト特性を制御することを特徴としている。   The invention according to claim 10 detects at least one of the engine temperature and the catalyst temperature, and the larger the deviation between the predetermined set value corresponding to the warm-up state and the detected temperature, the larger the engine load with respect to the shaft torque. The lift characteristic of the exhaust valve is controlled so as to increase the ratio.

図10は、この請求項10の発明の説明図であって、図の上段は、触媒温度および機関温度(例えば潤滑油温度や冷却水温度)の暖機時の温度に対する乖離量を示しており、この乖離量に応じて、図の下段に示すように、冷機時のエンジン負荷が異なるものとなる。軸トルクは、基本的に一定であり、従って、乖離量が大きいほど、軸トルクに対するエンジン負荷の比率が大となる。このように制御することにより、機関温度もしくは触媒温度が低いほどエンジン負荷が増大され、触媒を急速に活性化することができる。   FIG. 10 is an explanatory diagram of the invention of claim 10, and the upper part of the figure shows the amount of divergence of the catalyst temperature and the engine temperature (for example, lubricating oil temperature and cooling water temperature) with respect to the warm-up temperature. Depending on the amount of deviation, as shown in the lower part of the figure, the engine load during cold cooling varies. The shaft torque is basically constant. Therefore, the larger the deviation amount, the larger the ratio of the engine load to the shaft torque. By controlling in this way, the engine load increases as the engine temperature or the catalyst temperature decreases, and the catalyst can be activated rapidly.

この発明によれば、冷機時にエンジン負荷の高い状態で内燃機関が運転されることにより、高温の排気ガスが大量に得られ、触媒装置が早期に活性化する。そして、冷機時アイドリング状態から加速開始するときに、排気弁のリフト特性を優先的に可変制御して、エンジン負荷に対する軸トルクの比率を高めるので、良好な加速応答性を確保できるとともに、触媒の早期活性化を可能な範囲で継続することができる。   According to the present invention, when the internal combustion engine is operated with a high engine load when cold, a large amount of high-temperature exhaust gas is obtained, and the catalyst device is activated early. And, when starting acceleration from the idling state during cold engine, the lift characteristics of the exhaust valve are preferentially variably controlled to increase the ratio of shaft torque to engine load, so that good acceleration response can be ensured and the catalyst Early activation can be continued as much as possible.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図11は、この発明に係る内燃機関1のシステム構成を示す構成説明図であって、内燃機関1は、吸気弁3と排気弁4とを有し、かつ吸気弁3および排気弁4の双方に、可変動弁機構5,6が設けられている。これらの可変動弁機構5,6は、基本的に同一の構成であって、吸気弁3もしくは排気弁4のリフト・作動角を連続的に拡大・縮小させることが可能な第1可変動弁機構(VEL)5a,6aおよび作動角の中心角を連続的に遅進させることが可能な第2可変動弁機構(VTC)5b,6bをそれぞれ備えている。また、吸気通路7には、モータ等のアクチュエータにより開度が制御される電子制御スロットル弁2が設けられているとともに、その上流側に、吸入空気流量を検出するエアフロメータ8が設けられ、かつ下流の吸気コレクタ7aに、吸気圧センサ9が設けられている。そして、各気筒の吸気ポートへ向かって燃料を噴射するように、燃料噴射弁10が各気筒毎に設けられている。燃焼室中心には点火栓15が配置されている。   FIG. 11 is a configuration explanatory view showing a system configuration of the internal combustion engine 1 according to the present invention. The internal combustion engine 1 has an intake valve 3 and an exhaust valve 4, and both the intake valve 3 and the exhaust valve 4. In addition, variable valve mechanisms 5 and 6 are provided. These variable valve mechanisms 5 and 6 have basically the same configuration, and can be a first variable valve that can continuously expand and contract the lift and operating angle of the intake valve 3 or the exhaust valve 4. Mechanisms (VEL) 5a and 6a and second variable valve mechanisms (VTC) 5b and 6b capable of continuously delaying the central angle of the operating angle are provided. The intake passage 7 is provided with an electronically controlled throttle valve 2 whose opening degree is controlled by an actuator such as a motor, and an air flow meter 8 for detecting an intake air flow rate is provided upstream thereof, and An intake pressure sensor 9 is provided in the downstream intake collector 7a. A fuel injection valve 10 is provided for each cylinder so as to inject fuel toward the intake port of each cylinder. A spark plug 15 is arranged in the center of the combustion chamber.

ここで、上記スロットル弁2は、吸気通路7内に、ブローバイガスの処理などのために必要な僅かな負圧(例えば−50mmHg)を発生させるためだけに用いられており、吸入空気量の調整は、可変動弁機構5により吸気弁3のリフト特性を変更することで行われる。すなわち、吸入空気量の調整をスロットル弁開度に依存しない実質的なスロットルレス運転が実現される。そして、上記のように吸気弁3により調整された吸入空気量に応じた量の燃料が、上記燃料噴射弁10から噴射される。   Here, the throttle valve 2 is used only for generating a slight negative pressure (for example, −50 mmHg) necessary for processing blow-by gas in the intake passage 7 and adjusting the intake air amount. Is performed by changing the lift characteristic of the intake valve 3 by the variable valve mechanism 5. That is, a substantial throttle-less operation that does not depend on the throttle valve opening for adjusting the intake air amount is realized. An amount of fuel corresponding to the intake air amount adjusted by the intake valve 3 as described above is injected from the fuel injection valve 10.

また、排気通路11には、例えば三元触媒を用いた触媒装置12が介装されており、その上流側に、空燃比センサ13が配置されている。上記触媒装置12は、その温度を検出する触媒温度センサ14を備えている。また、内燃機関1には、冷却水温を検出する水温センサ16が設けられている。さらに、運転者により操作されるアクセルペダルの開度を検出するアクセル開度センサ17と、車速を検出する車速センサ18と、を備えており、これらのセンサ類の検出信号は、それぞれコントロールユニット19に入力されている。   In addition, a catalyst device 12 using, for example, a three-way catalyst is interposed in the exhaust passage 11, and an air-fuel ratio sensor 13 is disposed on the upstream side thereof. The catalyst device 12 includes a catalyst temperature sensor 14 that detects the temperature. Further, the internal combustion engine 1 is provided with a water temperature sensor 16 for detecting the cooling water temperature. Further, an accelerator opening sensor 17 for detecting the opening degree of an accelerator pedal operated by a driver and a vehicle speed sensor 18 for detecting a vehicle speed are provided, and the detection signals of these sensors are respectively supplied to a control unit 19. Has been entered.

上記のコントロールユニット19は、これらのセンサ類から入力された信号に基づいて、燃料噴射量、点火時期、スロットル弁2のスロットル開度、吸気弁3のリフト・作動角および中心角、排気弁4のリフト・作動角および中心角、などをそれぞれ制御する。   Based on the signals input from these sensors, the control unit 19 controls the fuel injection amount, the ignition timing, the throttle opening of the throttle valve 2, the lift / operating angle and the central angle of the intake valve 3, the exhaust valve 4 The lift, operating angle, center angle, etc. are controlled respectively.

なお、上記第1可変動弁機構5a,6aおよび第2可変動弁機構5b,6bを組み合わせた可変動弁機構5,6は、例えば、特開2002−256905号公報、特開2002−89341号公報等に開示された公知のものと同一の構成である。このものでは、第1可変動弁機構5a,6aによって、リフト量と作動角が同時にかつ連続的に増減変化し、第2可変動弁機構5b,6bによって、作動角の中心角の位相が連続的に遅進する。従って、両者の組み合わせによって、弁の開閉時期およびリフト量を運転条件に応じて可変制御することができる。これにより、前述した図1〜図9の排気弁4や吸気弁3の種々のリフト特性が実現される。   The variable valve mechanisms 5 and 6 combining the first variable valve mechanisms 5a and 6a and the second variable valve mechanisms 5b and 6b are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2002-256905 and 2002-89341. It is the same structure as the well-known thing disclosed by the gazette. In this case, the lift amount and the operating angle are increased and decreased simultaneously and continuously by the first variable valve mechanisms 5a and 6a, and the phase of the central angle of the operating angle is continuously changed by the second variable valve mechanisms 5b and 6b. Slow. Therefore, the valve opening / closing timing and the lift amount can be variably controlled according to the operating conditions by the combination of both. Thereby, the various lift characteristics of the exhaust valve 4 and the intake valve 3 of FIGS.

例えば、図1の暖機後の特性101と冷機時の特性104との対比から明らかなように、冷機時には、排気弁開時期が下死点よりも遅角し、かつ排気弁リフト量が小となる。このように排気弁開時期が遅角することで、排気ガスがシリンダ内で圧縮され、排気通路11に排出される際の温度が上昇する。そして、排気弁4のリフト量を小さくすることで押出損失が増加し、仮にエンジン負荷つまり燃料量や吸入空気量が同一であれば、外部へ出力される軸トルクは低下する。これに対し、吸気弁3は、アイドリング時には基本的に小作動角となっているが、暖機後アイドリング状態に比較して、冷機時には、吸気弁閉時期を下死点側に近付けることで、エンジン負荷の増大(吸入空気量の増大およびこれに伴う燃料量の増加)を行う。このエンジン負荷の増大は、押出損失の増加等による軸トルクの低下と相殺され、外部へ出力される軸トルクは一定に保持される。なお、この吸気弁3の作動角の拡大と併せて、スロットル弁2の開度の増加により、冷機時のエンジン負荷の増大を行うようにしてもよい。   For example, as is clear from the comparison between the characteristic 101 after warm-up in FIG. 1 and the characteristic 104 during cold, the exhaust valve opening timing is retarded from the bottom dead center and the exhaust valve lift amount is small during cold. It becomes. As the exhaust valve opening timing is retarded in this way, the temperature at which the exhaust gas is compressed in the cylinder and discharged into the exhaust passage 11 increases. Further, by reducing the lift amount of the exhaust valve 4, the extrusion loss increases. If the engine load, that is, the fuel amount and the intake air amount are the same, the shaft torque output to the outside decreases. On the other hand, the intake valve 3 basically has a small operating angle when idling, but by closing the intake valve closing timing closer to the bottom dead center side when cold, compared to the idling state after warming up, The engine load is increased (intake air amount and fuel amount associated therewith). This increase in engine load is offset by a decrease in shaft torque due to an increase in extrusion loss or the like, and the shaft torque output to the outside is kept constant. In addition to the increase in the operating angle of the intake valve 3, the engine load during cold operation may be increased by increasing the opening of the throttle valve 2.

請求項1の発明の説明図。Explanatory drawing of invention of Claim 1. 請求項2の発明の説明図。Explanatory drawing of invention of Claim 2. 請求項3の発明の説明図。Explanatory drawing of invention of Claim 3. 請求項4の発明の説明図。Explanatory drawing of invention of Claim 4. 請求項5の発明の説明図。Explanatory drawing of invention of Claim 5. 請求項6の発明の説明図。Explanatory drawing of invention of Claim 6. 請求項7の発明の説明図。Explanatory drawing of invention of Claim 7. 請求項8の発明の説明図。Explanatory drawing of invention of Claim 8. 請求項9の発明の説明図。Explanatory drawing of invention of Claim 9. 請求項10の発明の説明図。Explanatory drawing of invention of Claim 10. この発明に係る内燃機関のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the system structure of the internal combustion engine which concerns on this invention.

符号の説明Explanation of symbols

2…スロットル弁
3…吸気弁
4…排気弁
5,6…可変動弁機構
12…触媒装置
14…触媒温度センサ
2 ... Throttle valve 3 ... Intake valve 4 ... Exhaust valve 5,6 ... Variable valve mechanism 12 ... Catalyst device 14 ... Catalyst temperature sensor

Claims (10)

排気系に設けられた排気浄化用の触媒装置と、排気弁のリフト量および開閉時期を変更する排気弁リフト特性変更手段と、吸気弁のリフト量および開閉時期を変更する吸気弁リフト特性変更手段と、機関の冷機状態を検出する冷機検出手段と、を有し、機関の冷機時に、エンジン負荷が軸トルクよりも大となるように排気弁のリフト特性を制御するとともに、軸トルクが要求軸トルクを満たすように吸気弁のリフト特性を制御して、排気温度を上昇させる内燃機関において、冷機時アイドリング状態から加速開始するときに、軸トルクが増大するように、吸気弁のリフト特性よりも排気弁のリフト特性を優先的に可変制御することを特徴とする内燃機関。   Exhaust purification catalyst device provided in the exhaust system, exhaust valve lift characteristic changing means for changing the lift amount and opening / closing timing of the exhaust valve, and intake valve lift characteristic changing means for changing the lift amount and opening / closing timing of the intake valve And a cooler detecting means for detecting a cold state of the engine, and when the engine is cold, the lift characteristic of the exhaust valve is controlled so that the engine load is larger than the shaft torque, and the shaft torque is the required shaft. In an internal combustion engine that raises the exhaust temperature by controlling the lift characteristics of the intake valve so as to satisfy the torque, when starting acceleration from a cold idling state, the shaft torque increases more than the lift characteristics of the intake valve. An internal combustion engine characterized by preferentially variably controlling a lift characteristic of an exhaust valve. 冷機状態の排気弁リフト量が、暖機後の排気弁リフト量よりも小さく、かつ冷機状態の排気弁開時期が、暖機後の排気弁開時期よりも遅いことを特徴とする請求項1に記載の内燃機関。   The exhaust valve lift amount in the cold state is smaller than the exhaust valve lift amount after the warm-up, and the exhaust valve opening timing in the cold state is later than the exhaust valve opening timing after the warm-up. The internal combustion engine described in 1. 冷機時に非アイドリング状態から減速するときに、軸トルクが減少するように、吸気弁のリフト特性よりも排気弁のリフト特性を優先的に可変制御することを特徴とする請求項1または2に記載の内燃機関。   3. The exhaust valve lift characteristic is variably controlled preferentially over the intake valve lift characteristic so that the shaft torque is reduced when decelerating from a non-idling state when the engine is cold. Internal combustion engine. 冷機時かつ非アイドリング状態からの減速時に燃料カットが行われるときに、急減速時の排気弁開時期の方が緩減速時の排気弁開時期よりも相対的に遅角側となるように制御することを特徴とする請求項1〜3のいずれかに記載の内燃機関。   Controls so that the exhaust valve opening timing during sudden deceleration is relatively retarded than the exhaust valve opening timing during slow deceleration when fuel cut is performed during deceleration from cold and non-idling conditions The internal combustion engine according to any one of claims 1 to 3, wherein: 冷機時かつ非アイドリング状態からの減速時に燃料カットが行われるときに、急減速時の排気弁リフト量・作動角の方が緩減速時の排気弁リフト量・作動角よりも相対的に小さくなるように制御することを特徴とする請求項1〜4のいずれかに記載の内燃機関。   When a fuel cut is performed when the engine is cold and decelerated from a non-idling state, the exhaust valve lift amount / operating angle during sudden deceleration is relatively smaller than the exhaust valve lift amount / operating angle during slow deceleration. The internal combustion engine according to any one of claims 1 to 4, wherein the internal combustion engine is controlled as follows. 冷機時かつ非アイドリング状態からの減速時に燃料カットが行われるときに、急減速時の吸気弁リフト量・作動角の方が緩減速時の吸気弁リフト量・作動角よりも相対的に大きくなるように制御することを特徴とする請求項1〜5のいずれかに記載の内燃機関。   When a fuel cut is performed when the engine is cold and decelerated from a non-idling state, the intake valve lift amount / operating angle during sudden deceleration is relatively larger than the intake valve lift amount / operating angle during slow deceleration. The internal combustion engine according to claim 1, wherein the internal combustion engine is controlled as follows. 冷機時急減速時に燃料カットが行われるときに、排気弁リフト量・作動角を、冷機時アイドリング時の排気弁リフト量・作動角に制御することを特徴とする請求項1〜6のいずれかに記載の内燃機関。   7. The exhaust valve lift amount / operating angle is controlled to the exhaust valve lift amount / operating angle at the time of cold idling when fuel cut is performed at the time of rapid deceleration during cold engine. The internal combustion engine described in 1. 冷機時アイドリング時の方が暖機後アイドリング時よりも、吸気弁リフト量・作動角が大きく、かつ排気弁リフト量・作動角が小さいことを特徴とする請求項1〜7のいずれかに記載の内燃機関。   The intake valve lift amount / operating angle is larger and the exhaust valve lift amount / operating angle is smaller when idling when the engine is cold than when idling after warming up. Internal combustion engine. 冷機時アイドリング状態から加速開始するときに、急加速要求であれば、吸気弁のリフト特性と排気弁のリフト特性の双方を同時に可変制御することを特徴とする請求項1〜8のいずれかに記載の内燃機関。   9. When acceleration is started from a cold idling state, if sudden acceleration is requested, both the lift characteristic of the intake valve and the lift characteristic of the exhaust valve are variably controlled at the same time. The internal combustion engine described. 機関の温度もしくは触媒の温度の少なくとも一方を検出し、これらの暖機状態に対応する所定の設定値と検出温度との乖離量が大きいほど、軸トルクに対するエンジン負荷の比率が大となるように排気弁のリフト特性を制御することを特徴とする請求項1〜9のいずれかに記載の内燃機関。
The engine temperature or the catalyst temperature is detected, and the ratio of the engine load to the shaft torque increases as the deviation between the predetermined set value corresponding to the warm-up state and the detected temperature increases. The internal combustion engine according to any one of claims 1 to 9, wherein lift characteristics of the exhaust valve are controlled.
JP2004327143A 2004-11-11 2004-11-11 Internal combustion engine Expired - Fee Related JP4396487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327143A JP4396487B2 (en) 2004-11-11 2004-11-11 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327143A JP4396487B2 (en) 2004-11-11 2004-11-11 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006138229A true JP2006138229A (en) 2006-06-01
JP4396487B2 JP4396487B2 (en) 2010-01-13

Family

ID=36619216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327143A Expired - Fee Related JP4396487B2 (en) 2004-11-11 2004-11-11 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP4396487B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068670A1 (en) * 2012-10-30 2014-05-08 トヨタ自動車 株式会社 Control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068670A1 (en) * 2012-10-30 2014-05-08 トヨタ自動車 株式会社 Control device for internal combustion engine
JP5825432B2 (en) * 2012-10-30 2015-12-02 トヨタ自動車株式会社 Control device for internal combustion engine
US9739211B2 (en) 2012-10-30 2017-08-22 Toyota Jidosha Kabushiki Kaisha Control apparatus of internal combustion engine

Also Published As

Publication number Publication date
JP4396487B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP4321445B2 (en) Control device for internal combustion engine
JPH09170462A (en) Output controller for internal combustion engine
JP6380678B2 (en) Control method and control apparatus for internal combustion engine
EP2222945B1 (en) Control device for internal combustion engine
JP6350304B2 (en) Lean burn engine
JP4677844B2 (en) Engine valve timing control device
CN110714841A (en) Deceleration cylinder cut-off system including intelligent phaser
JP6197825B2 (en) Engine control device
JP6346118B2 (en) Variable valve operating device for multi-cylinder internal combustion engine and controller for the variable valve operating device
JP2007077840A (en) Internal combustion engine
JP4285221B2 (en) Internal combustion engine
JP6051793B2 (en) Control device for internal combustion engine
JP4419800B2 (en) Engine starter
JP3771101B2 (en) Control device for internal combustion engine
JP4396487B2 (en) Internal combustion engine
JP2007162664A (en) Valve operation angle variable control device for internal combustion engine
JP4140351B2 (en) Control device for internal combustion engine
JP2005002931A (en) Controller for internal combustion engine
JP2009216035A (en) Control device of internal combustion engine
JP2009121263A (en) Control device for internal combustion engine
JP2013032745A (en) Internal combustion engine
JP2006029211A (en) Multiple internal combustion engine
JP5041167B2 (en) Engine control device
JP4725448B2 (en) Control device for internal combustion engine
JP2006170077A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4396487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees