JP2006138095A - Cast-in-place steel pipe reinforced concrete pile - Google Patents

Cast-in-place steel pipe reinforced concrete pile Download PDF

Info

Publication number
JP2006138095A
JP2006138095A JP2004327700A JP2004327700A JP2006138095A JP 2006138095 A JP2006138095 A JP 2006138095A JP 2004327700 A JP2004327700 A JP 2004327700A JP 2004327700 A JP2004327700 A JP 2004327700A JP 2006138095 A JP2006138095 A JP 2006138095A
Authority
JP
Japan
Prior art keywords
steel pipe
pile
concrete
cast
annular rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004327700A
Other languages
Japanese (ja)
Inventor
Shoji Hayakawa
Makoto Ikeda
Hirotaka Kusaka
Toshiaki Masuda
Isamu Sugiura
Akira Tani
敏聡 増田
裕貴 日下
昭二 早川
勇 杉浦
真 池田
明 谷
Original Assignee
Haseko Corp
Sumitomo Metal Ind Ltd
住友金属工業株式会社
株式会社長谷工コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haseko Corp, Sumitomo Metal Ind Ltd, 住友金属工業株式会社, 株式会社長谷工コーポレーション filed Critical Haseko Corp
Priority to JP2004327700A priority Critical patent/JP2006138095A/en
Publication of JP2006138095A publication Critical patent/JP2006138095A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cast-in-place steel pipe reinforced concrete pile which can ensure stress transfer between a steel pipe and reinforced concrete by preventing slip between the steel pipe and the concrete, which can be manufactured by virtue of a high degree of design freedom, which does not deteriorate the infilling of the concrete in the placing of the concrete, and which can restrain hole wall slurry from affecting a force of adhesion between the concrete and the steel pipe. <P>SOLUTION: An upper section 10 of the pile comprises: the vertically elongated steel pipe 11 with a smooth inner surface; a plurality of anchor bars 12 which are fixed to the upper outer peripheral surface or inner peripheral surface of the steel pipe by welding or a bolt etc. and elongated into a footing 1 of reinforced concrete construction; a plurality of first annular ribs 13 with a chevron-shaped cross section, which are formed on the inner surface of the lower end of the steel pipe at axial intervals; a plurality of first pile main reinforcements 14 which are provided inside the first annular ribs in such a manner as to be elongated to the lower end of the steel pile from a lower section of the pipe; a plurality of first hoop reinforcements 15 which enclose the first pile main reinforcements in such a manner as to be orthogonal to the first pile main reinforcements; and the concrete 16 which is continuously infilled into the steel pipe from an upper end to a lower end. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建築物を地下深部の硬質地盤に支持する基礎杭に係わり、更に詳しくは、現場打ち鋼管コンクリート杭に関する。   The present invention relates to a foundation pile that supports a building on a hard ground in a deep underground, and more particularly, to a spot cast steel pipe concrete pile.
図9は、従来の現場打ち鋼管コンクリート杭の一例を示す図である。この図において、下部53は、鉄筋コンクリート造で、杭上部52は鋼管コンクリート造になっており、杭頭接合部51(いわゆるフーチングといわれ、鉄筋コンクリート造)を介して建築物の柱あるいは基礎梁に連接される。   FIG. 9 is a diagram showing an example of a conventional on-site steel pipe concrete pile. In this figure, the lower part 53 is made of reinforced concrete, and the upper part of the pile 52 is made of steel pipe concrete. Is done.
平常時において、建築物の重さに相当する鉛直荷重は軸方向力として、建築物の柱あるいは基礎梁からフーチング51に伝達され、杭上部52の鋼管内のコンクリートおよび継手部54を介して杭下部53の鉄筋コンクリートを経て地下深部の硬質地盤に伝達、支持される。
また、地震時において、建築物が水平方向に揺れるとフーチング51の上部に水平力が作用し、杭体には曲げモーメント、軸方向力及びせん断力が作用する。そのため、現場打ち鋼管コンクリート杭の継手部54は、杭上部に作用するこの曲げモーメント、軸方向力及びせん断力を確実に杭下部に伝達できる必要があり、種々の構成が提案されている(例えば、特許文献1〜3)。
In normal times, the vertical load corresponding to the weight of the building is transmitted as an axial force from the pillar or foundation beam of the building to the footing 51, and through the concrete in the steel pipe of the pile upper part 52 and the pile 54. It is transmitted and supported to the hard ground in the deep underground through the reinforced concrete of the lower part 53.
Further, when the building shakes in the horizontal direction during an earthquake, a horizontal force acts on the upper portion of the footing 51, and a bending moment, an axial force, and a shear force act on the pile body. Therefore, it is necessary for the joint part 54 of the cast-in-place steel pipe concrete pile to be able to reliably transmit this bending moment, axial force and shearing force acting on the pile upper part to the pile lower part, and various configurations have been proposed (for example, And Patent Documents 1 to 3).
特許文献1の「カゴ筋を用いた杭頭結合方法」は、図10に示すように、杭頭結合用かご筋の主筋となる異形鉄筋61が鋼管コンクリート杭の鋼管62内面に接するようにカゴ筋を製作し、この異形鉄筋61を鋼管62の内面に接触させながら所定の深さまで鋼管内にさし込み、その後この鋼管62内にコンクリート64を打ち込んでカゴ筋と鋼管コンクリート杭とを固着させるものである。また、鋼管62として内面にリブ63が取り付けられた鋼管を使用すれば、カゴ筋と鋼管コンクリート杭との接着をさらに強固にすることができる。   As shown in FIG. 10, the “pile head coupling method using a cage bar” disclosed in Patent Document 1 has a cage so that a deformed reinforcing bar 61 as a main bar of a stake bar for a pile head is in contact with an inner surface of a steel pipe 62 of a steel pipe concrete pile. A bar is manufactured, and the deformed bar 61 is inserted into the steel pipe to a predetermined depth while being in contact with the inner surface of the steel pipe 62, and then the concrete 64 is driven into the steel pipe 62 to fix the cage bar and the steel pipe concrete pile. Is. Moreover, if the steel pipe with the rib 63 attached to the inner surface is used as the steel pipe 62, the adhesion between the cage bar and the steel pipe concrete pile can be further strengthened.
特許文献2の「場所打鋼管コンクリート杭の杭頭部構造」は、図11に示すように、場所打鋼管コンクリート杭を構成する鋼管71の内周面に、略等間隔に、高強度鉄筋からなる定着筋72の下端部を、定着筋72と鋼管71との間隔を定着筋72の直径Dの1.5倍以内に設定して配設するとともに、定着筋72の少なくとも一端部に定着部材73、74を配設し、定着筋72の上端をフーチングの構築位置まで延出したものである。   As shown in FIG. 11, “Pile head structure of cast-in-place steel pipe concrete pile” in Patent Document 2 is formed from a high-strength reinforcing bar on the inner peripheral surface of the steel pipe 71 constituting the cast-in-place steel pipe concrete pile at substantially equal intervals. The lower end portion of the fixing muscle 72 is disposed with the distance between the fixing muscle 72 and the steel pipe 71 set to be 1.5 times the diameter D of the fixing muscle 72, and at least one end portion of the fixing muscle 72 is fixed to the fixing member 73 and 74 are arranged, and the upper end of the fixing muscle 72 is extended to the footing construction position.
特許文献3の「場所打鋼管コンクリート杭」は、図12に示すように、鋼管コンクリート部80を構成する鋼管81を、鋼管本体82と、その上下両端部および中央部の3箇所に設置されたダイアフラム84とを備えた構成としたものである。   As shown in FIG. 12, the “place-cast steel pipe concrete pile” of Patent Document 3 has steel pipes 81 constituting the steel pipe concrete portion 80 installed at three locations, a steel pipe main body 82, upper and lower end portions thereof, and a central portion. A configuration including a diaphragm 84 is provided.
特開平5−230841号公報、「カゴ筋を用いた杭頭結合方法」Japanese Patent Laid-Open No. 5-230841, “Pile Head Coupling Method Using Basket Muscle” 特開2000−355940号公報、「場所打鋼管コンクリート杭の杭頭部構造」JP 2000-355940 A, “Pile head structure of cast-in-place steel pile concrete pile” 特開2004−250984号公報、「場所打鋼管コンクリート杭」Japanese Patent Application Laid-Open No. 2004-250984, “Placed Steel Pipe Concrete Pile”
上述したように、現場打ち鋼管コンクリート杭の継手部は、地震時に杭上部に作用する曲げモーメント、軸方向力及びせん断力を確実に杭下部に伝達できる必要がある。   As described above, the joint portion of the on-site steel pipe concrete pile needs to be able to reliably transmit the bending moment, the axial force and the shearing force acting on the pile upper part to the pile lower part during an earthquake.
特許文献1、2のように、主筋となる異形鉄筋又は定着筋を鋼管内面に溶接する場合、主筋から鋼管への応力伝達はスムーズに行うことができる。しかし、鋼管とその内部のコンクリートの間は、鋼管内面が平滑な場合、鋼管とコンクリートとの間にスベリが生じるために、鋼管から鉄筋コンクリートへの応力伝達、鉄筋コンクリートから鋼管への応力伝達が確実に行かなくなる問題点がある。   As in Patent Documents 1 and 2, when a deformed reinforcing bar or fixing bar serving as a main reinforcing bar is welded to the inner surface of a steel pipe, stress transmission from the main reinforcing bar to the steel pipe can be performed smoothly. However, if the inner surface of the steel pipe is smooth between the steel pipe and the concrete inside, a slip occurs between the steel pipe and the concrete, so that the stress transmission from the steel pipe to the reinforced concrete and the stress transmission from the reinforced concrete to the steel pipe are ensured. There is a problem that will not go.
そこで、鋼管内面にリブを有するいわゆる「リブ付き鋼管」を杭用鋼管として用いることが従来から行われている(例えば特許文献1、参照)。リブ付き鋼管は、ロールで圧延時にリブを成形したリブ付き鋼板を螺旋に巻いて接合したスパイラル鋼管である。
かかるリブ付き鋼管は、鋼管内面にリブが形成されているため、鋼管とコンクリートとの密着性が高く、鋼管からコンクリートへ、あるいはコンクリートから鋼管への応力伝達が確実に行われる特徴を有する。
しかし、リブ付き鋼管は、その製法上、突起の形状・寸法・間隔及び突起を付ける範囲を自由に変える事ができず、つまりは経済設計ができないという問題があった。
Therefore, so-called “ribbed steel pipe” having ribs on the inner surface of the steel pipe is conventionally used as a steel pipe for piles (see, for example, Patent Document 1). The ribbed steel pipe is a spiral steel pipe in which a ribbed steel plate formed with ribs during rolling with a roll is spirally wound and joined.
Since the ribbed steel pipe has ribs formed on the inner surface of the steel pipe, the steel pipe and the concrete have high adhesion, and the stress transmission from the steel pipe to the concrete or from the concrete to the steel pipe is reliably performed.
However, the steel pipe with ribs has a problem in that the shape, dimensions, and interval of the protrusions and the range for attaching the protrusions cannot be freely changed due to the manufacturing method, that is, the economical design cannot be performed.
特許文献3は、その改善案として、鋼管の上下方向の複数箇所にダイアフラムを設けているが、かかわるダイアフラムについては、現場打ち鋼管コンクリート杭としては、以下の懸念がある。
現場打ち鋼管コンクリート杭は、地盤内に杭孔を形成して、鉄筋籠(主筋やあばら筋と呼ばれる鉄筋で構成される筒状の鉄筋網)及び鋼管を挿入して、杭孔の最下部から上部に向かってコンクリートを打設して構築するものである。
そして、杭孔内には、杭孔壁の崩壊を防ぐためにベントナイトなどの孔壁安定液が満たされており、これらを押し上げながら、コンクリートを打設する。
従って、鋼管の上下方向の複数箇所にダイアフラムを設けると、ダイアフラムの出幅が大きい場合は、鋼管とダイアフラム入隅部へのコンクリートの充填が完全には行われない懸念がある。そして、コンクリートの充填が不完全だと鋼管コンクリートの強度低下につながるので、適切に処理する手段が必要であり、施工上大変な手間を要することになる。
In Patent Document 3, as an improvement plan, diaphragms are provided at a plurality of locations in the vertical direction of the steel pipe. However, regarding the diaphragms concerned, there are the following concerns as a steel pile concrete pile.
In-situ steel pipe concrete piles form a pile hole in the ground, insert a reinforcing bar rod (cylindrical rebar network composed of reinforcing bars called main reinforcement and ribs) and a steel pipe, from the bottom of the pile hole It is constructed by placing concrete toward the top.
The pile hole is filled with a hole wall stabilizing liquid such as bentonite in order to prevent the pile hole wall from collapsing, and concrete is placed while pushing up these holes.
Therefore, when diaphragms are provided at a plurality of locations in the vertical direction of the steel pipe, there is a concern that the concrete is not completely filled into the steel pipe and the corners of the diaphragm when the exit width of the diaphragm is large. If the concrete is not completely filled, the strength of the steel pipe concrete will be reduced. Therefore, a means for appropriately processing is required, which requires a lot of work.
一方、従来のリブ付き鋼管を用いた現場打ち鋼管コンクリート杭は、突起を圧延によって成形するため突起高さを高くできず、コンクリート打設の際に、コンクリートと孔壁安定液との混合物が滞留しやすい突起間の溝の入隅部の影響が大きく、コンクリートと鋼管との付着力に対する影響を受けやすかった。   On the other hand, conventional cast-in-place steel pipe concrete piles using steel pipes with ribs cannot increase the height of protrusions because the protrusions are formed by rolling, and a mixture of concrete and hole wall stabilizing liquid is retained during concrete placement. The influence of the corners of the grooves between the protrusions, which are easy to deform, was large, and it was easily affected by the adhesion between concrete and steel pipe.
本発明は、これらの課題を解決するために創案されたものである。すなわち本発明の目的は、(1)鋼管とコンクリートとの間のスベリを防止して、鋼管と鉄筋コンクリート間の応力伝達が確実にでき、(2)設計自由度が高く、かつ安価にでき、(3)鋼管コンクリートの品質低下につながる、コンクリートの充填不足及びコンクリートと孔壁安定液との混合物の残留を抑制することができる現場打ち鋼管コンクリート杭を提供することにある。   The present invention has been developed to solve these problems. That is, the object of the present invention is to (1) prevent slippage between a steel pipe and concrete, ensure stress transmission between the steel pipe and reinforced concrete, and (2) have a high degree of design freedom and can be made inexpensive ( 3) It is to provide a cast-in-place steel pipe concrete pile that can suppress the underfilling of concrete and the residual of the mixture of the concrete and the hole wall stabilizing liquid, leading to the deterioration of the quality of the steel pipe concrete.
本発明によれば、鋼管コンクリート造の杭上部と、鉄筋コンクリート造の杭下部とからなる現場打ち鋼管コンクリート杭であって、
杭上部は、鉛直に延び内面が平滑な鋼管と、該鋼管の上部外周面又は内周面に溶接又はボルトなどで固定され鉄筋コンクリート造のフーチング内へ延びる複数の定着筋と、鋼管の下端部内面に軸方向に間隔を隔てて形成された断面山形状の複数の第1環状リブと、該第1環状リブの内側に杭下部から鋼管の下端部内まで延設された複数の第1杭主筋と、該第1杭主筋に直交しこれを囲む複数のフープ筋と、鋼管内に上端から下端まで連続して充填されたコンクリートとからなる、ことを特徴とする現場打ち鋼管コンクリート杭が提供される。
According to the present invention, a steel-pipe concrete pile upper part and a reinforced concrete pile lower part are in-situ steel pipe concrete piles,
The upper part of the pile is a steel pipe that extends vertically and has a smooth inner surface, a plurality of fixing bars that are fixed to the upper outer peripheral surface or inner peripheral surface of the steel pipe by welding or bolts and extend into a reinforced concrete footing, and the inner surface of the lower end of the steel pipe A plurality of first annular ribs having a mountain-shaped cross section formed at intervals in the axial direction, and a plurality of first pile main bars extending from the bottom of the pile to the inside of the lower end of the steel pipe inside the first annular rib; There is provided a spot cast steel pipe concrete pile characterized by comprising a plurality of hoop bars orthogonal to and surrounding the first pile main bar and concrete continuously filled from the upper end to the lower end in the steel pipe. .
本発明の好ましい実施形態によれば、更に、前記複数の第1杭主筋の一部又は全部に下端が固定されフーチングまで延設された複数の第2杭主筋を有する。   According to a preferred embodiment of the present invention, it further includes a plurality of second pile main bars having lower ends fixed to a part or all of the plurality of first pile main bars and extending to the footing.
本発明の好ましい別の実施形態によれば、更に、前記鋼管の上端部内面に軸方向に間隔を隔てて形成された断面山形状の複数の第2環状リブと、該第2環状リブの内側にフーチングから鋼管の上端部内まで延設された複数の第3杭主筋を有する。   According to another preferred embodiment of the present invention, a plurality of second annular ribs having a mountain-shaped cross section formed on the inner surface of the upper end portion of the steel pipe at an interval in the axial direction, and the inner side of the second annular rib A plurality of third pile main bars extending from the footing to the upper end of the steel pipe.
本発明の好ましい別の実施形態によれば、前記複数の第1杭主筋の一部又は全部に下端が固定され、前記複数の第3杭主筋の一部又は全部に上端が固定され、鋼管内を延びる複数の第4杭主筋を有する。   According to another preferred embodiment of the present invention, a lower end is fixed to some or all of the plurality of first pile main bars, and an upper end is fixed to some or all of the plurality of third pile main bars, A plurality of fourth pile main bars extending in the horizontal direction.
前記第1環状リブ及び/又は第2環状リブは、継手部に必要な耐力に対応するように形状及び条数(リブが螺旋状の場合は巻き数)が設定されている。   The first annular rib and / or the second annular rib have a shape and a number of strips (the number of windings when the rib is spiral) so as to correspond to the proof stress necessary for the joint portion.
前記第1環状リブ及び/又は第2環状リブは、鋼管の内面又は外面に1対の当て板を間隔を隔てて配置し、該1対の当て板を鋼管の内面又は外面に対して相対移動させつつ、その当て板間に肉盛溶接して形成した肉盛溶接リブである、ことが好ましい。   The first annular rib and / or the second annular rib are arranged such that a pair of contact plates are arranged at an interval on the inner surface or outer surface of the steel pipe, and the pair of contact plates are moved relative to the inner surface or outer surface of the steel pipe. It is preferable that the welded rib is formed by overlay welding between the contact plates.
また、前記第1環状リブ及び/又は第2環状リブは、高さが6mm以上、幅が5mm以上、側部と鋼管の内面または外面とのなす角度が60°から90°で、側部に直線部を有し、上部が曲線となる曲線形状の突起を有する、ことが好ましい。   In addition, the first annular rib and / or the second annular rib has a height of 6 mm or more, a width of 5 mm or more, and an angle formed between the side portion and the inner surface or the outer surface of the steel pipe is 60 ° to 90 °. It is preferable to have a curved protrusion having a straight portion and a curved upper portion.
上述した本発明の構成によれば、鋼管の下端部内面に断面山形状の複数の第1環状リブが形成されており、かつその内側に位置するコンクリート内には、杭下部から鋼管の下端部内まで延設された複数の第1杭主筋と複数のフープ筋からなるいわゆる鉄筋籠が形成されているので、第1環状リブを杭上部と杭下部の接合部に必要な耐力に対応するように形状及び条数(リブが螺旋状の場合は巻き数)を設定することで、鋼管とコンクリートとの間のスベリを防止して、鋼管と鉄筋コンクリート間の応力伝達が確実にできる。
また、第1環状リブは肉盛溶接、その他の手段により自由に形状及び条数(リブが螺旋状の場合は巻き数)を設定できるので、設計自由度が高く、かつ安価にできる。
さらに、第1環状リブは、高さが6mm以上、幅が5mm以上、側部と鋼管の内面または外面とのなす角度が60°から90°で、側部に直線部を有し、上部が曲線となる曲線形状の突起を有するので、コンクリート打設の際に、コンクリートの充填を損なわず、かつコンクリートと孔壁安定液との混合物が滞留しやすい突起間の溝の入隅部の影響が少なく、コンクリートと鋼管との付着力に対する影響を抑制することができる。
According to the configuration of the present invention described above, a plurality of first annular ribs having a mountain-shaped cross-section are formed on the inner surface of the lower end portion of the steel pipe, and the concrete located inside thereof has a structure in the lower end portion of the steel pipe from the lower part of the pile. Since so-called reinforcing bar rods are made up of a plurality of first pile main bars and a plurality of hoop bars, the first annular rib is made to correspond to the required strength at the joint between the pile upper part and the pile lower part. By setting the shape and the number of strips (when the rib is spiral, the number of turns), slippage between the steel pipe and concrete can be prevented, and stress transmission between the steel pipe and reinforced concrete can be ensured.
In addition, since the first annular rib can be freely set in shape and number of strips (ie, the number of windings when the rib is spiral) by overlay welding or other means, the degree of freedom in design is high and the cost can be reduced.
Further, the first annular rib has a height of 6 mm or more, a width of 5 mm or more, an angle formed between the side portion and the inner surface or the outer surface of the steel pipe is 60 ° to 90 °, has a linear portion on the side portion, and has an upper portion. Because it has curved projections that become curved, there is no influence of the corners of the grooves between the projections when placing concrete, without impairing the filling of the concrete and where the mixture of concrete and pore wall stabilizing liquid tends to stay. The effect on the adhesion between the concrete and the steel pipe can be suppressed.
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
図1(A)は、本発明の現場打ち鋼管コンクリート杭の第1実施形態図である。この図に示すように、本発明の現場打ち鋼管コンクリート杭は、鋼管コンクリート造の杭上部10と、鉄筋コンクリート造の杭下部3とからなる。以下、杭上部10のうち杭下部3と接合する箇所、すなわち下端部を「継手部」と呼ぶ。   FIG. 1 (A) is a diagram showing a first embodiment of a spot cast steel pipe concrete pile according to the present invention. As shown in this figure, the in-situ steel pipe concrete pile of the present invention is composed of a steel pipe concrete pile upper part 10 and a reinforced concrete pile lower part 3. Hereinafter, the part joined to the pile lower part 3 in the pile upper part 10, that is, the lower end part is referred to as a “joint part”.
杭上部10は、鋼管11、複数の定着筋12、複数の第1環状リブ13、複数の第1杭主筋14、複数のフープ筋15及びコンクリート16からなる。
鋼管11は、使用状態において鉛直に延び内面が平滑な鋼管、例えばストレートシーム鋼管である。
The pile upper portion 10 includes a steel pipe 11, a plurality of fixing bars 12, a plurality of first annular ribs 13, a plurality of first pile main bars 14, a plurality of hoop bars 15, and concrete 16.
The steel pipe 11 is a steel pipe that extends vertically in use and has a smooth inner surface, such as a straight seam steel pipe.
複数の定着筋12は、鋼管11の上部外周面又は内周面に溶接又はボルトなどで固定され鉄筋コンクリート造のフーチング1内へ延びる。
なお、図1(A)において、フーチング1は鉄筋コンクリート造であるが、鉄筋の図示は省略してある。また、定着筋12は、鋼管11の外周又は内周に沿って複数本固定されているが、側面の2本だけを図示している。
The plurality of fixing bars 12 are fixed to the upper outer peripheral surface or inner peripheral surface of the steel pipe 11 with welding or bolts and extend into the reinforced concrete footing 1.
In FIG. 1A, the footing 1 is reinforced concrete, but the illustration of the reinforcing bars is omitted. Further, a plurality of fixing bars 12 are fixed along the outer periphery or inner periphery of the steel pipe 11, but only two on the side surface are shown.
第1環状リブ13は、断面山形状であり、鋼管11の下端部(すなわち継手部18)の内面に軸方向に間隔を隔てて形成されている。   The first annular rib 13 has a mountain shape in cross section, and is formed on the inner surface of the lower end portion (that is, the joint portion 18) of the steel pipe 11 with an interval in the axial direction.
第1杭主筋14は、第1環状リブ13の内側に杭下部3から鋼管11の下端部内まで延設されている。フープ筋15は、第1杭主筋14に直交しこれを囲んでいる。
継手部18および杭下部3において、垂直方向に第1杭主筋14が複数本円筒状に配列され、第1杭主筋14と直交する方向に円形状のフープ筋15があり、図1(B)に示すように、いわゆる鉄筋籠が形成されている。なお、図1(A)では第1杭主筋のうち4本のみ図示している。
The first pile main reinforcement 14 extends from the pile lower portion 3 to the inside of the lower end portion of the steel pipe 11 inside the first annular rib 13. The hoop bar 15 is orthogonal to and surrounds the first pile main bar 14.
In the joint part 18 and the pile lower part 3, a plurality of first pile main bars 14 are arranged in a cylindrical shape in the vertical direction, and there is a circular hoop bar 15 in a direction orthogonal to the first pile main bars 14, FIG. As shown, a so-called reinforcing bar is formed. In FIG. 1A, only four of the first pile main bars are shown.
コンクリート16は、鋼管11内に上端から下端まで連続して充填される。   The concrete 16 is continuously filled in the steel pipe 11 from the upper end to the lower end.
第1環状リブ13は、杭上部10と杭下部3との継手部18に相当する部分のみに形成されている。
この第1環状リブ13(及び後述する第2環状リブ)は、炭酸ガスシールド溶接、MIG溶接などにより、鋼管の内周に山形断面の肉盛溶接突起を形成するのが好ましい。
The first annular rib 13 is formed only in a portion corresponding to the joint portion 18 between the pile upper portion 10 and the pile lower portion 3.
It is preferable that the first annular rib 13 (and a second annular rib to be described later) form a build-up weld projection having an angled cross section on the inner periphery of the steel pipe by carbon dioxide shield welding, MIG welding, or the like.
図7は、リブの肉盛溶接手段を示す模式図である。この図に示すように、リブは、鋼管11の内面に1対の当て板5を間隔を隔てて配置し、この1対の当て板5を鋼管11の内面に対して円周方向に相対移動させつつ、その当て板間に肉盛溶接して形成することができる。
また、鋼管11の内面に螺旋状の突起を形成したい場合には、当て板5を鋼管11の内面に対して円周方向に相対移動させつつ、鋼管11を鋼管11の軸方向に移動させてもよいし、あるいは当て板5及び溶接トーチを鋼管11の軸線方向に移動させてもよい。
また、突起は連続的にも断続的にも形成することが出来る。
このように、1対の当て板5を鋼管内面に配置して肉盛溶接リブを形成することにより、リブの大きさ、リブの間隔、リブの突出高さ等を自由に設定することができる。
なお、リブの形成手段は、肉盛溶接に限定されず、予め所定の形状に加工したリング状部材を鋼管11の内面に溶接してもよく、或いは、内面が平滑な鋼管の下部に従来のリブ付き鋼管を溶接接合したものでもよい。
また、本発明は、鋼管の外側に突起を形成した場合にも適用することができる。
FIG. 7 is a schematic diagram showing a build-up welding means for ribs. As shown in this figure, the rib has a pair of contact plates 5 arranged on the inner surface of the steel pipe 11 at an interval, and the pair of contact plates 5 are moved relative to the inner surface of the steel tube 11 in the circumferential direction. And can be formed by overlay welding between the contact plates.
When it is desired to form a spiral protrusion on the inner surface of the steel pipe 11, the steel pipe 11 is moved in the axial direction of the steel pipe 11 while the contact plate 5 is moved relative to the inner surface of the steel pipe 11 in the circumferential direction. Alternatively, the contact plate 5 and the welding torch may be moved in the axial direction of the steel pipe 11.
Further, the protrusion can be formed continuously or intermittently.
Thus, by arranging the pair of contact plates 5 on the inner surface of the steel pipe to form the build-up welding ribs, the size of the ribs, the interval between the ribs, the protruding height of the ribs, and the like can be freely set. .
The rib forming means is not limited to overlay welding, and a ring-shaped member that has been processed into a predetermined shape in advance may be welded to the inner surface of the steel pipe 11, or the conventional method may be applied to the lower portion of the steel pipe having a smooth inner surface. A ribbed steel pipe may be welded.
Moreover, this invention is applicable also when a protrusion is formed in the outer side of a steel pipe.
図2(A)は、図1の鋼管の全体構成図であり、(B)はそのA部の拡大図である。
この図は、上記第1実施形態により、継手部18に相当する部分の鋼管11の内面にリブ13を形成した状態を示している。
リブの間隔pは、100mm±10mmとし、リブの本数n(突起条数)やリブの突出高さh(突起有効高さ)は、[数1]の式(1)(2)によって、必要とされる許容耐力に対応するリブの本数やリブの突出高さを設定する。
2A is an overall configuration diagram of the steel pipe of FIG. 1, and FIG. 2B is an enlarged view of a portion A thereof.
This figure has shown the state which formed the rib 13 in the inner surface of the steel pipe 11 of the part corresponded to the joint part 18 by the said 1st Embodiment.
Spacing p of the ribs is to a 100 mm ± 10 mm, the ribs of the number n d (number protrusion strip) or rib projecting height h e (projections effective height), by equation (1) (2) [Expression 1] Then, the number of ribs and the protruding height of the ribs corresponding to the required allowable strength are set.
なお、[数1]は、リブを設定する際の式の一例である。
式(1)によって、算出される値Wが、必要とされる許容耐力以上になれば良く、地盤状況や建物の規模に応じて必要とされる許容耐力を別途算出し、それに応じて鋼管径や鋼管厚、突起条数、突起有効高さを変えながら、最適な形状を決定する。
なお、上式は長期許容耐力に対する算定式であり、短期許容耐力に対応させる場合は、許容耐力の数値を1.5倍として算定する。
[Equation 1] is an example of an equation for setting a rib.
It is only necessary that the value W calculated by the equation (1) is equal to or greater than the required allowable strength, and the required allowable strength is calculated separately according to the ground conditions and the scale of the building, and the steel pipe diameter is accordingly calculated. The optimum shape is determined while changing the steel pipe thickness, the number of protrusions, and the effective height of protrusions.
The above formula is a calculation formula for the long-term allowable strength. When the short-term allowable strength is to be used, the numerical value of the allowable strength is calculated as 1.5 times.
図8は、リブの断面形状を示す模式図である。この図に示すように、第1環状リブ13(及び後述する第2環状リブ)は、高さhが6mm以上、幅Bが5mm以上、側部と鋼管の内面または外面とのなす角度αが60°から90°で、側部に直線部を有し、上部が曲線となる曲線形状の突起を有するのがよい。 FIG. 8 is a schematic diagram showing the cross-sectional shape of the rib. As shown in this figure, the first annular rib 13 (and the second annular rib to be described later), the height h e is more than 6mm, the width B is 5mm or more, the angle between the inner or outer surface of the side and the steel pipe α It is preferable to have a curved projection having a straight line part on the side part and a curved part on the upper part.
上述した現場打ち鋼管コンクリート杭によれば、リブの条数(リブが螺旋状の場合は巻き数)やリブの突出高さ(突起有効高さ)の変更によって、微妙な耐力調整ができるので、設計の自由度が向上する。言い換えれば、地盤状況や建物の規模に合わせて経済的な設計が可能になる。   According to the above-mentioned on-site cast steel pipe concrete piles, subtle proof stress can be adjusted by changing the number of ribs (the number of turns if the ribs are spiral) and the protruding height of the ribs (protrusion effective height). Design freedom is improved. In other words, it is possible to design economically according to the ground conditions and the scale of the building.
さらに、鋼管内面の環状リブ13は、断面が山形状に形成されるので、コンクリート16を杭孔の下から打ち上げてきても、コンクリートの充填を損なわず、かつコンクリートと孔壁安定液の混合物が滞留しやすい突起間の溝の入隅部の影響が少なく、コンクリートと鋼管との付着力に対する影響を抑制することが出来る。   Furthermore, since the annular rib 13 on the inner surface of the steel pipe has a mountain-shaped cross section, even if the concrete 16 is launched from the bottom of the pile hole, the filling of the concrete is not impaired, and the mixture of the concrete and the hole wall stabilizing liquid is formed. The influence of the corner of the groove between the protrusions that are likely to stay is small, and the influence on the adhesion between the concrete and the steel pipe can be suppressed.
加えて、鋼管の下部内面の山形状の環状リブ13を肉盛溶接突起とすれば、鋼管の管厚や管径だけでなく、リブの間隔、形状や条数(リブが螺旋状の場合は巻き数)を必要とされる強度条件に合わせて変更でき、地盤の状況に合わせて強度設定が可能になり、経済的な設計など、設計の自由度が向上する。   In addition, if the mountain-shaped annular rib 13 on the inner surface of the lower part of the steel pipe is used as a build-up welding projection, not only the thickness and diameter of the steel pipe, but also the interval, shape and number of ribs (if the rib is spiral) The number of turns) can be changed according to the required strength conditions, and the strength can be set according to the ground conditions, improving the degree of freedom of design such as economical design.
図3は、本発明の現場打ち鋼管コンクリート杭の第2実施形態図である。この例において、本発明の現場打ち鋼管コンクリート杭は、更に、複数の第2杭主筋21を有する。
第2杭主筋21は、複数の第1杭主筋14の一部又は全部に下端が固定されフーチング1まで延設されている。
FIG. 3 is a second embodiment of the in-situ steel pipe concrete pile according to the present invention. In this example, the in-situ steel pipe concrete pile of the present invention further has a plurality of second pile main bars 21.
The lower end of the second pile main reinforcement 21 is fixed to a part or all of the plurality of first pile main reinforcements 14 and extends to the footing 1.
第2杭主筋21は第1杭主筋14と一体の連続した杭主筋であるのが好ましいが、重ね継手を用いて接合してもよいし溶接等で強固に接合してもよい。また、第2杭主筋21は第1杭主筋14よりも多い場合もあり、その場合の鉄筋下端は鋼管の下端部のレベルまで伸ばしておくのがよい。
この構成により、杭下部3の杭主筋を伸延させることで、杭上部の耐力を高めるとともにフーチング1から杭上部10を介して杭下部3まで応力伝達をより強固にすることができ、杭の応力負担を大きくする場合に用いることができる。
The second pile main bar 21 is preferably a continuous pile main bar integrated with the first pile main bar 14, but may be joined using a lap joint or may be firmly joined by welding or the like. Moreover, the 2nd pile main reinforcement 21 may be more than the 1st pile main reinforcement 14, and it is good to extend the lower end of the reinforcing bar to the level of the lower end part of a steel pipe in that case.
With this configuration, by extending the pile main bar of the lower pile 3, it is possible to increase the yield strength of the upper pile and strengthen the stress transmission from the footing 1 to the lower pile 3 via the pile upper 10. It can be used to increase the burden.
図4は、本発明の現場打ち鋼管コンクリート杭の第3実施形態図であり、図5は、図4の鋼管の構成図である。
この例において、本発明の現場打ち鋼管コンクリート杭は、更に、複数の第2環状リブ23、及び複数の第3杭主筋24を有する。
第2環状リブ23は、断面山形状であり、鋼管11の上端部内面に軸方向に間隔を隔てて形成される。第2環状リブ23は、上述した第1環状リブ13と実質的に同一である。
第3杭主筋24は、第2環状リブ23の内側にフーチング1から鋼管11の上端部内まで延設される。
FIG. 4 is a diagram showing a third embodiment of the in-situ steel pipe concrete pile of the present invention, and FIG. 5 is a configuration diagram of the steel pipe of FIG.
In this example, the cast-in-place steel pipe concrete pile of the present invention further includes a plurality of second annular ribs 23 and a plurality of third pile main bars 24.
The second annular rib 23 has a mountain shape in cross section, and is formed on the inner surface of the upper end portion of the steel pipe 11 with an interval in the axial direction. The second annular rib 23 is substantially the same as the first annular rib 13 described above.
The third pile main bar 24 extends from the footing 1 to the inside of the upper end portion of the steel pipe 11 inside the second annular rib 23.
この構成により、フーチング1から杭上部10への応力伝達をより強固にすることができ、杭の応力負担を大きくする場合に用いることができる。
第3実施形態は、鋼管11の上部にもリブ23を有するものだが、第1実施形態と同様、リブの条数(リブが螺旋状の場合は巻き数)やリブの突出高さ(突起有効高さ)の変更によって、微妙な耐力調整ができるので、設計の自由度が向上する。
さらに、鋼管内面の環状リブ13、23は、高さが6mm以上、幅が5mm以上、側部と鋼管の内面または外面とのなす角度が60°から90°で、側部に直線部を有し、上部が曲線となる曲線形状の突起を有するので、コンクリート打設の際に、コンクリートの充填を損なわず、かつコンクリートと孔壁安定液との混合物が滞留しやすい突起間の溝の入隅部の影響が少なく、コンクリートと鋼管との付着力に対する影響を抑制することができる。
With this configuration, the stress transmission from the footing 1 to the pile upper part 10 can be further strengthened, and can be used when increasing the stress load on the pile.
The third embodiment has ribs 23 on the upper portion of the steel pipe 11, but, like the first embodiment, the number of ribs (the number of windings if the ribs are spiral) and the protruding height of the ribs (projection effective) By changing the height), it is possible to adjust the proof stress delicately, which improves the degree of freedom in design.
Furthermore, the annular ribs 13 and 23 on the inner surface of the steel pipe have a height of 6 mm or more, a width of 5 mm or more, the angle formed between the side part and the inner or outer surface of the steel pipe is 60 ° to 90 °, and has a straight part on the side part. However, since the upper part has a curved protrusion, the corner of the groove between the protrusions does not impair the filling of the concrete and the mixture of the concrete and the hole wall stabilizing liquid tends to stay in the concrete. There is little influence of a part and the influence with respect to the adhesive force of concrete and a steel pipe can be suppressed.
図6は、本発明の現場打ち鋼管コンクリート杭の第4実施形態図である。この例において、本発明の現場打ち鋼管コンクリート杭は、更に、複数の第4杭主筋26を有する。第4杭主筋26は、複数の第1杭主筋14の一部又は全部に下端が固定され、複数の第3杭主筋24の一部又は全部に上端が固定され、全体が鋼管内を鉛直に延びている。
第4杭主筋26は第1杭主筋14及び第3杭主筋24と一体の連続した杭主筋であるのが好ましいが、重ね継手を用いて接合してもよいし溶接等で強固に接合してもよい。また、第4杭主筋26は、第1杭主筋14及び第2杭主筋21はより多い場合もあり、その場合の鉄筋下端は鋼管の下端部のレベルまで伸ばしておくのがよい。。
この実施形態は、第2、第3の実施形態と同じく、フーチングから杭上部10への応力伝達をより強固にすると共に、杭上部の耐力を高め、杭の応力負担をより大きくする場合に用いることができる。
第2実施形態乃至第4実施形態において、第2杭主筋乃至第4杭主筋については、図示しないが、杭主筋の位置決めのために環状鉄筋が配される。また、第2杭主筋乃至第4杭主筋についても、第1杭主筋と同様に適宜フープ筋を配すること妨げるものではない。
本発明の実施形態では、定着筋12は、鋼管の外周面または内周面に、溶接またはボルトなどで固定するようにしているが、施工性を考慮した上での限定であって、定着筋12の固定位置は、外周面と内周面の両方にあってもかまわないし、固定方法についても溶接やボルト固定に限定されるものではない。
FIG. 6 is a diagram showing a fourth embodiment of the on-site steel pipe concrete pile according to the present invention. In this example, the cast-in-place steel pipe concrete pile of the present invention further has a plurality of fourth pile main bars 26. As for the 4th pile main reinforcement 26, a lower end is fixed to a part or all of a plurality of 1st pile main reinforcement 14, an upper end is fixed to a part or all of a plurality of 3rd pile main reinforcements 24, and the whole makes the inside of a steel pipe vertical. It extends.
The fourth pile main bar 26 is preferably a continuous pile main bar integrated with the first pile main bar 14 and the third pile main bar 24, but may be joined using a lap joint or firmly joined by welding or the like. Also good. Moreover, the 4th pile main reinforcement 26 may have more 1st pile main reinforcement 14 and the 2nd pile main reinforcement 21, and it is good to extend the lower end of the reinforcing bar to the level of the lower end part of a steel pipe in that case. .
As in the second and third embodiments, this embodiment is used when the stress transmission from the footing to the pile upper part 10 is further strengthened, the proof stress of the pile upper part is increased, and the stress load on the pile is further increased. be able to.
In 2nd Embodiment thru | or 4th Embodiment, although not shown about 2nd pile main reinforcement thru | or 4th pile main reinforcement, a cyclic | annular reinforcing bar is arranged for positioning of a pile main reinforcement. In addition, the second pile main bar to the fourth pile main bar also do not prevent the hoop bars from being appropriately disposed in the same manner as the first pile main bar.
In the embodiment of the present invention, the fixing bars 12 are fixed to the outer peripheral surface or inner peripheral surface of the steel pipe by welding or bolts, but are limited in consideration of workability. The fixing position 12 may be on both the outer peripheral surface and the inner peripheral surface, and the fixing method is not limited to welding or bolt fixing.
上述したように、本発明の構成によれば、鋼管11の下端部内面に断面山形状の複数の第1環状リブ13が形成されており、かつその内側に位置するコンクリート内には、杭下部3から鋼管の下端部内まで延設された複数の第1杭主筋14と複数のフープ筋15からなるいわゆる鉄筋籠が形成されているので、第1環状リブ13を杭上部10と杭下部3の継手部18に必要な耐力に対応するように形状及び条数(リブが螺旋状の場合は巻き数)を設定することで、鋼管11とコンクリート16との間のスベリを防止して、鋼管と鉄筋コンクリート間の応力伝達が確実にできる。
また、第1環状リブ13は肉盛溶接、その他の手段により自由に形状及び条数(リブが螺旋状の場合は巻き数)を設定できるので、設計自由度が高く、安価にできる。
さらに、第1環状リブ13は、高さが6mm以上、幅が5mm以上、側部と鋼管の内面または外面とのなす角度が60°から90°で、側部に直線部を有し、上部が曲線となる曲線形状の突起を有するので、コンクリート打設の際に、コンクリートの充填を損なわず、かつコンクリートと孔壁安定液との混合物が滞留しやすい突起間の溝の入隅部の影響が少なく、コンクリートと鋼管との付着力に対する影響を抑制することができる。
As described above, according to the configuration of the present invention, a plurality of first annular ribs 13 having a mountain-shaped cross section are formed on the inner surface of the lower end portion of the steel pipe 11, and the concrete located on the inner side thereof has a lower pile portion. Since so-called reinforcing bar rods composed of a plurality of first pile main bars 14 and a plurality of hoop bars 15 extending from 3 to the lower end of the steel pipe are formed, the first annular rib 13 is connected to the pile upper part 10 and the pile lower part 3. By setting the shape and the number of strips (corresponding to the number of windings when the rib is spiral) to correspond to the proof stress required for the joint 18, sliding between the steel pipe 11 and the concrete 16 is prevented, and the steel pipe Stress transmission between reinforced concrete can be ensured.
In addition, since the first annular rib 13 can be freely set in shape and number of strips (when the rib is spiral) by overlay welding or other means, the design freedom is high and the cost can be reduced.
Further, the first annular rib 13 has a height of 6 mm or more, a width of 5 mm or more, an angle formed between the side portion and the inner surface or the outer surface of the steel pipe is 60 ° to 90 °, and has a straight portion on the side portion. Because of the curved shape of the projections, the effect of the corners of the grooves between the projections does not impair the filling of the concrete and the mixture of the concrete and the pore wall stabilizing liquid tends to stay in the concrete during casting. There are few, and the influence with respect to the adhesive force of concrete and a steel pipe can be suppressed.
なお、本発明は上述した実施形態に限定されず、例えば、鋼管の外側に突起を有する杭の場合にも適用することが出来るなど、本発明の要旨を逸脱しない限りで種々に変更できることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, For example, it can apply also in the case of the pile which has a processus | protrusion on the outer side of a steel pipe, For example, it can change variously, unless it deviates from the summary of this invention. It is.
本発明の現場打ち鋼管コンクリート杭の第1実施形態図である。It is a 1st embodiment figure of a spot cast steel pipe concrete pile of the present invention. 図1の鋼管の構成図である。It is a block diagram of the steel pipe of FIG. 本発明の現場打ち鋼管コンクリート杭の第2実施形態図である。It is 2nd Embodiment figure of the spot cast steel pipe concrete pile of this invention. 本発明の現場打ち鋼管コンクリート杭の第3実施形態図である。It is a 3rd embodiment figure of a spot cast steel pipe concrete pile of the present invention. 図4の鋼管の構成図である。It is a block diagram of the steel pipe of FIG. 本発明の現場打ち鋼管コンクリート杭の第4実施形態図である。It is a 4th embodiment figure of a spot cast steel pipe concrete pile of the present invention. リブの肉盛溶接手段を示す模式図である。It is a schematic diagram which shows the build-up welding means of a rib. リブの断面形状を示す模式図である。It is a schematic diagram which shows the cross-sectional shape of a rib. 従来の現場打ち鋼管コンクリート杭の一例を示す図である。It is a figure which shows an example of the conventional spot cast steel pipe concrete pile. 特許文献1の「カゴ筋を用いた杭頭結合方法」の説明図である。It is explanatory drawing of the "pile head coupling | bonding method using a cage wire" of patent document 1. FIG. 特許文献2の「場所打鋼管コンクリート杭の杭頭部構造」の構成図である。It is a block diagram of the "pile head structure of a cast-in-place steel pipe concrete pile" of patent document 2. FIG. 特許文献3の「場所打鋼管コンクリート杭」の構成図である。It is a block diagram of the "place cast steel pipe concrete pile" of patent document 3.
符号の説明Explanation of symbols
1 フーチング、3 杭下部、5 当て板、
10 杭上部、11 鋼管、12 定着筋、
13 第1環状リブ、14 第1杭主筋、15 フープ筋、
16 コンクリート、18 継手部、
21 第2杭主筋、23 第2環状リブ、
24 第3杭主筋、
26 第4杭主筋、
1 footing, 3 pile lower part, 5 backing plate,
10 upper piles, 11 steel pipes, 12 anchors,
13 1st annular rib, 14 1st pile main reinforcement, 15 Hoop reinforcement,
16 concrete, 18 joints,
21 second pile main bar, 23 second annular rib,
24 Third pile main bar,
26 4th pile main reinforcement,

Claims (7)

  1. 鋼管コンクリート造の杭上部と、鉄筋コンクリート造の杭下部とからなる現場打ち鋼管コンクリート杭であって、
    杭上部は、鉛直に延び内面が平滑な鋼管と、該鋼管の上部外周面又は内周面に溶接又はボルトなどで固定され鉄筋コンクリート造のフーチング内へ延びる複数の定着筋と、鋼管の下端部内面に軸方向に間隔を隔てて形成された断面山形状の複数の第1環状リブと、該第1環状リブの内側に杭下部から鋼管の下端部内まで延設された複数の第1杭主筋と、該第1杭主筋に直交しこれを囲む複数のフープ筋と、鋼管内に上端から下端まで連続して充填されたコンクリートとからなる、ことを特徴とする現場打ち鋼管コンクリート杭。
    An in-situ steel pipe concrete pile consisting of a steel pipe concrete pile upper part and a reinforced concrete pile lower part,
    The upper part of the pile is a steel pipe that extends vertically and has a smooth inner surface, a plurality of fixing bars that are fixed to the upper outer peripheral surface or inner peripheral surface of the steel pipe by welding or bolts and extend into a reinforced concrete footing, and the inner surface of the lower end of the steel pipe A plurality of first annular ribs having a mountain-shaped cross section formed at intervals in the axial direction, and a plurality of first pile main bars extending from the bottom of the pile to the inside of the lower end of the steel pipe inside the first annular rib; An on-site steel pipe concrete pile characterized by comprising a plurality of hoop bars orthogonal to and surrounding the first pile main bar and concrete continuously filled from the upper end to the lower end in the steel pipe.
  2. 更に、前記複数の第1杭主筋の一部又は全部に下端が固定されフーチングまで延設された複数の第2杭主筋を有する、ことを特徴とする請求項1に記載の現場打ち鋼管コンクリート杭。   2. The cast-in-place steel pipe concrete pile according to claim 1, further comprising a plurality of second pile main bars having lower ends fixed to part or all of the plurality of first pile main bars and extending to the footing. .
  3. 更に、前記鋼管の上端部内面に軸方向に間隔を隔てて形成された断面山形状の複数の第2環状リブと、該第2環状リブの内側にフーチングから鋼管の上端部内まで延設された複数の第3杭主筋を有する、ことを特徴とする請求項1に記載の現場打ち鋼管コンクリート杭。   Further, a plurality of second annular ribs having a mountain-shaped cross section formed on the inner surface of the upper end portion of the steel pipe at an interval in the axial direction, and extended from the footing to the inside of the upper end portion of the steel pipe inside the second annular rib. The in-situ steel pipe concrete pile according to claim 1, comprising a plurality of third pile main bars.
  4. 前記複数の第1杭主筋の一部又は全部に下端が固定され、前記複数の第3杭主筋の一部又は全部に上端が固定され、鋼管内を延びる複数の第4杭主筋を有する、ことを特徴とする請求項3に記載の現場打ち鋼管コンクリート杭。   A lower end is fixed to part or all of the plurality of first pile main bars, an upper end is fixed to part or all of the plurality of third pile main bars, and a plurality of fourth pile main bars extending in the steel pipe are provided. The cast-in-place steel pipe concrete pile according to claim 3.
  5. 前記第1環状リブ及び/又は第2環状リブは、継手部に必要な耐力に対応するように形状及び条数(リブが螺旋状の場合は巻き数)が設定されている、ことを特徴とする請求項1乃至4のいずれかに記載の現場打ち鋼管コンクリート杭。   The first annular rib and / or the second annular rib is characterized in that the shape and the number of strips (the number of turns when the rib is spiral) are set so as to correspond to the proof stress necessary for the joint portion. The cast-in-place steel pipe concrete pile according to any one of claims 1 to 4.
  6. 前記第1環状リブ及び/又は第2環状リブは、鋼管の内面又は外面に1対の当て板を間隔を隔てて配置し、該1対の当て板を鋼管の内面又は外面に対して相対移動させつつ、その当て板間に肉盛溶接して形成した肉盛溶接リブである、ことを特徴とする請求項5に記載の現場打ち鋼管コンクリート杭。   The first annular rib and / or the second annular rib are arranged such that a pair of contact plates are arranged at an interval on the inner surface or outer surface of the steel pipe, and the pair of contact plates are moved relative to the inner surface or outer surface of the steel pipe. The spot cast steel pipe concrete pile according to claim 5, wherein the pile is a build-up weld rib formed by build-up welding between the contact plates.
  7. 前記第1環状リブ及び/又は第2環状リブは、高さが6mm以上、幅が5mm以上、側部と鋼管の内面または外面とのなす角度が60°から90°で、側部に直線部を有し、上部が曲線となる曲線形状の突起を有する、ことを特徴とする請求項6に記載の現場打ち鋼管コンクリート杭。


    The first annular rib and / or the second annular rib has a height of 6 mm or more, a width of 5 mm or more, an angle formed between the side portion and the inner surface or outer surface of the steel pipe is 60 ° to 90 °, and a linear portion on the side portion. The cast-in-place steel pipe concrete pile according to claim 6, further comprising: a curved projection having a curved upper portion.


JP2004327700A 2004-11-11 2004-11-11 Cast-in-place steel pipe reinforced concrete pile Pending JP2006138095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327700A JP2006138095A (en) 2004-11-11 2004-11-11 Cast-in-place steel pipe reinforced concrete pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327700A JP2006138095A (en) 2004-11-11 2004-11-11 Cast-in-place steel pipe reinforced concrete pile

Publications (1)

Publication Number Publication Date
JP2006138095A true JP2006138095A (en) 2006-06-01

Family

ID=36619091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327700A Pending JP2006138095A (en) 2004-11-11 2004-11-11 Cast-in-place steel pipe reinforced concrete pile

Country Status (1)

Country Link
JP (1) JP2006138095A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202218A (en) * 2007-02-16 2008-09-04 Nippon Steel Corp Cast-in-place steel pipe concrete pile and its construction method
CN102877464A (en) * 2012-08-04 2013-01-16 盐城工学院 Self-draining pile and application thereof in soft soil area
CN102937211A (en) * 2012-11-28 2013-02-20 中铁二局股份有限公司 Vertical spiral-type buried pipe construction method for GRHP (ground source heat pump)
CN103215959A (en) * 2013-04-17 2013-07-24 杨众 Support structure with combined V-shaped precast pile and stirring pile and construction method thereof
JP5730426B1 (en) * 2014-04-11 2015-06-10 ジャパンパイル株式会社 Cast-in-place pile design method, design program, storage medium, cast-in-place pile design system, and cast-in-place pile bending strength calculation method
JP2015121040A (en) * 2013-12-24 2015-07-02 システム計測株式会社 Cast-in-place steel pipe concrete pile
WO2016132648A1 (en) * 2015-02-17 2016-08-25 株式会社クボタ Joint mechanism and connection method for steel pipe
CN106195443A (en) * 2016-08-30 2016-12-07 中铁四局集团第五工程有限公司 A kind of connection system between underground engineering jacking construction combination type jacking steel pipe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202218A (en) * 2007-02-16 2008-09-04 Nippon Steel Corp Cast-in-place steel pipe concrete pile and its construction method
CN102877464A (en) * 2012-08-04 2013-01-16 盐城工学院 Self-draining pile and application thereof in soft soil area
CN102937211A (en) * 2012-11-28 2013-02-20 中铁二局股份有限公司 Vertical spiral-type buried pipe construction method for GRHP (ground source heat pump)
CN103215959A (en) * 2013-04-17 2013-07-24 杨众 Support structure with combined V-shaped precast pile and stirring pile and construction method thereof
CN103215959B (en) * 2013-04-17 2016-03-09 杨众 The support construction method that V-arrangement preformed pile is combined with agitation pile
JP2015121040A (en) * 2013-12-24 2015-07-02 システム計測株式会社 Cast-in-place steel pipe concrete pile
JP5730426B1 (en) * 2014-04-11 2015-06-10 ジャパンパイル株式会社 Cast-in-place pile design method, design program, storage medium, cast-in-place pile design system, and cast-in-place pile bending strength calculation method
WO2016132648A1 (en) * 2015-02-17 2016-08-25 株式会社クボタ Joint mechanism and connection method for steel pipe
CN106195443A (en) * 2016-08-30 2016-12-07 中铁四局集团第五工程有限公司 A kind of connection system between underground engineering jacking construction combination type jacking steel pipe

Similar Documents

Publication Publication Date Title
US6468003B2 (en) Composite pile with tapering lower portion and method for driving pile into granular soil
JP6260906B2 (en) Steel structure pile pillar-to-base beam joint integrated method
JP2008267069A (en) Steel for underground continuous wall, underground continuous wall, and construction method of underground continuous wall
JP4674052B2 (en) Steel pipe sheet pile joint, steel pipe sheet pile joint structure and steel pipe sheet pile foundation
JP2006104747A (en) Pier stud connection structure and pier stud connecting method
JP2008163738A (en) Earth anchor bracket having curved part formed with gear
JP4649360B2 (en) Seismic joint structure and construction method thereof
JP4284056B2 (en) Non-embedded column base construction method and non-embedded column base structure
JP4472729B2 (en) Reinforced structure
KR101897415B1 (en) Apparatus for forming a cip retaining wall construction method using thereof
JP2013136922A (en) Earth retaining wall supporting method, earth retaining wall supporting structure, and underground skeleton constructing method
JP2008208634A (en) Power transmission steel tower reinforcing method
JP2006207124A (en) Steel-made pier structural body and its construction method
JP5416622B2 (en) Pile head tension anchoring method
JP3258549B2 (en) Connection structure between pier reinforcement and footing
JP4912580B2 (en) Pile head joint structure and construction method
JP2005054532A (en) Reinforcing structure of concrete structure, and method of reinforcing concrete structure
JP4386804B2 (en) Seismic reinforcement structure for existing steel towers
JP4418269B2 (en) Primary lining body of concrete-filled steel segment and tunnel
JP4185870B2 (en) Pile head joint structure and pile construction method
JP4448556B1 (en) Existing steel pipe column corrosion prevention reinforcement
JP2004190350A (en) Reinforcing basket, steel pipe with built-in reinforcing basket, and construction method of infilled steel pipe reinforced concrete column
JP4413167B2 (en) Reinforced structure of steel reinforced concrete structure and its construction method
JP4557711B2 (en) Reinforcement structure around openings in reinforced concrete beams
JP2005264666A (en) Pile head joining structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091203