JP5730426B1 - Cast-in-place pile design method, design program, storage medium, cast-in-place pile design system, and cast-in-place pile bending strength calculation method - Google Patents

Cast-in-place pile design method, design program, storage medium, cast-in-place pile design system, and cast-in-place pile bending strength calculation method Download PDF

Info

Publication number
JP5730426B1
JP5730426B1 JP2014082247A JP2014082247A JP5730426B1 JP 5730426 B1 JP5730426 B1 JP 5730426B1 JP 2014082247 A JP2014082247 A JP 2014082247A JP 2014082247 A JP2014082247 A JP 2014082247A JP 5730426 B1 JP5730426 B1 JP 5730426B1
Authority
JP
Japan
Prior art keywords
steel pipe
fixing
pile
force
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014082247A
Other languages
Japanese (ja)
Other versions
JP2015203201A (en
Inventor
菅 一雅
一雅 菅
一真 石川
一真 石川
本間 裕介
裕介 本間
Original Assignee
ジャパンパイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパンパイル株式会社 filed Critical ジャパンパイル株式会社
Priority to JP2014082247A priority Critical patent/JP5730426B1/en
Application granted granted Critical
Publication of JP5730426B1 publication Critical patent/JP5730426B1/en
Publication of JP2015203201A publication Critical patent/JP2015203201A/en
Active legal-status Critical Current

Links

Images

Abstract

【課題】定着部の定着力を所望の大きさに設計する。【解決手段】杭体11の杭頭部11aに鋼管18が巻着される場所打ち杭10の設計方法であって、少なくとも鋼管の上端部及び下端部における鋼管と内部構造部分20との定着方法を設定する工程と、鋼管の上端部及び下端部における圧縮側及び引張側に対する内部構造部分との定着力の最小値に基づいて、所望の鋼管の上端部及び下端部における定着力を算出する工程と、定着力算出工程で算出した定着力に基づいて、杭体の鋼管部分の軸力と曲げモーメントとの関係を示す鋼管用相関曲線を作成する工程と、鋼管の内部構造部分の軸力と曲げモーメントとの関係を示す内部構造用相関曲線に、鋼管用相関曲線を重ね合わせて累加強度相関曲線を作成する工程と、累加強度相関曲線を用いて、上記定着方法によって定着力を確保可能な鋼管と内部構造部分との定着部26の仕様を決定する工程とを含む。【選択図】図2The fixing force of a fixing unit is designed to a desired magnitude. A design method of a cast-in-place pile 10 in which a steel pipe 18 is wound around a pile head 11a of a pile body 11, and a fixing method of a steel pipe and an internal structure portion 20 at least at an upper end portion and a lower end portion of the steel pipe. And calculating the fixing force at the upper end and the lower end of the desired steel pipe based on the minimum value of the fixing force between the upper end and the lower end of the steel pipe and the internal structure portion with respect to the compression side and the tension side. And, based on the fixing force calculated in the fixing force calculation step, a step of creating a correlation curve for steel pipe showing the relationship between the axial force of the steel pipe portion of the pile body and the bending moment, and the axial force of the internal structure portion of the steel pipe It is possible to secure the fixing force by the above fixing method using the cumulative strength correlation curve by superimposing the steel pipe correlation curve on the internal structure correlation curve indicating the relationship with the bending moment, and using the cumulative strength correlation curve steel And determining the specifications of the fixing portion 26 of the internal structural part with. [Selection] Figure 2

Description

本発明は、場所打ち杭の設計方法、設計プログラム、記憶媒体、場所打ち杭の設計システム、及び場所打ち杭の曲げ耐力算定方法に関する。 The present invention is a method of designing a place pile, design program, storage medium, location Pile design system, and bending strength calculation method relating to the place pile.
場所打ち杭は、地盤中に地表から杭孔を削孔し、杭孔内に鉄筋カゴ等の補強部材を配設した後にコンクリートを打設して形成される。このため、工場で製作された杭を地中に打ち込む既製杭に比べて、杭の径や長さを大きくすることができ、大きな支持力を必要とする基礎を施工する場合等に使用される。場所打ち杭の耐震性を向上させるために、場所打ち杭の杭頭部に鋼管を巻き付け、杭の曲げやせん断耐力を確保する耐震場所打ち杭、すなわち杭頭部鋼管巻き場所打ちコンクリート杭が広く用いられている。杭頭部鋼管巻き場所打ちコンクリート杭は、杭の上部を鋼管コンクリート構造(部)又は鋼管鉄筋コンクリート構造(部)とし、下部を鉄筋コンクリート構造(部)とした構成となっている。   A cast-in-place pile is formed by drilling a pile hole from the ground surface in the ground, placing a reinforcing member such as a reinforcing bar cage in the pile hole, and then placing concrete. For this reason, it is possible to increase the diameter and length of the pile compared to a ready-made pile that is driven into the ground by a pile manufactured at the factory, and is used when constructing foundations that require a large bearing capacity. . In order to improve the earthquake resistance of cast-in-place piles, steel pipes are wound around the pile heads of cast-in-place piles, and earthquake-resistant cast-in-place piles that ensure the bending and shear strength of piles, that is, pile head cast-in-place concrete cast piles are widely used. It is used. The pile head cast-in-place concrete pile has a structure in which the upper part of the pile is a steel pipe concrete structure (part) or a steel pipe reinforced concrete structure (part) and the lower part is a reinforced concrete structure (part).
杭頭部鋼管巻き場所打ちコンクリート杭の鋼管巻き部分は、曲げモーメントが作用した際に、鋼管とその内部コンクリートや内部鉄筋コンクリート等の内部構造部分の中立軸が一致しているならば、すなわち鋼管と内部構造部分が一体化していれば、一般化累加強度式による大きな曲げ耐力を発揮する。つまり、鋼管巻き部分において大きな曲げ耐力を発揮させるには、鋼管と内部構造部分との一体性を高めることが必要となる。鋼管と内部構造部分とを一体化するために、場所打ち杭の頭部に、内面リブ付き鋼管を設置して鋼管コンクリート杭をつくるKCTB工法がある。しかしながら、KCTB工法で使用されるリブ付き鋼管は、その内周面の全体にスパイラル状にリブが設けられる構成となっているので、その製造には、手間やコストを要し、また、納期対応、調達性が悪いことが課題となっている。   When the bending moment is applied, the steel pipe winding part of the pile head steel pipe winding cast-in-place concrete pile is the same as the steel pipe if the neutral axis of the internal structure part such as internal concrete or internal reinforced concrete coincides. If the internal structure is integrated, a large bending strength can be achieved by the generalized cumulative strength formula. That is, in order to exert a large bending strength at the steel tube winding portion, it is necessary to improve the integrity of the steel tube and the internal structure portion. In order to integrate the steel pipe and the internal structure part, there is a KCTB method in which a steel pipe concrete pile is made by installing a steel pipe with an internal rib on the head of the cast-in-place pile. However, the ribbed steel pipe used in the KCTB method has a configuration in which ribs are provided in a spiral shape on the entire inner peripheral surface. The problem is poor procurement.
このため、杭頭部鋼管巻き場所打ちコンクリート杭として、鋼管の内周面全体にリブを設けない平鋼管を用いる構造のものが開発さている。この場合、平鋼管を使用した上部の鋼管コンクリート部と下部の鉄筋コンクリート部との継手部が地震時において弱部になる虞があるため、当該継手部を確実に補強する従来技術として、特許文献1が開示されている。また、平鋼管と内部コンクリートとすべりを防止して応力伝達を可能にする従来技術として、特許文献2が開示されている。   For this reason, as a pile head steel pipe winding cast-in-place concrete pile, the thing using the structure which uses the flat steel pipe which does not provide a rib in the whole internal peripheral surface of a steel pipe is developed. In this case, since the joint part of the upper steel pipe concrete part using a flat steel pipe and the lower reinforced concrete part may become a weak part at the time of an earthquake, as a prior art which reinforces the said joint part reliably, patent document 1 Is disclosed. Further, Patent Document 2 is disclosed as a prior art that enables slip transmission by preventing slippage between a flat steel pipe and internal concrete.
さらに、非特許文献1乃至3では、鉄骨とコンクリートからなる合成断面柱において、鉄骨とコンクリートとの付着がない状態で、鉄骨端部の定着力が変化した場合に合成断面柱の曲げ耐力がどのように変化するかを検討し、一般化累加強度式の適用範囲を明確にすると共に、適用が不可能な場合にはどのような設計式を用いればよいかを検討している。そして、1)鉄骨端部の定着力が鉄骨の降伏軸力より大きい場合、合成断面柱の曲げ耐力は一般化累加強度式による大きな曲げ耐力となり、2)鉄骨端部の定着力が鉄骨の降伏軸力より小さい場合、合成断面柱の曲げ耐力は、1)の場合より小さい曲げ耐力となり、3)さらに2)の特殊な場合として鉄骨端部の定着力が全く存在しない場合、合成断面柱の曲げ耐力は、2)の場合よりさらに小さい曲げ耐力となること、つまり、合成断面柱の曲げ耐力は、鉄骨端部の定着力の影響を受けることを開示している。   Further, in Non-Patent Documents 1 to 3, in the composite cross-section column made of steel frame and concrete, the bending strength of the composite cross-section column is changed when the fixing force at the end of the steel frame is changed without the adhesion between the steel frame and the concrete. In addition to clarifying the scope of application of the generalized cumulative intensity formula, what design formula should be used when it is impossible to apply is examined. And 1) When the anchoring force at the end of the steel frame is greater than the yield axial force of the steel frame, the bending strength of the composite section column becomes a large bending strength according to the generalized cumulative strength formula. 2) The anchoring force at the end of the steel frame is the yield strength of the steel frame When the axial force is smaller, the bending strength of the composite cross-section column is smaller than that of 1). 3) Furthermore, as a special case of 2), when there is no fixing force at the end of the steel frame, It is disclosed that the bending strength is smaller than that of 2), that is, the bending strength of the composite cross-section column is affected by the fixing force of the steel frame end.
特開2011−074569号公報JP 2011-074569 A 特開2006−138095号公報JP 2006-138095 A
非特許文献1乃至3は、鉄骨とコンクリートからなる合成断面柱について述べているが、この考えを杭頭部鋼管巻き場所打ちコンクリート杭の鋼管巻き部分に適用すると、鋼管巻き部分の曲げ耐力は、鋼管の上端部及び下端部における鋼管とその内部構造部分との定着力の影響を受けると考えられる。このため、鋼管巻き部分において大きな曲げ耐力を発揮させるためには、鋼管の上端部及び下端部付近に設けられる定着部における定着力を高める必要がある。   Non-Patent Documents 1 to 3 describe a composite cross-section column made of steel and concrete, but when this idea is applied to a steel pipe winding portion of a pile head steel pipe winding cast-in-place concrete pile, the bending strength of the steel pipe winding portion is This is considered to be affected by the fixing force between the steel pipe and its internal structure at the upper and lower ends of the steel pipe. For this reason, in order to exert a large bending strength in the steel tube winding portion, it is necessary to increase the fixing force in the fixing portion provided in the vicinity of the upper end portion and the lower end portion of the steel pipe.
しかしながら、定着部における鋼管の内周面と内部構造部分との定着力を高める際に、リブ等の定着部材を必要以上に設けると、定着力が大きい過剰設計となり、不経済な設計となってしまう。一方、定着部に必要な定着力が得られないと、巻着された鋼管部分の曲げ耐力を十分に発揮できない。すなわち、杭頭部鋼管巻き場所打ちコンクリート杭を設計する際に、定着部における定着力を考慮して鋼管巻き部分の曲げ耐力を算定することが必要となる。   However, if fixing members such as ribs are provided more than necessary when increasing the fixing force between the inner peripheral surface of the steel pipe and the internal structure portion in the fixing part, the fixing force is excessively overdesigned, resulting in an uneconomical design. End up. On the other hand, unless the fixing force necessary for the fixing portion is obtained, the bending strength of the wound steel pipe portion cannot be sufficiently exhibited. That is, when designing a pile head cast-in-place concrete pile, it is necessary to calculate the bending strength of the steel pipe winding part in consideration of the fixing force in the fixing part.
非特許文献1乃至3では、鉄骨とコンクリートからなる合成断面柱において、合成断面柱の曲げ耐力は鉄骨端部の定着力の影響を受けることに関しては、言及しているが、鋼管とその内部構造部分との定着力を考慮して杭頭部鋼管巻き場所打ちコンクリート杭を設計することに関しては、言及していない。また、特許文献1では、上部鋼管コンクリート部と下部鉄筋コンクリート部との継手部を確実に補強することに関しては、言及しているが、鋼管とその内部構造部分との定着力を考慮して鋼管巻き部分の曲げ耐力を算定することに関しては、言及していない。さらに、特許文献2では、平鋼管とコンクリートとのすべりを防止して応力伝達を可能にすることに関しては、言及しているが、鋼管とその内部構造部分との定着力を考慮して鋼管巻き部分の曲げ耐力を算定することに関しては、言及していない。   Non-Patent Documents 1 to 3 mention that the bending strength of the composite section column is affected by the fixing force at the end of the steel frame in the composite section column made of steel and concrete, but the steel pipe and its internal structure There is no mention about designing the pile head cast-in-place concrete pile considering the fixing power with the part. Patent Document 1 mentions that the joint portion between the upper steel pipe concrete portion and the lower reinforced concrete portion is reliably reinforced, but considering the fixing force between the steel pipe and its internal structure portion, No reference is made to calculating the bending strength of the part. Further, Patent Document 2 mentions that stress transmission is possible by preventing slippage between a flat steel pipe and concrete, but considering the fixing force between the steel pipe and its internal structure portion, No reference is made to calculating the bending strength of the part.
本発明は、上記課題に鑑みてなされたものであり、定着部における鋼管と内部構造部分との定着力に基づいて、鋼管巻き部分の曲げ耐力を算出することで地震等の外力に対して最適な定着部の仕様を設計可能な、新規かつ改良された場所打ち杭の設計方法、設計プログラム、記憶媒体、及び場所打ち杭の設計システムを提供することを目的とする。   The present invention has been made in view of the above problems, and is optimal for external forces such as earthquakes by calculating the bending strength of the steel tube winding part based on the fixing force between the steel pipe and the internal structure part in the fixing part. It is an object of the present invention to provide a new and improved cast-in-place pile design method, a design program, a storage medium, and a cast-in-place pile design system capable of designing specifications of various anchoring portions.
本発明の一態様は、少なくとも杭体の曲げ耐力を算定する曲げ耐力算定工程を含み、前記杭体の杭頭部に鋼管が巻着される場所打ち杭の設計方法であって、前記曲げ耐力算定工程は、少なくとも前記鋼管の上端部及び下端部における前記鋼管と該鋼管の内部に設けられる内部コンクリート又は内部鉄筋コンクリートの何れかからなる内部構造部分との定着方法を設定する設定工程と、前記鋼管の前記上端部及び前記下端部における圧縮側に対する前記内部構造部分との定着力の小さい方の値として算出される最小値と、前記鋼管の前記上端部及び前記下端部における引張側に対する前記内部構造部分との定着力の小さい方の値として算出される最小値とを、前記圧縮側及び前記引張側におけるそれぞれの前記鋼管の定着力として算出する定着力算出工程と、前記定着力算出工程で算出した前記圧縮側及び前記引張側の前記定着力と、前記鋼管の圧縮降伏軸力及び前記鋼管の引張降伏軸力との大小関係を比較し、該大小関係に基づいて、前記杭体の前記鋼管部分の軸力と曲げモーメントとの関係を示す鋼管用相関曲線を作成する鋼管用相関曲線作成工程と、前記内部構造部分の前記内部コンクリート又は前記内部鉄筋コンクリートの何れかの軸力と曲げモーメントとの関係を示す内部構造用相関曲線を作成する内部構造用相関曲線作成工程と、前記内部構造用相関曲線に前記鋼管用相関曲線を累加させて曲げ耐力を示す累加強度相関曲線を作成する累加強度相関曲線作成工程と、を含み、前記曲げ耐力算定工程の後工程には、予め設定された軸力の所定の最小値及び最大値における前記杭体に発生する曲げ応力が前記累加強度相関曲線で示される曲げ耐力より小さくなるように前記鋼管と前記内部構造部分との定着部の仕様を決定する定着部仕様決定工程を含むことを特徴とする。 One aspect of the present invention is a design method of a cast-in-place pile in which a steel pipe is wound around a pile head of the pile body including at least a bending strength calculation step of calculating a bending strength of the pile body, the bending strength The calculation step includes a setting step for setting a fixing method between the steel pipe at least at the upper end portion and the lower end portion of the steel pipe and an internal structure portion made of either internal concrete or internal reinforced concrete provided in the steel pipe, and the steel pipe The minimum value calculated as the smaller value of the fixing force with the internal structure portion with respect to the compression side at the upper end portion and the lower end portion, and the internal structure with respect to the tension side at the upper end portion and the lower end portion of the steel pipe and a minimum value calculated as smaller of the fixing force of the portion is calculated as the fixing force of each of the steel pipe in the compression side and the tension side fixing A calculation step, comparing said fixing force the compression side calculated in the calculation step and the fixing force of the tension side, a magnitude relation between the tensile yield axial force of the compression yield axial forces and the steel pipe of the steel pipe, large-small based on the relationship, the pipe for the correlation curve creation step of creating a steel pipe for correlation curve showing the relationship between the axial force and bending moment of the steel tube portion of the pile body, the internal concrete or the internal reinforced concrete of the inner structural portion The internal structure correlation curve creating step for creating the internal structure correlation curve indicating the relationship between the axial force and the bending moment, and the steel structure correlation curve is added to the internal structure correlation curve to increase the bending strength. includes a cumulative intensity correlation curve creation step of creating a cumulative intensity correlation curve showing, and the process after the bending strength calculation step, before the preset predetermined minimum value of the axial force and the maximum value And wherein the bending stress generated in the pile body comprises a fixing portion specification determination step of determining the specifications of the fixing portion between the steel pipe to be smaller than the bending strength and the inner structural portion represented by the cumulative intensity correlation curve To do.
本発明の一態様によれば、定着力算出工程で鋼管の上端部及び下端部における所望の大きさの定着力を算出してから、当該定着力に基づいて作成された鋼管用相関曲線と累加強度相関曲線を用いて、当該定着力の妥当性を判定してから、所望の定着力を確保可能な定着部の仕様を決定できる。   According to one aspect of the present invention, after calculating a fixing force of a desired size at the upper end and the lower end of the steel pipe in the fixing force calculating step, the steel pipe correlation curve created based on the fixing force and the cumulative force are calculated. After determining the appropriateness of the fixing force using the intensity correlation curve, it is possible to determine the specifications of the fixing unit that can ensure the desired fixing force.
このとき、本発明の一態様では、前記杭体に発生する曲げ応力を算定する曲げ応力算定工程と、前記曲げ耐力算定工程の後に前記曲げ耐力に対する曲げ応力の妥当性を検討する曲げ応力検討工程と、を更に含み、前記曲げ応力検討工程は、地震時軸力の最小値及び最大値における前記曲げ応力が前記累加強度相関曲線内に含まれるか否かを判定する曲げ応力値判定工程を含むこととしてもよい。   At this time, in one aspect of the present invention, a bending stress calculation step for calculating a bending stress generated in the pile body, and a bending stress examination step for examining the validity of the bending stress with respect to the bending strength after the bending strength calculation step. The bending stress examination step includes a bending stress value determination step of determining whether or not the bending stress at the minimum and maximum values of the axial force during an earthquake is included in the cumulative strength correlation curve. It is good as well.
このようにすれば、曲げ耐力算定工程で算出された曲げ耐力に対する曲げ応力の妥当性を踏まえた上で、所望の大きさの定着力を確保するための定着部の仕様を決定するので、より安全性を確保した定着部を確実に設計できる。   In this way, the specifications of the fixing unit for securing the fixing force of a desired size are determined based on the appropriateness of the bending stress with respect to the bending strength calculated in the bending strength calculation step. It is possible to reliably design a fixing unit that ensures safety.
また、本発明の一態様では、前記曲げ応力検討工程は、前記曲げ応力値判定工程で前記曲げ応力が前記累加強度相関曲線内に含まれる場合に、前記最小値及び前記最大値における前記曲げ応力と前記曲げ耐力との比である検定比が適正値であるか否かを判定する検定比判定工程と、前記検定比判定工程において、前記最大値又は前記最小値における前記検定比が適正値でないと判定された場合に、前記検定比が過大か過小かを判定される過大過小判定工程と、を更に含み、前記過大過小判定工程で、前記検定比が過小と判定された場合に、前記曲げ応力算定工程及び前記曲げ耐力算定工程より前段に有する前記鋼管の仕様を選定する鋼管巻き仕様選定工程に戻ることとしてもよい。   In one aspect of the present invention, the bending stress examination step includes the bending stress at the minimum value and the maximum value when the bending stress is included in the cumulative strength correlation curve in the bending stress value determination step. In the test ratio determination step for determining whether or not the test ratio, which is the ratio of the bending strength to the bending strength, and the test ratio determination step, the test ratio at the maximum value or the minimum value is not an appropriate value. An over / under determination step in which it is determined whether the verification ratio is excessive or small when the determination ratio is determined to be excessive in the over / under determination step. It is good also as returning to the steel pipe winding specification selection process which selects the specification of the said steel pipe which has a stage before a stress calculation process and the said bending strength calculation process.
このようにすれば、曲げ耐力算定工程で算出した定着力に基づいて算定された検定比が適正値でない場合に、効率的に定着部の設計のやり直しが行える。   In this way, when the verification ratio calculated based on the fixing force calculated in the bending strength calculation step is not an appropriate value, the fixing portion can be efficiently redesigned.
また、本発明の一態様では、前記曲げ応力値判定工程において、前記最大値又は前記最小値における前記曲げ応力が前記累加強度相関曲線内に含まれていないと判定された場合に、前記最小値における前記曲げ応力が前記累加強度相関曲線内に含まれていないと判定された際には、前記鋼管の引張降伏軸力と前記引張力に対する前記定着力との大小関係を比較する引張側比較工程に移行し、前記最大値における前記曲げ応力が前記累加強度相関曲線内に含まれていないと判定された際には、前記鋼管の圧縮降伏軸力と前記圧縮力に対する前記定着力との大小関係を比較する圧縮側比較工程に移行することとしてもよい。   In one aspect of the present invention, when it is determined in the bending stress value determination step that the bending stress at the maximum value or the minimum value is not included in the cumulative intensity correlation curve, the minimum value is determined. When it is determined that the bending stress is not included in the cumulative strength correlation curve, the tensile side comparison step of comparing the magnitude relationship between the tensile yield axial force of the steel pipe and the fixing force with respect to the tensile force And when it is determined that the bending stress at the maximum value is not included in the cumulative strength correlation curve, the magnitude relationship between the compression yielding axial force of the steel pipe and the fixing force with respect to the compression force It is good also as shifting to the compression side comparison process which compares these.
このようにすれば、杭体に発生した応力が杭体の耐力を示す累加強度より大きい場合に、その不具合の原因を効率的に検討することができる。   If it does in this way, when the stress which generate | occur | produced in the pile body is larger than the cumulative strength which shows the yield strength of a pile body, the cause of the malfunction can be examined efficiently.
また、本発明の一態様では、引張側比較工程で前記鋼管の前記引張降伏軸力が前記引張力に対する前記定着力より小さいと判定された場合に、前記引張降伏軸力を大きくするための必要コストと軸力が0の場合における前記鋼管の曲げ耐力を大きくするための必要コストとの大小関係を検討する引張側コスト比較工程に移行することとしてもよい。   In one aspect of the present invention, when it is determined in the tension side comparison step that the tensile yield axial force of the steel pipe is smaller than the fixing force with respect to the tensile force, it is necessary to increase the tensile yield axial force. It is good also as shifting to the tension | pulling side cost comparison process which examines the magnitude relationship with the cost required to enlarge the bending proof stress of the said steel pipe in case a cost and axial force are 0.
このようにすれば、算出した定着力の不具合を解消するための必要コストを検討した上で、より好適な工程からの設計のやり直しができる。   In this way, it is possible to redo the design from a more suitable process after considering the necessary cost for eliminating the problem of the calculated fixing force.
また、本発明の一態様では、圧縮側比較工程で前記鋼管の前記圧縮降伏軸力が前記圧縮力に対する前記定着力より大きいと判定された場合に、前記圧縮降伏軸力を大きくするための必要コストと軸力が0の場合における前記鋼管の曲げ耐力を大きくするための必要コストとの大小関係を検討する圧縮側コスト比較工程に移行することとしてもよい。   In one aspect of the present invention, when it is determined in the compression side comparison step that the compression yield axial force of the steel pipe is larger than the fixing force with respect to the compression force, it is necessary to increase the compression yield axial force. It is good also as shifting to the compression side cost comparison process which examines the magnitude relationship with the required cost for enlarging the bending proof stress of the said steel pipe in case a cost and axial force are zero.
このようにすれば、算出した定着力の不具合を解消するための必要コストを検討した上で、より好適な工程からの設計のやり直しができる。   In this way, it is possible to redo the design from a more suitable process after considering the necessary cost for eliminating the problem of the calculated fixing force.
また、本発明の他の態様は、上述した何れかに記載の場所打ち杭の設計方法をコンピュータに実行させるための設計プログラムである。   Moreover, the other aspect of this invention is a design program for making a computer perform the design method of the cast-in-place pile in any one mentioned above.
本発明の他の態様によれば、かかる設計プログラムに沿って、杭頭部に巻着される鋼管と内部構造部分との定着部の定着力を所望の大きさに設計できる。   According to the other aspect of the present invention, the fixing force of the fixing portion between the steel pipe wound around the pile head and the internal structure portion can be designed to a desired size in accordance with such a design program.
また、本発明の他の態様は、上述した何れかに記載の場所打ち杭の設計方法をコンピュータに実行させるための設計プログラムを前記コンピュータで読み取り可能に記憶した記憶媒体である。   Another aspect of the present invention is a storage medium in which a computer-readable design program for causing a computer to execute any one of the above-described cast-in-place pile design methods is stored.
本発明の他の態様によれば、記憶媒体に記憶された設計プログラムに沿って、杭頭部に巻着される鋼管と内部構造部分との定着部の定着力を所望の大きさに設計できる。   According to another aspect of the present invention, the fixing force of the fixing portion between the steel pipe wound around the pile head and the internal structure portion can be designed to a desired size in accordance with the design program stored in the storage medium. .
また、本発明の他の態様は、杭体の杭頭部に鋼管が巻着される場所打ち杭の設計システムであって、少なくとも前記場所打ち杭の設計に係る所定のデータを記憶する記憶部と、少なくとも前記鋼管の上端部及び下端部における圧縮側に対する内部コンクリート又は内部鉄筋コンクリートの何れかからなる内部構造部分との定着力の最小値と、引張側に対する前記内部構造部分との定着力の最小値に基づいて、所望の前記鋼管の前記上端部及び前記下端部における定着力を算出する演算部と、前記演算部に含まれ、少なくとも前記鋼管の上端部及び下端部における前記鋼管と該鋼管の内部に設けられる内部構造部分との定着方法を設定する設定部と、前記演算部に含まれ、前記圧縮側及び前記引張側の前記定着力に基づいて、前記杭体の前記鋼管部分の軸力と曲げモーメントとの関係を示す鋼管用相関曲線を作成する鋼管用相関曲線作成部と、前記演算部に含まれ、前記鋼管の内部構造部分の軸力と曲げモーメントとの関係を示す内部構造用相関曲線に前記鋼管用相関曲線を累加させて累加強度相関曲線を作成する累加強度相関曲線作成部と、前記演算部に含まれ、少なくとも前記累加強度相関曲線を用いて、予め設定された軸力の所定の最小値及び最大値における前記杭体に発生する曲げ応力が前記累加強度相関曲線内に含まれるか否かを判定する定着力判定部と、前記演算部に含まれ、前記軸力の所定の前記最小値及び前記最大値における前記曲げ応力が前記累加強度相関曲線内に含まれている場合に、前記設定部で設定された前記定着方法によって少なくとも前記定着力を確保可能な前記鋼管と前記内部構造部分との定着部の仕様を決定する定着部仕様決定部と、を備えることを特徴とする。 Another aspect of the present invention is a cast-in-place pile design system in which a steel pipe is wound around a pile head of a pile body, and stores at least predetermined data relating to the design of the cast-in-place pile Minimum value of fixing force with the internal structure portion made of either internal concrete or internal reinforced concrete on the compression side at least at the upper end portion and the lower end portion of the steel pipe, and minimum fixing force with the internal structure portion on the tension side A calculation unit that calculates a fixing force at the upper end portion and the lower end portion of the desired steel pipe based on the value; and included in the calculation unit, at least the steel pipe at the upper end portion and the lower end portion of the steel pipe, and the steel pipe A setting unit that sets a fixing method with an internal structure portion provided inside, and the steel included in the pile body, which is included in the calculation unit, based on the fixing force on the compression side and the tension side A correlation curve creating section for creating a steel pipe correlation curve showing the relationship between the axial force of the part and the bending moment, and the calculation part included in the correlation section for the steel pipe, and the relation between the axial force and the bending moment of the internal structure part of the steel pipe A cumulative strength correlation curve creating unit that creates the cumulative strength correlation curve by accumulating the steel pipe correlation curve to the internal structure correlation curve shown in FIG. 4 and is set in advance using at least the cumulative strength correlation curve. a fixing force judging unit that the bending stress generated in the pile body at the predetermined minimum value and maximum value of the axial force is determined whether or not included in the cumulative intensity correlation in curves, is included in the calculation unit, when the bending stress in a given said minimum value and said maximum value of said axial force is included in the cumulative intensity correlation in curves, ensuring at least the fixing force by the fixing method set by the setting unit Characterized in that it comprises a fixing portion specification determination section for determining the specifications of the fixing portion of the capacity of the steel pipe and the internal structure portion.
本発明の他の態様によれば、演算部で鋼管の上端部及び下端部における所望の大きさの定着力を算出してから、当該定着力に基づいて作成された累加強度相関曲線を用いて、当該定着力の妥当性を判定した上で、所望の大きさの定着力を確保可能な定着部を効率的に設計できる。   According to another aspect of the present invention, the calculation unit calculates a fixing force of a desired size at the upper end and the lower end of the steel pipe, and then uses a cumulative intensity correlation curve created based on the fixing force. Then, after determining the appropriateness of the fixing force, it is possible to efficiently design a fixing unit that can secure a fixing force of a desired size.
また、本発明の他の態様は、杭体の杭頭部に鋼管が巻着される場所打ち杭の曲げ耐力を算定する場所打ち杭の曲げ耐力算定方法であって、少なくとも前記鋼管の上端部及び下端部における前記鋼管と該鋼管の内部に設けられる内部コンクリート又は内部鉄筋コンクリートの何れかからなる内部構造部分との定着方法を設定する設定工程と、前記鋼管の前記上端部及び前記下端部における圧縮側に対する前記内部構造部分との定着力の小さい方の値として算出される最小値と、前記鋼管の前記上端部及び前記下端部における引張側に対する前記内部構造部分との定着力の小さい方の値として算出される最小値とを、前記圧縮側及び前記引張側におけるそれぞれの前記鋼管の定着力として算出する定着力算出工程と、前記定着力算出工程で算出した前記圧縮側及び前記引張側の前記定着力と、前記鋼管の圧縮降伏軸力及び前記鋼管の引張降伏軸力との大小関係を比較し、該大小関係に基づいて、前記杭体の前記鋼管部分の軸力と曲げモーメントとの関係を示す鋼管用相関曲線を作成する鋼管用相関曲線作成工程と、前記内部構造部分の前記内部コンクリート又は前記内部鉄筋コンクリートの何れかの軸力と曲げモーメントとの関係を示す内部構造用相関曲線を作成する内部構造用相関曲線作成工程と、前記内部構造用相関曲線に前記鋼管用相関曲線を累加させて曲げ耐力を示す累加強度相関曲線を作成する累加強度相関曲線作成工程と、を含むことを特徴とする。Another aspect of the present invention is a method for calculating the bending strength of a cast-in-place pile in which the steel pipe is wound around the pile head of the pile body. And a setting step for setting a fixing method between the steel pipe at the lower end portion and an internal structural portion made of either internal concrete or internal reinforced concrete provided inside the steel pipe, and compression at the upper end portion and the lower end portion of the steel pipe The minimum value calculated as the smaller value of the fixing force with the internal structure portion with respect to the side, and the value with the smaller fixing force with the internal structure portion with respect to the tension side at the upper end portion and the lower end portion of the steel pipe A minimum value calculated as a fixing force calculation step for calculating the fixing force of the steel pipe on the compression side and the tension side, and a fixing force calculation step. Compare the magnitude relationship between the fixing force on the compression side and the tension side and the compression yield axial force of the steel pipe and the tensile yield axial force of the steel pipe, and based on the magnitude relationship, the steel pipe portion of the pile body A correlation curve creating step for creating a steel pipe correlation curve showing the relationship between the axial force and bending moment of the steel pipe, and the relationship between the axial force and bending moment of either the internal concrete or the internal reinforced concrete of the internal structure portion An internal structure correlation curve creating step for creating an internal structure correlation curve, and a cumulative strength correlation curve for creating a cumulative strength correlation curve indicating the bending strength by accumulating the steel pipe correlation curve to the internal structure correlation curve And a creation step.
本発明の他の態様によれば、定着力算出工程で鋼管端部における鋼管と内部構造部分との定着力を算出してから、当該定着力に基づいて複数通りの鋼管用相関曲線を作成して鋼管巻き部分の耐力を変化させられるので、より好適な鋼管巻き部分の曲げ耐力を算出できる。According to another aspect of the present invention, after calculating the fixing force between the steel pipe and the internal structure portion at the end of the steel pipe in the fixing force calculating step, a plurality of correlation curves for the steel pipe are created based on the fixing force. Thus, the yield strength of the steel pipe winding portion can be changed, so that a more preferable bending strength of the steel pipe winding portion can be calculated.
以上説明したように本発明によれば、鋼管巻き部分が必要とする曲げ耐力に応じて、鋼管の定着部における定着力を算出すると共に、かかる定着力に基づいて作成された累加強度相関曲線を用いて当該定着力の妥当性を判定するため、この定着力を確保可能な定着部を効率的に設計できる。このため、オーバースペックとならない定着部の仕様を効率的に設計できる。   As described above, according to the present invention, the fixing force in the fixing portion of the steel pipe is calculated according to the bending strength required by the steel tube winding portion, and the cumulative strength correlation curve created based on the fixing force is calculated. Since the adequacy of the fixing force is used to determine the fixing force, it is possible to efficiently design a fixing unit that can secure the fixing force. For this reason, it is possible to efficiently design the specification of the fixing portion that does not become overspec.
本発明の一実施形態に係る場所打ち杭の設計方法で設計される場所打ち杭の構成を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the structure of the cast-in-place pile designed by the design method of the cast-in-place pile which concerns on one Embodiment of this invention. 本発明の一実施形態に係る場所打ち杭の設計システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the design system of the cast-in-place pile which concerns on one Embodiment of this invention. 本発明の一実施形態に係る場所打ち杭の設計方法の概略を示すフロー図である。It is a flowchart which shows the outline of the design method of the cast-in-place pile which concerns on one Embodiment of this invention. 本発明の一実施形態に係る場所打ち杭の設計方法に含まれる曲げ耐力算定工程の詳細を示すフロー図である。It is a flowchart which shows the detail of the bending strength calculation process included in the design method of the cast-in-place pile which concerns on one Embodiment of this invention. (A)乃至(E)は、本発明の一実施形態に係る場所打ち杭の設計方法に含まれる鋼管用相関曲線作成工程の一例を示す説明図である。(A) thru | or (E) are explanatory drawings which show an example of the correlation curve preparation process for steel pipes contained in the design method of the cast-in-place pile which concerns on one Embodiment of this invention. (A)乃至(C)は、本発明の一実施形態に係る場所打ち杭の設計方法に含まれる累加強度相関曲線作成工程の一例を示す説明図である。(A) thru | or (C) is explanatory drawing which shows an example of the cumulative intensity correlation curve creation process included in the design method of the cast-in-place pile concerning one Embodiment of this invention. (A)乃至(C)は、本発明の一実施形態に係る場所打ち杭の設計方法に含まれる累加強度相関曲線作成工程の一例を示す説明図である。(A) thru | or (C) is explanatory drawing which shows an example of the cumulative intensity correlation curve creation process included in the design method of the cast-in-place pile concerning one Embodiment of this invention. 本発明の一実施形態に係る場所打ち杭の設計方法に含まれる曲げ応力検討工程の詳細を示すフロー図である。It is a flowchart which shows the detail of the bending stress examination process included in the design method of the cast-in-place pile which concerns on one Embodiment of this invention. 本発明の一実施形態に係る場所打ち杭の設計方法に含まれる曲げ応力検討工程の一例を示す説明図である。It is explanatory drawing which shows an example of the bending stress examination process included in the design method of the cast-in-place pile which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る場所打ち杭の設計方法の概略を示すフロー図である。It is a flowchart which shows the outline of the design method of the cast-in-place pile which concerns on other embodiment of this invention.
以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are essential as means for solving the present invention. Not necessarily.
まず、本発明の一実施形態に係る場所打ち杭の設計方法で設計される場所打ち杭の構成の概略について図面を使用しながら説明する。図1は、本発明の一実施形態に係る場所打ち杭の設計方法で設計される場所打ち杭の構成を説明する縦断面図である。   First, the outline of the structure of a cast-in-place pile designed by the cast-in-place pile design method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal cross-sectional view illustrating a configuration of a cast-in-place pile designed by a design method for cast-in-place pile according to an embodiment of the present invention.
本実施形態に係る場所打ち杭10は、図1に示すように、杭体11の杭頭部11aに鋼管18が巻着される耐震場所打ち杭、すなわち杭頭部鋼管巻き場所打ちコンクリート杭である。換言すると、本実施形態に係る場所打ち杭10は、上部側に形成される杭頭部鋼管巻き部分となる鋼管鉄筋コンクリート部12と、下部側に形成される鉄筋コンクリート部14とを備える杭頭部鋼管巻き場所打ちコンクリート杭である。また、本実施形態の場所打ち杭10は、鉄筋コンクリート部14の下部側に略截頭円錐状の拡底部14bが設けられる拡底杭である。場所打ち杭10には、鉄筋コンクリート部14の鋼材からなる主筋16が鋼管鉄筋コンクリート部12を貫通するように設けられているSRCタイプと、鉄筋コンクリート部14の鋼材からなる主筋16が鋼管コンクリート部を貫通しないSCタイプとがある。   As shown in FIG. 1, the cast-in-place pile 10 according to the present embodiment is an earthquake-resistant cast-in-place pile in which a steel pipe 18 is wound around a pile head 11 a of the pile body 11, that is, a pile-head steel tube-wound cast-in-place concrete pile. is there. In other words, the cast-in-place pile 10 according to the present embodiment includes a steel pipe reinforced concrete portion 12 serving as a pile head steel tube winding portion formed on the upper side and a reinforced concrete portion 14 formed on the lower side. It is a rolled cast-in-place concrete pile. Moreover, the cast-in-place pile 10 of this embodiment is a bottom expansion pile in which the bottom part 14b of a substantially truncated cone shape is provided in the lower part side of the reinforced concrete part 14. FIG. In the cast-in-place pile 10, the SRC type in which the main reinforcement 16 made of steel of the reinforced concrete portion 14 is provided so as to penetrate the steel pipe reinforced concrete portion 12, and the main reinforcement 16 made of steel of the reinforced concrete portion 14 does not penetrate the steel pipe concrete portion. There is SC type.
図1に示すように、杭頭部鋼管巻き部分となる鋼管鉄筋コンクリート杭部12は、略円筒形状の鋼管18と、その内空に充填される内部鉄筋コンクリート20によって主に構成される。本実施形態では、鋼管18として、例えば、直径が700mm〜2500mm程度の鋼製でその内周面が平らな平鋼管の管材が使用される。このように、場所打ち杭10の杭頭部11a側に鋼管18を設置することによって、せん断耐力や曲げ耐力を向上させて経済性と調達力に優れた杭体とすることができる。   As shown in FIG. 1, the steel pipe reinforced concrete pile part 12 used as the pile head steel pipe winding part is mainly comprised by the substantially cylindrical steel pipe 18 and the internal reinforced concrete 20 with which the inner space is filled. In the present embodiment, as the steel pipe 18, for example, a flat steel pipe having a diameter of about 700 mm to 2500 mm and a flat inner peripheral surface is used. Thus, by installing the steel pipe 18 on the pile head 11a side of the cast-in-place pile 10, the shear strength and the bending strength can be improved and a pile body excellent in economy and procurement power can be obtained.
なお、図1では、場所打ち杭10として、鋼管18の内空に設けられる内部構造部分が内部鉄筋コンクリート20となるSRCタイプの杭頭部鋼管巻き場所打ちコンクリート杭を示しているが、SCタイプとした場合では、鋼管18の内空に設けられる内部構造部分が内部コンクリートとなる。また、本明細書中で言及する「内部構造部分」とは、鋼管18の上端部18aから下端部18bにかけて、その内空に設けられる内部鉄筋コンクリート20又は内部コンクリートを示す。   In addition, in FIG. 1, although the internal structure part provided in the inner space of the steel pipe 18 shows the SRC type pile head steel pipe winding cast-in-place concrete pile as the cast-in-place pile 10, the SC type and In this case, the internal structure portion provided in the inner space of the steel pipe 18 becomes the internal concrete. In addition, the “internal structure portion” referred to in the present specification indicates the internal reinforced concrete 20 or the internal concrete provided in the inner space from the upper end portion 18 a to the lower end portion 18 b of the steel pipe 18.
鋼管18が券着された鋼管鉄筋コンクリート部12の曲げ耐力を十分に発揮させるために、鋼管18と内部鉄筋コンクリート20との定着力を確保するための定着部26が設けられている。本実施形態では、図1に示すように、定着部26として、鋼管18の上端部18aと下端部18bのそれぞれに定着部26a、26bが設けられている。   In order to sufficiently exhibit the bending proof strength of the steel pipe reinforced concrete portion 12 on which the steel pipe 18 is attached, a fixing portion 26 for securing the fixing force between the steel pipe 18 and the internal reinforced concrete 20 is provided. In the present embodiment, as shown in FIG. 1, fixing portions 26 a and 26 b are provided on the upper end portion 18 a and the lower end portion 18 b of the steel pipe 18 as the fixing portion 26.
定着部26aには、鋼管18の上端部18aの外周面に、複数の杭頭定着筋22が溶接等によって取り付けられて、鋼管18から上方に向けて突出するように設けられている。また、これらの杭頭定着筋22は、全体的にパイルキャップ24で覆われている。このように、定着部26aとして機能する杭頭定着筋22とパイルキャップ24を設けることによって、これら杭頭定着筋22とパイルキャップ24を介して、鋼管18の上端部18aと内部構造部分である内部鉄筋コンクリート20との定着が図られるようになる。   A plurality of pile head fixing bars 22 are attached to the fixing portion 26 a on the outer peripheral surface of the upper end portion 18 a of the steel pipe 18 by welding or the like, and are provided so as to protrude upward from the steel pipe 18. Moreover, these pile head fixing muscles 22 are entirely covered with a pile cap 24. Thus, by providing the pile head fixing muscle 22 and the pile cap 24 that function as the fixing portion 26a, the upper end portion 18a of the steel pipe 18 and the internal structure portion are provided via the pile head fixing muscle 22 and the pile cap 24. Fixation with the internal reinforced concrete 20 is achieved.
本実施形態では、杭頭定着筋22の本数を変更することによって、鋼管18と内部鉄筋コンクリート20との定着部26aにおける定着力を所望の大きさに設定する。すなわち、杭頭定着筋22の本数を増やすことによって、鋼管18の上端部18aにおける定着力を高められ、一方、杭頭定着筋22の本数を減らすことによって、鋼管18の上端部18aにおける定着力を下げられる。   In this embodiment, the fixing force in the fixing part 26a of the steel pipe 18 and the internal reinforced concrete 20 is set to a desired magnitude by changing the number of pile head fixing bars 22. That is, the fixing force at the upper end portion 18a of the steel pipe 18 can be increased by increasing the number of the pile head fixing bars 22, while the fixing force at the upper end portion 18a of the steel pipe 18 can be increased by decreasing the number of the pile head fixing bars 22. Can be lowered.
なお、本実施形態では、定着部26aの定着力を確保するための定着部材として、杭頭定着筋22を設けているが、杭頭定着筋22以外の部材を使用してもよい。例えば、後述する定着部26bの定着部材として例示している突起リング28を使用してもよく、突起リング28以外の定着部材を使用してもよい。すなわち、鋼管18の上端部18aと内部構造部分20との定着が図れれば、例えば、板状や棒状の鋼材やボルト等のように、鋼管18の上端部18aの内周面側に向けて凸状に突出する構成の部材を当該定着部材として適用してもよい。また、定着部26aにおける定着部材を複数併用してもよく、例えば、杭頭定着筋22と突起リング、板状や棒状の鋼材等を併用してもよい。   In this embodiment, the pile head fixing bar 22 is provided as a fixing member for securing the fixing force of the fixing unit 26a. However, a member other than the pile head fixing bar 22 may be used. For example, the protruding ring 28 exemplified as a fixing member of the fixing unit 26b described later may be used, or a fixing member other than the protruding ring 28 may be used. That is, if the upper end portion 18a of the steel pipe 18 and the internal structure portion 20 can be fixed, for example, toward the inner peripheral surface side of the upper end portion 18a of the steel pipe 18 such as a plate-like or rod-like steel material or bolt. A member having a protruding configuration may be applied as the fixing member. Further, a plurality of fixing members in the fixing unit 26a may be used together. For example, the pile head fixing bars 22 and protrusion rings, plate-like or rod-like steel materials, etc. may be used together.
さらに、定着部26aの定着力を設定する仕様についても、杭頭定着筋22の本数の変更する手法の他に、杭頭定着筋22の直径・長さ・強度等を変更する手法やパイルキャップ24のコンクリート強度を変更する手法を採ってもよい。また、定着部26aの定着力を確保するための定着部材として、突起リング等の定着部材を設ける場合においても、当該定着部材の本数・断面の大きさ・形状等を変更する手法や場所打ち杭10のコンクリート強度を変更する手法を採ってもよい。   Further, regarding the specification for setting the fixing force of the fixing portion 26a, in addition to the method of changing the number of pile head fixing muscles 22, a method of changing the diameter, length, strength, etc. of the pile head fixing muscles 22 and a pile cap You may take the method of changing the concrete strength of 24. Further, even when a fixing member such as a projecting ring is provided as a fixing member for securing the fixing force of the fixing unit 26a, a technique or a cast-in-place pile for changing the number, the size, the shape, etc. of the fixing member. A method of changing the concrete strength of 10 may be adopted.
一方、地震時には、このパイルキャップ24に上部構造からの水平力及び変動軸力が入力される。これによって、場所打ち杭10に曲げモーメントやせん断力が作用することになる。鋼管18の上端部18aが杭頭定着筋22によってパイルキャップ24に固定されている場合では、曲げモーメントやせん断力が一般的に杭頭部で最大となって下方に向かって漸減する。そこで、本実施形態では、このような曲げモーメントやせん断力に対抗させるために、杭体11の杭頭部11aに鋼管18を巻着し、杭体11の曲げ耐力やせん断耐力を増大させている。   On the other hand, during an earthquake, the horizontal force and the variable axial force from the upper structure are input to the pile cap 24. As a result, a bending moment or a shearing force acts on the cast-in-place pile 10. When the upper end portion 18a of the steel pipe 18 is fixed to the pile cap 24 by the pile head fixing bar 22, the bending moment and the shearing force are generally maximized at the pile head and gradually decrease downward. Therefore, in this embodiment, in order to counter such bending moment and shearing force, the steel pipe 18 is wound around the pile head 11a of the pile body 11, and the bending strength and shear strength of the pile body 11 are increased. Yes.
なお、本実施形態では、鋼管18の上端部18aがパイルキャップ24に固定されている場合について取り上げているが、本発明の一実施形態に係る設計方法で設計される場所打ち杭10は、この固定タイプのものに限定されない。すなわち、例えば、鋼管18の上端部18aが半固定状態の構成や、ピン等により回転が拘束されていない構成、免震装置等の特殊な装置により移動可能になっている構成の場所打ち杭に対しても、本発明の一実施形態に係る場所打ち杭の設計方法が適用可能である。   In this embodiment, the case where the upper end portion 18a of the steel pipe 18 is fixed to the pile cap 24 is taken up. However, the cast-in-place pile 10 designed by the design method according to the embodiment of the present invention is It is not limited to the fixed type. That is, for example, in a cast-in-place pile having a configuration in which the upper end portion 18a of the steel pipe 18 is in a semi-fixed state, a configuration in which rotation is not restricted by a pin or the like, and a configuration that is movable by a special device such as a seismic isolation device The cast-in-place pile design method according to an embodiment of the present invention is also applicable.
また、本実施形態では、鋼管18と内部鉄筋コンクリート20との定着力を確保するために、定着部26bには、鋼材等からなる突起リング28が鋼管18の下端部18bの内周面側に溶接等により取り付けられている。このように、突起リング28を設けることによって、定着部26bを介して、鋼管18の下端部18bと内部鉄筋コンクリート20との定着が図られるようになる。   In the present embodiment, in order to secure the fixing force between the steel pipe 18 and the internal reinforced concrete 20, a protruding ring 28 made of steel or the like is welded to the inner peripheral surface side of the lower end portion 18b of the steel pipe 18 in the fixing portion 26b. It is attached by etc. Thus, by providing the projection ring 28, the lower end portion 18b of the steel pipe 18 and the internal reinforced concrete 20 can be fixed via the fixing portion 26b.
さらに、本実施形態では、突起リング28の本数を変更することによって、定着部26bの定着力を所望の大きさに設定する。すなわち、定着部26bの定着力は、突起リング28の本数を増やすことによって高められ、一方、突起リング28の本数を減らすことによって下げられる。   Furthermore, in the present embodiment, the fixing force of the fixing unit 26b is set to a desired magnitude by changing the number of the protrusion rings 28. That is, the fixing force of the fixing unit 26b is increased by increasing the number of the protruding rings 28, and is decreased by decreasing the number of the protruding rings 28.
なお、本実施形態では、定着部26bの定着力を確保するための定着部材として、突起リング28を設けているが、突起リング28以外の部材を使用してもよい。すなわち、定着部26bの定着が図れれば、例えば、板状や棒状の鋼材やボルト等のように、鋼管18の内周面側に向けて凸状に突出する構成の部材を当該定着部材として適用可能である。   In this embodiment, the protrusion ring 28 is provided as a fixing member for securing the fixing force of the fixing portion 26b. However, a member other than the protrusion ring 28 may be used. That is, if the fixing unit 26b can be fixed, for example, a member that protrudes toward the inner peripheral surface of the steel pipe 18 such as a plate-like or rod-like steel material or bolt is used as the fixing member. Applicable.
また、定着部26bの定着力を設定する仕様についても、突起リング28等の定着部材の本数を変更する手法の他に、当該定着部材の断面の大きさ・形状等を変更する手法や場所打ち杭10のコンクリート強度を変更する手法を採ってもよい。さらに、定着部26bの定着力を設定する仕様として、突起リング28と板状や棒状の鋼材等の各種態様の定着部材を併用して、これらの本数や形状等を変更してもよい。   In addition to the method of changing the number of fixing members such as the projection ring 28, the specification for setting the fixing force of the fixing unit 26b is not limited to the method of changing the size and shape of the cross section of the fixing member. A method of changing the concrete strength of the pile 10 may be adopted. Further, as a specification for setting the fixing force of the fixing unit 26b, the number, shape, and the like of these may be changed by using the projection ring 28 and fixing members of various modes such as plate-shaped or rod-shaped steel materials in combination.
本実施形態では、以下で説明する設計システム100(図2参照)による場所打ち杭10の設計方法を実施して、より効率良く確実に定着部26a、26bにおける定着力の最適値を求めるようにしている。そして、当該設計システム100によって、かかる最適値となる定着力を確保可能な定着部26a、26bを効率的に設計可能としている。   In this embodiment, the design method of the cast-in-place pile 10 by the design system 100 (refer FIG. 2) demonstrated below is implemented, and the optimal value of the fixing force in the fixing | fixed part 26a, 26b is calculated | required more efficiently and reliably. ing. The design system 100 can efficiently design the fixing units 26a and 26b that can secure the fixing force at the optimum value.
次に、本発明の第1の実施形態に係る場所打ち杭の設計システムの構成について、図面を使用しながら説明する。図2は、本発明の一実施形態に係る場所打ち杭の設計システムの全体構成を示すブロック図である。   Next, the structure of the cast-in-place pile design system according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a block diagram illustrating the overall configuration of a cast-in-place pile design system according to an embodiment of the present invention.
図2に示すように、本実施形態に係る場所打ち杭の設計システム100は、ユーザが保有するコンピュータ101が場所打ち杭10の設計に係る所定のデータを記憶するデータベースを有するデータベースサーバにアクセスして検索処理を行いながら、定着部26a、26bにおける最適な定着力を求める。すなわち、本実施形態に係る場所打ち杭の設計システム100は、当該定着力を確保するための定着部26a、26bの仕様を決定するために使用される。   As shown in FIG. 2, the cast-in-place pile design system 100 according to the present embodiment accesses a database server having a database in which a computer 101 held by a user stores predetermined data related to the design of the cast-in-place pile 10. The optimum fixing force in the fixing units 26a and 26b is obtained while performing the search process. That is, the cast-in-place pile design system 100 according to the present embodiment is used to determine the specifications of the fixing units 26a and 26b for securing the fixing force.
なお、本明細書中において、「ユーザ」とは、場所打ち杭10の設計又は施工業務を行う者をいう。また、「コンピュータ」とは、例えば、スーパーコンピュータ、汎用コンピュータ、オフィスコンピュータ、制御用コンピュータ、パソコン、携帯情報端末等の各種演算処理が可能な演算装置を備えた情報端末をいう。   In the present specification, the “user” refers to a person who performs the design or construction work of the cast-in-place pile 10. The “computer” refers to an information terminal provided with an arithmetic device capable of various arithmetic processes such as a super computer, a general-purpose computer, an office computer, a control computer, a personal computer, and a portable information terminal.
本実施形態の場所打ち杭の設計システム100は、場所打ち杭10を設計する過程において、鋼管18と内部構造部分20とを定着させる定着部26a、26bにおける定着力を所望の大きさに設定する際に使用される。当該設計システム100は、場所打ち杭10の設計に係る所定のデータ等に基づいて、コンピュータ101で最適な定着力を算出して、当該定着力に基づいて、突起リング28の設置本数等の定着部26の仕様を決定する。なお、設計システム100の構成は、図2に限定されず、その構成要素の一部を省略したり、他の構成要素を追加する等の種々の変形実施が可能である。   In the process of designing the cast-in-place pile 10, the cast-in-place pile design system 100 of the present embodiment sets the fixing force in the fixing portions 26a, 26b for fixing the steel pipe 18 and the internal structure portion 20 to a desired size. Used when. The design system 100 calculates the optimum fixing force by the computer 101 based on predetermined data relating to the design of the cast-in-place pile 10, and fixes the number of protrusion rings 28 installed based on the fixing force. The specifications of the unit 26 are determined. Note that the configuration of the design system 100 is not limited to FIG. 2, and various modifications such as omitting some of the components or adding other components are possible.
コンピュータ101は、図2に示すように、記憶部102、CPU( Central Processing Unit )110、入力部120、出力部122、通信部124、ROM(Read Only Memory)108、RAM(Random access Memory)106、及び記憶媒体104を備え、これらの構成要素がシステムバス125を介して相互に電気的に接続されている。従って、CPU110は、記憶部102、ROM108、RAM106、記憶媒体104へのアクセス、入力部120に対する操作状態の把握、出力部122に対するデータの出力、通信部124を介したインターネット126に対する各種情報の送受信等を行える。   As shown in FIG. 2, the computer 101 includes a storage unit 102, a CPU (Central Processing Unit) 110, an input unit 120, an output unit 122, a communication unit 124, a ROM (Read Only Memory) 108, and a RAM (Random access Memory) 106. , And a storage medium 104, and these components are electrically connected to each other via a system bus 125. Therefore, the CPU 110 accesses the storage unit 102, ROM 108, RAM 106, and storage medium 104, grasps the operation state of the input unit 120, outputs data to the output unit 122, and transmits / receives various information to / from the Internet 126 via the communication unit 124. Etc.
記憶部102は、少なくとも場所打ち杭10の設計に係る所定のデータを記憶する機能を有するデータベースサーバである。本実施形態では、記憶部102は、当該所定のデータとして、少なくとも場所打ち杭10が設けられる地盤の土質データ、鋼管18や内部構造部分20、主筋16、SRC、SC等の杭体11の構成要素に係る仕様データ、及び場所打ち杭10の過去の設計実績データをデータベース化して記憶している。   The storage unit 102 is a database server having a function of storing at least predetermined data relating to the design of the cast-in-place pile 10. In this embodiment, the memory | storage part 102 is the structure of pile bodies 11 such as the soil soil data, the steel pipe 18 and the internal structure part 20, the main reinforcement 16, SRC, SC at least as the predetermined data. The specification data related to the elements and the past design performance data of the cast-in-place pile 10 are stored in a database.
このような場所打ち杭10の設計に係る所定のデータに基づいて、定着力を所望の大きさに設定できるので、当該定着力を確保可能な定着部26a、26bの仕様を効率的に決定できるようになる。また、これらのデータを記憶部102に蓄積することにより、場所打ち杭10を別の施工場所に設ける際に、記憶部102に記憶された蓄積データを利用して、所望の大きさの定着力を確保可能な定着部26a、26bの仕様をより高精度に求められるようになる。   Since the fixing force can be set to a desired magnitude based on the predetermined data relating to the design of such cast-in-place pile 10, the specifications of fixing portions 26a and 26b that can secure the fixing force can be determined efficiently. It becomes like this. Further, by accumulating these data in the storage unit 102, when the cast-in-place pile 10 is provided at another construction site, the fixing data having a desired size is obtained using the accumulated data stored in the storage unit 102. The specifications of the fixing portions 26a and 26b that can ensure the above are required with higher accuracy.
CPU110は、通信部124を介して受信したデータや、ROM108や記憶媒体104に記憶されている各種プログラムに従って、設計システム100に備わる各構成要素の動作を制御する機能を有する。また、CPU110は、これら各種処理を実行する際に、必要なデータ等を一時的に記憶するRAM106に適宜記憶させる機能を有する。   The CPU 110 has a function of controlling the operation of each component included in the design system 100 in accordance with data received via the communication unit 124 and various programs stored in the ROM 108 and the storage medium 104. In addition, the CPU 110 has a function of appropriately storing necessary data and the like in the RAM 106 that temporarily stores these various processes.
本実施形態では、CPU110は、場所打ち杭10の設計に係る所定のデータに基づいてコンピュータで演算処理して、所望の大きさの定着力を求めるために必要となる各種演算処理を行う演算部として機能する。すなわち、CPU110は、少なくとも当該所定のデータに基づいてコンピュータ101で演算処理して、所望の大きさの定着力を算出してから、当該定着力を確保可能な定着部26a、26bを設計する機能を有する。具体的には、CPU110は、少なくとも鋼管18の上端部18a及び下端部18bにおける圧縮力(圧縮側)及び引張力(引張側)に対する内部構造部分20との定着力の最小値に基づいて、定着部26a、26bにおける定着力を算出する機能を有する。   In the present embodiment, the CPU 110 performs arithmetic processing by a computer based on predetermined data related to the design of the cast-in-place pile 10 and performs various arithmetic processing necessary for obtaining a fixing force having a desired size. Function as. That is, the CPU 110 performs a calculation process on the computer 101 based on at least the predetermined data, calculates a fixing force having a desired size, and then designs the fixing units 26a and 26b that can secure the fixing force. Have Specifically, the CPU 110 fixes based on the minimum value of the fixing force with the internal structure portion 20 with respect to the compressive force (compression side) and the tensile force (tensile side) at least at the upper end portion 18a and the lower end portion 18b of the steel pipe 18. It has a function of calculating the fixing force in the sections 26a and 26b.
また、本実施形態では、CPU110は、設定部112と、相関曲線作成部113と、判定部114と、決定部116とを備える。なお、本明細書中において、場所打ち杭10の設計に係る「所定のデータ」とは、少なくとも場所打ち杭10が設けられる地盤の土質データ、鋼管18や内部構造部分20、主筋16、SRC、SC等の杭体11の構成要素に係る仕様データ、及び場所打ち杭10の過去の設計実績データ等の各種データをいう。すなわち、「所定のデータ」とは、場所打ち杭10を設計する過程で、定着部26a、26bの定着力を求めて、その仕様を決めるのに必要となる各種データをいい、杭種を決定する上でも利用される。   In the present embodiment, the CPU 110 includes a setting unit 112, a correlation curve creation unit 113, a determination unit 114, and a determination unit 116. In the present specification, the “predetermined data” related to the design of the cast-in-place pile 10 is at least soil data of the ground where the cast-in-place pile 10 is provided, the steel pipe 18 and the internal structure portion 20, the main reinforcement 16, SRC, It refers to various data such as specification data relating to the components of the pile body 11 such as SC and past design performance data of the cast-in-place pile 10. That is, the “predetermined data” refers to various data necessary for determining the fixing force of the fixing portions 26a and 26b and determining the specifications in the process of designing the cast-in-place pile 10, and determining the pile type. It is also used to do.
設定部112は、設計システム100で場所打ち杭10を設計する過程において、場所打ち杭10の設計に係る所定のデータに基づいて、定着部26a、26bによる定着方法とその仕様を設定する機能を有する。当該定着方法としては、例えば、鋼管内面にリング状の突起を取り付ける方法や、鋼管18の外周面に異形鉄筋を鋼管軸方向に取り付けてパイルキャップコンクリートを介して定着する方法等がある。また、定着部26a、26bの仕様としては、例えば、杭頭定着筋22や突起リング28等の定着部材の本数や大きさ、形状、ピッチ間隔等が挙げられる。   In the process of designing the cast-in-place pile 10 by the design system 100, the setting unit 112 has a function of setting a fixing method and its specification by the fixed portions 26a, 26b based on predetermined data relating to the design of the cast-in-place pile 10. Have. Examples of the fixing method include a method of attaching a ring-shaped protrusion to the inner surface of the steel pipe, a method of fixing a deformed reinforcing bar on the outer peripheral surface of the steel pipe 18 in the axial direction of the steel pipe, and fixing it via pile cap concrete. The specifications of the fixing units 26a and 26b include, for example, the number, size, shape, pitch interval, and the like of fixing members such as the pile head fixing bars 22 and the protrusion ring 28.
相関曲線作成部113は、所望の大きさの定着力を算出するために使用される鋼管18や鋼管巻き部分12の軸力(N)と曲げモーメント(M)との関係を示す相関曲線であるN−M曲線を作成する機能を有する。   The correlation curve creation unit 113 is a correlation curve showing the relationship between the axial force (N) and the bending moment (M) of the steel pipe 18 or the steel pipe winding part 12 used for calculating a fixing force having a desired size. It has a function of creating an NM curve.
本実施形態では、相関曲線作成部113は、鋼管18の圧縮力及び引張力の定着力に基づいて、杭体11の鋼管18部分の軸力(N)と曲げモーメント(M)との関係を示す鋼管用相関曲線を作成する鋼管用相関曲線作成部としての機能を有する。また、相関曲線作成部113は、鋼管18の内部構造部分となる鉄筋コンクリート(RC)部分かコンクリート(C)部分の軸力(N)と杭体11の曲げモーメント(M)との関係を示す内部構造用相関曲線を作成する内部構造用相関曲線作成部としての機能を有する。さらに、相関曲線作成部113は、当該内部構造用相関曲線に鋼管用相関曲線Sを累加させて累加強度相関曲線を作成する累加強度相関曲線作成部としての機能も有する。   In the present embodiment, the correlation curve creating unit 113 determines the relationship between the axial force (N) and the bending moment (M) of the steel pipe 18 portion of the pile body 11 based on the compression force and the fixing force of the tensile force of the steel pipe 18. It has a function as a steel pipe correlation curve creating section for creating the steel pipe correlation curve shown. In addition, the correlation curve creating unit 113 is an internal showing the relationship between the axial force (N) of the reinforced concrete (RC) part or the concrete (C) part and the bending moment (M) of the pile body 11 as the internal structure part of the steel pipe 18. It has a function as a correlation curve creation unit for internal structure that creates a correlation curve for structure. Furthermore, the correlation curve creation unit 113 also has a function as a cumulative strength correlation curve creation unit that creates a cumulative strength correlation curve by accumulating the steel pipe correlation curve S to the internal structure correlation curve.
判定部114は、設計システム100で場所打ち杭10を設計する過程において、場所打ち杭10の設計に係る所定のデータに基づいて設定された各種データの妥当性を判定する機能を有する。本実施形態では、判定部114は、少なくとも累加強度相関曲線を用いて、定着部26a、26bにおける定着力の妥当性を検討する定着力判定部としての機能を有する。   The determination unit 114 has a function of determining validity of various data set based on predetermined data related to the design of the cast-in-place pile 10 in the process of designing the cast-in-place pile 10 with the design system 100. In the present embodiment, the determination unit 114 has a function as a fixing force determination unit that examines the validity of the fixing force in the fixing units 26a and 26b using at least the cumulative intensity correlation curve.
決定部116は、場所打ち杭10の設計に係る所定のデータに基づいて設定された各種データの最適値を決定する機能を有する。本実施形態では、決定部116は、判定部114での判定結果に基づいて、定着部26a、26bの仕様を決定する機能を有する。   The determination unit 116 has a function of determining optimum values of various data set based on predetermined data relating to the design of the cast-in-place pile 10. In the present embodiment, the determination unit 116 has a function of determining the specifications of the fixing units 26 a and 26 b based on the determination result of the determination unit 114.
具体的には、決定部116は、鋼管18の上端部18aの外周面に設ける杭頭定着筋22の本数や長さ、断面の大きさを変えることによって、段階的に定着部26aにおける鋼管18の定着力を所望の大きさに変えられるように決定する。また、決定部116は、鋼管18の下端部18bの内周面に突起リング28やリブ部材、ボルト、溶接鉄筋等の定着部材の長さや本数を変えることによって、段階的に定着部26bにおける鋼管18の定着力を所望の大きさに変えられるように決定する。   Specifically, the determining unit 116 changes the number, length, and cross-sectional size of the pile head fixing bars 22 provided on the outer peripheral surface of the upper end portion 18a of the steel pipe 18 to gradually change the steel pipe 18 in the fixing unit 26a. The fixing force is determined so as to be changed to a desired size. Further, the determining unit 116 changes the length and number of the fixing members such as the projection ring 28, the rib member, the bolt, and the welded rebar on the inner peripheral surface of the lower end portion 18b of the steel pipe 18 to gradually increase the steel pipe in the fixing unit 26b. The fixing force of 18 is determined so as to be changed to a desired size.
入力部120は、場所打ち杭10の設計に係る所定のデータ等の各種データを入力する機能を有し、例えばマウスやキーボード、タッチパネル等が用いられる。本実施形態では、入力部120により、例えば、設定部112、相関曲線作成部113、判定部114、決定部116を作動させる際の文字や各種データの入力が行われる。   The input unit 120 has a function of inputting various data such as predetermined data related to the design of the cast-in-place pile 10, and for example, a mouse, a keyboard, a touch panel, or the like is used. In the present embodiment, the input unit 120 inputs characters and various data when the setting unit 112, the correlation curve creation unit 113, the determination unit 114, and the determination unit 116 are operated, for example.
また、本実施形態では、入力部120は、少なくとも場所打ち杭10の設計に係る所定のデータに基づいて、定着部26a、26bにおける所望の大きさの定着力を求める際に、必要なデータ等を入力するときにも使用される。すなわち、入力部120は、記憶部102に記憶される各種データを入力する際や、定着部26a、26bの定着力を求めるための各種データを入力する際に使用される。   Further, in the present embodiment, the input unit 120 obtains a required amount of fixing force in the fixing units 26a and 26b based on at least predetermined data related to the design of the cast-in-place pile 10, and the necessary data, etc. Also used when entering. That is, the input unit 120 is used when inputting various data stored in the storage unit 102 or when inputting various data for determining the fixing power of the fixing units 26a and 26b.
出力部122は、CPU110による演算結果やデータベースとなる記憶部102の情報等を出力する機能を有する。出力部122としては、例えば、表示モニタ等が用いられる。本実施形態では、出力部122により、例えば、設定部112、相関曲線作成部113、判定部114、決定部116を作動させる際の画面表示が行われる。   The output unit 122 has a function of outputting a calculation result by the CPU 110, information on the storage unit 102 serving as a database, and the like. For example, a display monitor or the like is used as the output unit 122. In the present embodiment, the output unit 122 performs screen display when the setting unit 112, the correlation curve creation unit 113, the determination unit 114, and the determination unit 116 are operated, for example.
記憶媒体104は、コンピュータ101により読み取り可能な媒体であり、プログラムやデータ等を格納する機能を有する。また、当該記憶媒体104の機能は、光ディスク(CD、DVD)、HDD、或いはUSB等の各種メモリ等により実現できる。記憶媒体104には、本実施形態の設計システム100の各構成要素の機能を実現させるための設計プログラムが、コンピュータ101で読み取り可能に記憶されている。   The storage medium 104 is a medium readable by the computer 101 and has a function of storing programs, data, and the like. The function of the storage medium 104 can be realized by various memories such as an optical disk (CD, DVD), HDD, or USB. The storage medium 104 stores a design program for realizing the function of each component of the design system 100 of the present embodiment so that the computer 101 can read it.
このため、当該設計プログラムによって、本実施形態に係る場所打ち杭10の設計方法における各工程を、当該設計システム100の各構成要素の機能を実現させることによって実行させるようになる。なお、当該設計プログラムにより実行される本実施形態に係る場所打ち杭10の設計方法の詳細については、後述する。   For this reason, each process in the design method of the cast-in-place pile 10 which concerns on this embodiment by the said design program comes to be performed by implement | achieving the function of each component of the said design system 100. FIG. In addition, the detail of the design method of the cast-in-place pile 10 based on this embodiment performed by the said design program is mentioned later.
このように、本実施形態の設計システム100によれば、場所打ち杭10の設計に係る所定のデータに基づいて、定着部26a、26bにおける所望の大きさの定着力を算出してから、当該定着力に基づいて作成された累加強度相関曲線を用いて、当該定着力の妥当性を判定できる。そして、かかる定着力の妥当性を検討した上で、当該定着力を確保可能な定着部26a、26bをそれぞれ効率的に設計できる。   As described above, according to the design system 100 of the present embodiment, based on the predetermined data relating to the design of the cast-in-place pile 10, the fixing force of a desired size in the fixing units 26a and 26b is calculated, and then The validity of the fixing force can be determined using the cumulative intensity correlation curve created based on the fixing force. Then, after considering the appropriateness of the fixing force, the fixing portions 26a and 26b that can secure the fixing force can be designed efficiently.
このため、定着部26a、26bを設計する際に、オーバースペックとならないような定着力を確保可能な定着部26a、26bを確実に設計できるようになる。また、鋼管巻き部分が必要とする曲げ耐力に応じて、鋼管18の仕様設定や鋼管18の内部構造部分20の仕様設定に加えて、鋼管18の定着力を適正値に設定できる。このように、鋼管18の端部18a、18bに設けられる定着部26a、26bの仕様を適正値に設定することによって、より経済的な杭頭部鋼管巻き場所打ち杭10を設計することができる。   For this reason, when designing the fixing portions 26a and 26b, the fixing portions 26a and 26b capable of securing a fixing force that does not cause over-spec can be surely designed. Moreover, in addition to the specification setting of the steel pipe 18 and the specification setting of the internal structure part 20 of the steel pipe 18, the fixing force of the steel pipe 18 can be set to an appropriate value according to the bending strength required by the steel pipe winding part. Thus, the more economical pile head steel pipe winding cast-in-place pile 10 can be designed by setting the specification of the fixing | fixed part 26a, 26b provided in the edge parts 18a, 18b of the steel pipe 18 to an appropriate value. .
次に、本発明の一実施形態に係る場所打ち杭の設計方法について、図面を使用しながら説明する。図3は、本発明の一実施形態に係る場所打ち杭の設計方法の概略を示すフロー図である。   Next, a method for designing a cast-in-place pile according to an embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a flowchart showing an outline of a method for designing a cast-in-place pile according to an embodiment of the present invention.
本実施形態に係る場所打ち杭10の設計方法は、鋼管18と内部構造部分20との定着部26a、26bにおける定着力を確保するための最適な定着力を求めて、当該定着力を確保するための定着部26の仕様を決定することに主眼を置いている。   The design method of the cast-in-place pile 10 according to the present embodiment obtains the optimum fixing force for securing the fixing force in the fixing portions 26a and 26b between the steel pipe 18 and the internal structure portion 20, and ensures the fixing force. The main point is to determine the specifications of the fixing unit 26 for the purpose.
本実施形態では、まず、場所打ち杭10の設計方法に係る所定のデータを用いて、設計外力を算出する(工程S101)。具体的には、当該設計外力として、設計用水平力、常時軸力NL、変動軸力NE、地震時軸力の最小値NL−E、地震時軸力の最大値NL+Eをそれぞれ算出する。なお、地震時軸力の最小値NL−Eとは、常時軸力NLと変動軸力NEとの差(NL−NE)であり、地震時軸力の最大値NL+Eとは、常時軸力NLと変動軸力NEとの和(NL+NE)である。 In the present embodiment, first, a design external force is calculated using predetermined data relating to the design method of the cast-in-place pile 10 (step S101). Specifically, the design horizontal force, normal axial force N L , fluctuating axial force N E , earthquake axial force minimum value N L−E , and earthquake axial force maximum value N L + E are included as the design external force. calculate. Note that the minimum value N L-E Seismic axial force is the difference always the axial force N L and variable axial force N E (N L -N E) , the maximum value N L + E Seismic axial force Is the sum (N L + N E ) of the constant axial force N L and the variable axial force N E.
次に、設計する場所打ち杭10の施工場所における地質データ等の地盤情報を入力する(工程S102)。図3に示すフロー図では、工程S101の後に本工程S102が行われているが、これらの工程S101、S102を同時に行っても、工程S102を工程S101より先に行ってもよい。   Next, ground information such as geological data at the construction site of the cast-in-place pile 10 to be designed is input (step S102). In the flowchart shown in FIG. 3, the present step S102 is performed after the step S101. However, these steps S101 and S102 may be performed simultaneously or the step S102 may be performed before the step S101.
設計外力の算出と地盤情報の入力が終了したら、次に、施工方法、先端部杭径、杭長等の場所打ち杭10の設計を行う際における設計初期条件の選定を行う(工程S103)。具体的には、場所打ち杭10を施工する地盤から決まる支持力と引抜抵抗力の計算を行うことによって、当該条件の選定を行う。   When the calculation of the design external force and the input of ground information are completed, the initial design conditions for designing the cast-in-place pile 10 such as the construction method, the tip pile diameter, and the pile length are selected (step S103). Specifically, the conditions are selected by calculating the supporting force and the pulling resistance determined from the ground on which the cast-in-place pile 10 is constructed.
設計初期条件の選定が終了したら、次に、杭径、鉄筋径、鉄筋本数、鉄筋配置直径、鉄筋材質、コンクリート強度等の場所打ち杭10の下部側に形成される鉄筋コンクリート杭部14を構成する鉄筋コンクリート部((RC部分)の仕様選定を行う(工程S104)。具体的には、杭体11から決まる圧縮耐力及び引張耐力の計算によって当該仕様選定を行う。   When the selection of the initial design conditions is completed, the reinforced concrete pile portion 14 formed on the lower side of the cast-in-place pile 10 such as the pile diameter, the reinforcing bar diameter, the number of reinforcing bars, the reinforcing bar arrangement diameter, the reinforcing bar material, and the concrete strength is configured. The specification of the reinforced concrete portion ((RC portion) is selected (step S104). Specifically, the specification is selected by calculating the compression strength and the tensile strength determined from the pile body 11.
RC部分の仕様を選定したら、次に、場所打ち杭10の上部側に形成される鋼管鉄筋コンクリート杭部12を構成する鋼管巻き部分(SRC部分、SC部分)の仕様選定を行う(工程S105)。具体的には、鋼管巻き部分の仕様をSRCにするか、SCにするかの選定や、杭径、鋼管材質、鋼管長、鋼管板厚、コンクリート強度、鉄筋径、鉄筋本数、鉄筋配置直径、鉄筋材質等の仕様の選定を行う。そして、鋼管巻き部分の仕様を選定したら、次に、場所打ち杭10の施工場所における杭本数、杭配置を設定する(工程S106)。   If the specification of RC part is selected, next, the specification selection of the steel pipe winding part (SRC part, SC part) which comprises the steel pipe reinforced concrete pile part 12 formed in the upper part side of the cast-in-place pile 10 will be performed (process S105). Specifically, the selection of the steel pipe winding part specification as SRC or SC, pile diameter, steel pipe material, steel pipe length, steel pipe plate thickness, concrete strength, reinforcing bar diameter, number of reinforcing bars, reinforcing bar arrangement diameter, Select the specifications of the reinforcing bar material. And if the specification of a steel pipe winding part is selected, the number of piles and pile arrangement | positioning in the construction place of the cast-in-place pile 10 will be set next (process S106).
次に、工程S101で算出した設計用水平力を用いて、杭体11に発生する曲げ応力を算定する(工程S107)。具体的には、杭体11の軸力の最小値として、地震時軸力の最小値NL−Eにおける曲げ応力と地震時軸力の最大値NL+Eにおける曲げ応力を算出する。 Next, the bending stress which generate | occur | produces in the pile body 11 is calculated using the horizontal force for design calculated by process S101 (process S107). Specifically, as the minimum value of the axial force of the pile body 11, the bending stress at the minimum value N L-E of the axial force at earthquake and the bending stress at the maximum value N L + E of the axial force at earthquake are calculated.
曲げ応力を算定したら、次に、杭体11の曲げ耐力を算定する(工程S108)。本実施形態では、曲げ耐力算定工程S108では、所望の大きさの定着力を算出してから、当該定着力に基づいて鋼管用相関曲線を作成する。そして、鋼管用相関曲線と内部構造用相関曲線とを累加させて、累加強度相関曲線を作成する。なお、曲げ耐力算定工程S108の詳細な説明については、後述する。   Once the bending stress is calculated, the bending strength of the pile body 11 is then calculated (step S108). In the present embodiment, in the bending strength calculation step S108, a fixing force having a desired magnitude is calculated, and then a steel pipe correlation curve is created based on the fixing force. And the correlation curve for steel pipes and the correlation curve for internal structures are accumulated, and a cumulative strength correlation curve is created. The detailed description of the bending strength calculation step S108 will be described later.
また、図3に示すフロー図では、曲げ応力算定工程S107の後に曲げ耐力算定工程S108が行われているが、これらの工程S107、S108を同時に行っても、工程S108を工程S107より先に行ってもよい。   In the flowchart shown in FIG. 3, the bending strength calculation step S108 is performed after the bending stress calculation step S107. However, even if these steps S107 and S108 are performed simultaneously, the step S108 is performed before the step S107. May be.
曲げ応力算定工程S107と曲げ耐力算定工程S108が終了したら、次に、曲げ応力算定工程S107で算出した曲げ応力に対する検討を行う(工程S109)。具体的には、曲げ応力検討工程S109では、曲げ耐力算定工程S108で算出した曲げ耐力に対する曲げ応力の妥当性を検討する。   After the bending stress calculation step S107 and the bending strength calculation step S108 are completed, the bending stress calculated in the bending stress calculation step S107 is examined (step S109). Specifically, in the bending stress examination step S109, the validity of the bending stress with respect to the bending strength calculated in the bending strength calculation step S108 is examined.
このように、曲げ応力の妥当性を検討することによって、工程S108で算定した曲げ耐力に対する曲げ応力の妥当性を踏まえた上で、所望の大きさの定着力を確保するための定着部26a、26bの仕様を決定されるので、より安全性を確保した定着部26a、26bを確実に設計できる。本実施形態では、曲げ耐力算定工程S108の後に曲げ応力検討工程S109を行っているが、本工程S109をスキップして、次工程S110に移行してもよい。なお、曲げ応力検討工程S109の詳細な説明については、後述する。   In this way, by examining the validity of the bending stress, the fixing portion 26a for securing the fixing force of a desired magnitude, based on the validity of the bending stress with respect to the bending strength calculated in step S108, Since the specification of 26b is determined, it is possible to reliably design the fixing units 26a and 26b that ensure further safety. In this embodiment, the bending stress examination step S109 is performed after the bending strength calculation step S108. However, the present step S109 may be skipped and the process may proceed to the next step S110. The detailed description of the bending stress examination step S109 will be described later.
曲げ応力の検討が終了したら、次に、定着部26a、26bの仕様を決定する(工程S110)。本実施形態の定着部仕様決定工程S110では、定着部26a、26bが曲げ耐力算定工程S108で作成した累加強度相関曲線を用いて算定した定着力を確保できるように、その仕様を決定する。すなわち、本実施形態では、所望の大きさの定着力を確保可能な定着部26a、26bが設計可能となる。具体的には、必要となる定着力を確保するために、定着部26bに設ける突起リング28の本数を0本、1本、3本と設定することができる。また、定着部26aとなる杭頭定着筋22の本数・直径・長さ・強度等やパイルキャップ24のコンクリート強度等の仕様も決定する。   When the examination of the bending stress is completed, next, the specifications of the fixing portions 26a and 26b are determined (step S110). In the fixing unit specification determination step S110 of this embodiment, the specifications are determined so that the fixing units 26a and 26b can secure the fixing force calculated using the cumulative strength correlation curve created in the bending strength calculation step S108. That is, in the present embodiment, it is possible to design the fixing portions 26a and 26b that can secure a fixing force having a desired size. Specifically, in order to ensure the necessary fixing force, the number of protrusion rings 28 provided in the fixing portion 26b can be set to 0, 1, and 3. In addition, the specifications such as the number, diameter, length, strength, etc. of the pile head fixing muscles 22 serving as the fixing portion 26a and the concrete strength of the pile cap 24 are also determined.
定着部26a、26bの仕様を決定したら、次に、設計用水平力によって杭体11に発生するせん断応力と、杭体11のせん断耐力をそれぞれ算定する(工程111)。これらのせん断応力とせん断耐力は、順次に算定しても、同時に算定してもよい。   Once the specifications of the fixing portions 26a and 26b are determined, the shear stress generated in the pile body 11 by the design horizontal force and the shear strength of the pile body 11 are calculated (step 111). These shear stress and shear strength may be calculated sequentially or simultaneously.
杭体11のせん断応力とせん断耐力を算定したら、次に、せん断応力に対する検討を行う(工程S112)。具体的には、せん断耐力に対して、せん断応力が妥当な大きさであるかの検討が行われる。本工程S112でせん断応力が妥当な大きさでない場合には、より好適なせん断応力を確保するために、図3に示すように、工程S105に戻って鋼管巻き部分の仕様の選定からやり直す。   After calculating the shear stress and the shear strength of the pile body 11, next, the shear stress is examined (step S112). Specifically, an examination is made as to whether the shear stress is a reasonable magnitude with respect to the shear strength. In the case where the shear stress is not an appropriate magnitude in this step S112, the process returns to step S105 and starts again from the selection of the specification of the steel pipe winding portion, as shown in FIG. 3, in order to secure a more suitable shear stress.
せん断応力に対する検討が終了したら、次に、沈下に対する検討を行う(工程S113)。具体的には、場所打ち杭10の施工場所における杭体11の沈下条件をシミュレーション等によって行う。本工程S113で沈下条件が妥当でないと判定された場合には、より好適な沈下条件を確保するために、図3に示すように、工程S103に戻って設計初期条件の選定からやり直す。   When the study on the shear stress is completed, the study on the settlement is performed (step S113). Specifically, the settlement condition of the pile body 11 at the construction site of the cast-in-place pile 10 is performed by simulation or the like. If it is determined in this step S113 that the subsidence conditions are not appropriate, the process returns to step S103 and starts again from the selection of the design initial conditions as shown in FIG. 3 in order to ensure a more suitable subsidence condition.
沈下に対する検討が終了したら、次に、杭頭部に係る杭頭接合部、パイルキャップ、基礎梁の最終検討を行ってから(工程S114)、杭本数、杭配置、杭仕様等の杭条件の最終決定をする(工程S115)。そして、本実施形態に係る場所打ち杭10の設計方法による設計が完了する。   After the examination for settlement, the pile head joints, pile caps, and foundation beams related to the pile head are finally examined (step S114), and the pile conditions such as the number of piles, pile arrangement, pile specifications, etc. A final decision is made (step S115). And the design by the design method of the cast-in-place pile 10 which concerns on this embodiment is completed.
このように、本実施形態の設計方法では、場所打ち杭10の設計に係る所定のデータに基づいて、定着部26a、26bにおける好適な定着力を算出してから、その妥当性を検討した上で当該定着力を確保可能な定着部26a、26bを効率的に設計できる。このため、定着部26a、26bの定着力が必要以上に大きい過剰設計を未然に防いで、施工の手間やコストを低減させつつ、定着部26a、26bを形成する際におけるオーバースペックが回避できる。また、地盤強度に合わせて、杭の種類や杭径、杭長等に応じて、定着部26a、26bの定着力を所望の大きさに設定できるので、場所打ち杭10の最適かつ経済的な設計と施工を行うことができる。   As described above, in the design method of the present embodiment, after calculating a suitable fixing force in the fixing portions 26a and 26b based on predetermined data related to the design of the cast-in-place pile 10, the validity thereof is examined. Thus, it is possible to efficiently design the fixing portions 26a and 26b that can secure the fixing force. Therefore, it is possible to prevent overdesign in which the fixing force of the fixing portions 26a and 26b is unnecessarily large, thereby reducing overwork and cost, and avoiding overspec when forming the fixing portions 26a and 26b. In addition, since the fixing force of the fixing portions 26a and 26b can be set to a desired size according to the type of pile, the pile diameter, the pile length, etc. according to the ground strength, the optimum and economical of the cast-in-place pile 10 Design and construction can be done.
次に、本発明の一実施形態に係る場所打ち杭の設計方法に含まれる曲げ耐力算定工程の詳細について、図面を使用しながら説明する。図4は、本発明の一実施形態に係る場所打ち杭の設計方法に含まれる曲げ耐力算定工程の詳細を示すフロー図である。   Next, the detail of the bending strength calculation process included in the design method of the cast-in-place pile which concerns on one Embodiment of this invention is demonstrated, using drawing. FIG. 4 is a flowchart showing details of a bending strength calculation step included in the cast-in-place pile design method according to one embodiment of the present invention.
本実施形態に係る場所打ち杭10の設計方法における曲げ耐力算定工程S108は、設定工程S108−1、定着力算出工程S108−2、鋼管用相関曲線作成工程S108−3、内部構造用相関曲線作成工程S108−4、及び累加強度相関曲線作成工程S108−5を含み、これらの工程S108−1乃至S108−5が図4に示す順序で行われるによって、杭体11の曲げ耐力を算定することを特徴とする。   The bending strength calculation step S108 in the design method of the cast-in-place pile 10 according to the present embodiment includes a setting step S108-1, a fixing force calculation step S108-2, a steel pipe correlation curve creation step S108-3, and an internal structure correlation curve creation. Including the step S108-4 and the cumulative strength correlation curve creating step S108-5, the bending strength of the pile body 11 is calculated by performing these steps S108-1 to S108-5 in the order shown in FIG. Features.
設定工程S108−1では、定着部26a、26bの定着方法と、その仕様について設定される。当該定着方法としては、例えば、鋼管18の内周面側に突起リング28や板状、棒状の鋼材、ボルト等のように、当該内周面側に向けて凸状に突出する構成の接合部材を取り付けたり、鋼管18の外周面側に異形鉄筋を軸方向に取り付けてから、パイルキャップを当該異形鉄筋の先端側に取り付けることによって定着を図る方法等がある。また、設定工程S108−1では、定着部26bの仕様として、例えば、突起リング28の本数や断面の大きさ・形状、突起リング28のピッチ間隔等を仮決めし、さらに、定着部26aの仕様として、例えば、杭頭定着筋22の本数・直径・長さ・強度等やパイルキャップ24のコンクリート強度等を仮決めする。   In the setting step S108-1, the fixing method of the fixing units 26a and 26b and the specifications thereof are set. As the fixing method, for example, a joining member configured to protrude in a convex shape toward the inner peripheral surface side, such as a projection ring 28, a plate-like, rod-shaped steel material, or a bolt, on the inner peripheral surface side of the steel pipe 18. Or by attaching a deformed reinforcing bar in the axial direction to the outer peripheral surface side of the steel pipe 18 and then attaching a pile cap to the distal end side of the deformed reinforcing bar. In the setting step S108-1, as the specifications of the fixing unit 26b, for example, the number of projection rings 28, the size and shape of the cross section, the pitch interval of the projection rings 28, and the like are provisionally determined, and further, the specifications of the fixing unit 26a. For example, the number, diameter, length, strength, and the like of the pile head fixing muscles 22 and the concrete strength of the pile cap 24 are temporarily determined.
定着力算出工程S108−2では、鋼管18の端部18a、18bに設けられる定着部26a、26bの定着力を算出する。具体的には、圧縮力に対する定着力として、鋼管上端18aにおける圧縮力に対する定着力(cNbu)と鋼管下端18bにおける圧縮力に対する定着力(cNbl)の小さい方の値を圧縮力に対する定着力(cNb)に設定する。一方、引張力に対する定着力として、鋼管上端18aにおける引張力に対する定着力(tNbu)と鋼管下端18bにおける引張力に対する定着力(tNbl)の小さい方の値を引張力に対する定着力(tNb)に設定する。すなわち、本工程S108−2では、鋼管巻き部分が必要とする曲げ耐力に応じて定着力を求めるために、鋼管上端18a及び鋼管下端18bにおける圧縮力に対する内部構造部分20との定着力の最小値と、引張力に対する内部構造部分20との定着力の最小値に基づいて、仮決めした鋼管18の定着力(cNb、tNb)を算出する。   In the fixing force calculation step S108-2, the fixing forces of the fixing portions 26a and 26b provided at the ends 18a and 18b of the steel pipe 18 are calculated. Specifically, as the fixing force with respect to the compressive force, the smaller value of the fixing force (cNbu) with respect to the compressive force at the steel pipe upper end 18a and the fixing force (cNbl) with respect to the compressive force at the steel pipe lower end 18b is determined as the fixing force with respect to the compressive force (cNb). ). On the other hand, as the fixing force with respect to the tensile force, the smaller value of the fixing force with respect to the tensile force at the steel pipe upper end 18a (tNbu) and the fixing force with respect to the tensile force at the steel pipe lower end 18b (tNbl) is set as the fixing force with respect to the tensile force (tNb). To do. That is, in this step S108-2, in order to obtain the fixing force according to the bending strength required by the steel pipe winding portion, the minimum value of the fixing force with the internal structure portion 20 with respect to the compressive force at the steel pipe upper end 18a and the steel pipe lower end 18b. Based on the minimum value of the fixing force with the internal structure portion 20 against the tensile force, the temporarily determined fixing force (cNb, tNb) of the steel pipe 18 is calculated.
鋼管用相関曲線作成工程S108−3では、鋼管端部18a、18bに設けられる定着部26a、26bにおける定着力(cNb 、tNb)を考慮した鋼管部分(S部分)の軸力(N)−曲げモーメント(M)の関係を示す相関曲線を作成する。すなわち、定着力算出工程S109−1で算出した圧縮力及び引張力の定着力に基づいて、杭体11の鋼管部分12の軸力Nと曲げモーメントMとの関係を示す鋼管用相関曲線を作成する。   In the steel pipe correlation curve creating step S108-3, the axial force (N) -bending of the steel pipe portion (S portion) in consideration of the fixing force (cNb, tNb) at the fixing portions 26a, 26b provided at the steel pipe end portions 18a, 18b. A correlation curve showing the relationship of moment (M) is created. That is, a steel pipe correlation curve indicating the relationship between the axial force N of the steel pipe portion 12 of the pile body 11 and the bending moment M is created based on the fixing force of the compressive force and the tensile force calculated in the fixing force calculation step S109-1. To do.
具体的には、定着部26a、26bにおける定着力(cNb 、tNb)と、鋼管の圧縮降伏軸力(cNs)、鋼管の引張降伏軸力(−tNs)、及び軸力が0の場合における鋼管の曲げ耐力(Ms)との大小関係に基づいて、図5(A)乃至(E)に示す鋼管用相関曲線(S)が作成される。すなわち、本実施形態では、定着力(cNb 、tNb)と、鋼管の圧縮降伏軸力(cNs)、鋼管の引張降伏軸力(−tNs)、及び軸力が0の場合における鋼管の曲げ耐力(Ms)との大小関係に基づいて、図5(A)乃至(E)に示すように、5通りの鋼管用相関曲線(S)が作成される。換言すると、定着力の大きさに基づいて、複数通りの鋼管用相関曲線(S)が作成される。本実施形態では、図5(A)が突起リング28の全部を設置した状態である3本の場合の鋼管用相関曲線(S)を示し、図5(D)が突起リング28の一部を設置した状態である1本の場合の鋼管用相関曲線(S)を示し、図5(E)が突起リング28を設置しない状態である0本の場合の鋼管用相関曲線(S)を示す。   Specifically, the fixing force (cNb, tNb) in the fixing portions 26a and 26b, the compression yield axial force (cNs) of the steel pipe, the tensile yield axial force (-tNs) of the steel pipe, and the steel pipe when the axial force is zero The steel pipe correlation curve (S) shown in FIGS. 5A to 5E is created based on the magnitude relationship with the bending strength (Ms). That is, in this embodiment, the fixing force (cNb, tNb), the compression yielding axial force (cNs) of the steel pipe, the tensile yielding axial force (-tNs) of the steel pipe, and the bending strength of the steel pipe when the axial force is zero ( Based on the magnitude relationship with Ms), as shown in FIGS. 5A to 5E, five types of correlation curves (S) for steel pipe are created. In other words, a plurality of correlation curves (S) for steel pipes are created based on the magnitude of the fixing force. In this embodiment, FIG. 5 (A) shows the correlation curve (S) for three steel pipes in a state where all the projection rings 28 are installed, and FIG. 5 (D) shows a part of the projection ring 28. The correlation curve (S) for steel pipes in the case of one installed pipe is shown, and FIG. 5 (E) shows the correlation curve (S) for steel pipes in the case of zero installation without the projection ring 28.
内部構造用相関曲線作成工程S108−4では、鋼管18の内部構造部分20の軸力と曲げモーメントとの関係を示す内部構造用相関曲線(RC、C)が作成される。そして、 累加強度相関曲線作成工程S108−5では、内部構造用相関曲線(RC、C)に、鋼管用相関曲線(S)を累加させて累加強度相関曲線(SRC、SC)を作成する。   In the internal structure correlation curve creating step S108-4, an internal structure correlation curve (RC, C) indicating the relationship between the axial force of the internal structure portion 20 of the steel pipe 18 and the bending moment is created. In the cumulative strength correlation curve creation step S108-5, the steel structure correlation curve (S) is added to the internal structure correlation curve (RC, C) to create a cumulative strength correlation curve (SRC, SC).
すなわち、内部構造用相関曲線作成工程S108−4で鋼管18の内部構造部分となる鉄筋コンクリート部分(RC部分)、又はコンクリート部分(C部分)の軸力(N)と曲げモーメント(M)との関係を算出して内部構造用相関曲線(RC、C)を作成してから、前工程S108−3で作成した鋼管用相関曲線(S)を累加させる。そして、累加強度式による鋼管巻き部分(SRC部分、SC部分)の軸力(N)−曲げモーメント(M)関係を示す累加強度相関曲線(SRC、SC)を作成する。具体的には、鋼管用相関曲線(S)の原点を内部構造用相関曲線(RC、C)に載せて、当該原点を内部構造用相関曲線(RC、C)に沿って移動させることによって、その移動領域の外縁線が累加強度相関曲線(SRC、SC)となる。   That is, the relationship between the axial force (N) and the bending moment (M) of the reinforced concrete portion (RC portion) or the concrete portion (C portion) that becomes the internal structure portion of the steel pipe 18 in the internal structure correlation curve creating step S108-4. After calculating the internal structure correlation curve (RC, C), the steel pipe correlation curve (S) created in the previous step S108-3 is accumulated. And the cumulative strength correlation curve (SRC, SC) which shows the axial force (N) -bending moment (M) relationship of the steel pipe winding part (SRC part, SC part) by a cumulative strength formula is created. Specifically, by placing the origin of the steel pipe correlation curve (S) on the internal structure correlation curve (RC, C) and moving the origin along the internal structure correlation curve (RC, C), The outer edge line of the moving region becomes a cumulative intensity correlation curve (SRC, SC).
鋼管18の内部構造部分が本実施形態の鋼管鉄筋コンクリート杭部12と同様に鉄筋コンクリートRCとした場合に、突起リング28を3本全て設置した場合の累加強度相関曲線(SRC)は、図6(A)に示すように、曲線部が底辺まで到達する略山型の形状となる。また、突起リング28を1本のみを設置した場合の累加強度相関曲線(SRC)は、図6(B)に示すように、略山型の形状の裾部が鉛直状態となった形状となり、軸力(N)の幅が狭くなる。さらに、突起リング28を0本とした場合の累加強度相関曲線(SRC)は、図6(C)に示すように、図6(B)より更に軸力(N)の幅が狭まって、内部構造用相関曲線(RC)の軸力(N)の幅と同一の形状となる。   When the internal structure portion of the steel pipe 18 is reinforced concrete RC like the steel pipe reinforced concrete pile portion 12 of the present embodiment, the cumulative strength correlation curve (SRC) when all the three protruding rings 28 are installed is shown in FIG. ), The curved portion has a substantially mountain shape that reaches the bottom. Further, the cumulative intensity correlation curve (SRC) when only one protrusion ring 28 is installed has a shape in which the skirt of the substantially mountain shape is in a vertical state as shown in FIG. The width of the axial force (N) becomes narrower. Further, as shown in FIG. 6C, the cumulative strength correlation curve (SRC) when the number of the protrusion rings 28 is zero is smaller than the width of the axial force (N) as shown in FIG. The shape is the same as the width of the axial force (N) of the structural correlation curve (RC).
一方、鋼管18の内部構造部分がコンクリートCとした場合に、突起リング28の3本全てを設置した場合の累加強度相関曲線(SC)は、図7(A)に示すように、曲線部が底辺まで到達する略山型の形状となる。また、突起リング28を例えば1本と一部のみを設置した場合の累加強度相関曲線(SC)は、図7(B)に示すように、略山型の形状の裾部が鉛直状態となった形状となり、軸力(N)の幅が狭くなる。さらに、突起リング28を0本とした場合の累加強度相関曲線(SC)は、図7(C)に示すように、図7(B)より更に軸力(N)の幅が狭まって、内部構造用相関曲線(C)の軸力(N)の幅と同一の形状となる。   On the other hand, when the internal structure portion of the steel pipe 18 is concrete C, the cumulative strength correlation curve (SC) when all three projection rings 28 are installed is as shown in FIG. It has a substantially mountain shape that reaches the bottom. In addition, as shown in FIG. 7B, the cumulative intensity correlation curve (SC) when only one protrusion ring 28 and a part of the protrusion ring 28 are installed is in a vertical state at the bottom of the substantially mountain shape. The width of the axial force (N) becomes narrow. Furthermore, as shown in FIG. 7C, the cumulative intensity correlation curve (SC) when the number of the projecting rings 28 is zero, the axial force (N) is narrower than that in FIG. It has the same shape as the width of the axial force (N) of the structural correlation curve (C).
鋼管18の内部構造部分が鉄筋コンクリートRCの場合でも、コンクリートCの場合でも、突起リング28の一部のみが設置された1本の場合では、突起リング28の全部が設置された3本の場合と比べると、累加強度相関曲線(SRC、SC)が軸力幅の狭い形状となっている。このことから、場所打ち杭10の設計過程で必要な定着力を求めた際に、その大きさが突起リング28を全て設置したものより小さい場合に、図6(A)に示す累加強度相関曲線(SRC)の両端側に有する裾領域がオーバースペック分となる。   Regardless of whether the internal structure of the steel pipe 18 is reinforced concrete RC or concrete C, the case where only one part of the projecting ring 28 is installed is three cases where all of the projecting rings 28 are installed. In comparison, the cumulative intensity correlation curve (SRC, SC) has a shape with a narrow axial force width. From this, when the fixing force required in the design process of the cast-in-place pile 10 is obtained and the size thereof is smaller than that in which all the protruding rings 28 are installed, the cumulative strength correlation curve shown in FIG. The skirt regions on both end sides of (SRC) are for overspec.
そこで、本実施形態では、鋼管18の端部18a、18bに設けられる定着部26a、26bにおける仮決めした仕様の定着力に基づいて鋼管用相関曲線を作成する。そして、当該鋼管用相関曲線を使用して、定着部26a、26bにおける定着力の妥当性を判定するために使用する累加強度相関曲線を作成する。このため、鋼管18の下端部18bに有する定着部26bの定着力を高めるために設ける突起リング28の設置数に応じて、発生する定着力を所望の大きさに設定できるようになる。また、同様にして、鋼管18の上端部18aに有する定着部26aの定着力を高めるために設ける杭頭定着筋22の設置数に応じて、発生する定着力を所望の大きさに設定できるようになる。   Therefore, in this embodiment, a steel pipe correlation curve is created based on the fixing force of the provisionally determined specifications at the fixing portions 26a and 26b provided at the ends 18a and 18b of the steel pipe 18. Then, using the steel pipe correlation curve, a cumulative strength correlation curve used for determining the validity of the fixing force in the fixing portions 26a and 26b is created. For this reason, the fixing force to be generated can be set to a desired magnitude according to the number of protrusion rings 28 provided to increase the fixing force of the fixing portion 26b provided at the lower end portion 18b of the steel pipe 18. Similarly, the generated fixing force can be set to a desired magnitude according to the number of pile head fixing bars 22 provided to increase the fixing force of the fixing portion 26a provided on the upper end portion 18a of the steel pipe 18. become.
従って、累加強度相関曲線作成工程S108−5で作成された累加強度相関曲線を用いて、所望の大きさに設定した定着力を確保可能な好適な定着部26a、26bの設計に活用できるようになる。すなわち、定着力算出工程S108−2で所望の大きさの定着力を算出してから、当該定着力に基づいて作成された鋼管用相関曲線と累加強度相関曲線を用いて、当該定着力の妥当性を判定してから、後工程となる定着部仕様決定工程S110において、設定工程S108−1で設定された定着方法によって所望の大きさの定着力を確保可能な定着部26a、26bの仕様を決定できる。   Therefore, the cumulative strength correlation curve created in the cumulative strength correlation curve creation step S108-5 can be used to design suitable fixing portions 26a and 26b that can secure the fixing force set to a desired size. Become. That is, after calculating the fixing force of a desired size in the fixing force calculation step S108-2, the appropriate fixing force is calculated using the steel pipe correlation curve and the cumulative strength correlation curve created based on the fixing force. In the fixing unit specification determination step S110, which is a subsequent step, after determining the characteristics, the specifications of the fixing units 26a and 26b that can secure a fixing force of a desired size by the fixing method set in the setting step S108-1. Can be determined.
次に、本発明の一実施形態に係る場所打ち杭10の設計方法に含まれる曲げ応力検討工程S109の詳細について、図面を使用しながら説明する。図8は、本発明の一実施形態に係る場所打ち杭の設計方法に含まれる曲げ応力検討工程の詳細を示すフロー図であり、図9は、本発明の一実施形態に係る場所打ち杭の設計方法に含まれる曲げ応力検討工程の一例を示す説明図である。   Next, details of the bending stress examination step S109 included in the design method of the cast-in-place pile 10 according to the embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a flowchart showing the details of the bending stress examination step included in the design method of the cast-in-place pile according to one embodiment of the present invention, and FIG. 9 shows the cast-in-place pile according to the embodiment of the present invention. It is explanatory drawing which shows an example of the bending stress examination process included in the design method.
曲げ応力検討工程S109では、曲げ耐力に対する曲げ応力の妥当性を検討する。具体的には、まず、地震時軸力の最小値NL−Eにおける杭体11に発生する曲げ応力MEと杭体10の曲げ耐力MUとの大小関係を判定する(曲げ応力値判定工程S109−1)。すなわち、本工程S109−1では、図9に示すように、発生応力A1を示す曲げ応力が杭体耐力A2を示す累加強度相関曲線内に含まれるか否かを判定する。 In the bending stress examination step S109, the validity of the bending stress with respect to the bending strength is examined. Specifically, first, determines the size relationship (bending stress values determined with flexural capacity M U bending stress M E and Kuitai 10 occurring pile body 11 at the minimum value N L-E Seismic axial force Step S109-1). That is, in this process S109-1, as shown in FIG. 9, it is determined whether the bending stress indicating the generated stress A1 is included in the cumulative strength correlation curve indicating the pile body strength A2.
曲げ応力値判定工程S109−1で杭体11に発生する曲げ応力MEが杭体10の曲げ耐力MUより小さい、すなわち、最小値NL−Eにおける発生応力A1を示す曲げ応力が杭体耐力A2を示す累加強度相関曲線内に含まれると判定されると、次に、地震時軸力の最大値NL+Eにおける杭体11に発生する曲げ応力MEと杭体10の曲げ耐力MUとの大小関係を判定する(曲げ応力値判定工程S109−2)。 Flexural Flexural Strength M U is smaller than the bending stress M E is Kuitai 10 generated in the pile 11 by stress value determination step S109-1, that is, the minimum value N L-E bending stress indicates stress generated A1 in the pile body If it is determined that it is included in the cumulative strength correlation curve indicating the proof strength A2, then the bending stress M E generated in the pile body 11 at the maximum value N L + E of the axial force during earthquake and the bending proof strength M U of the pile body 10 will be described. Is determined (bending stress value determination step S109-2).
曲げ応力値判定工程S109−2で杭体11に発生する曲げ応力MEが杭体10の曲げ耐力MUより小さい、すなわち、最大値NL+Eにおける発生応力A1を示す曲げ応力が杭体耐力A2を示す累加強度相関曲線内に含まれると判定されると、次に、地震時軸力の最小値NL−Eにおける曲げ応力MEと曲げ耐力MUとの比である検定比ME/MUが適正値であるか否かを判定する(検定比判定工程S109−3)。 Bending stress generated in the pile body 11 by bending stress value determination step S109-2 M E flexural strength M U smaller than Kuitai 10, i.e., the maximum value N L + pile body yield strength bending stress indicates stress generated A1 in E A2 Is determined to be included in the cumulative strength correlation curve indicating the following, then, the verification ratio M E / which is the ratio of the bending stress M E to the bending strength M U at the minimum value N L-E of the axial force during an earthquake M U is determined whether the appropriate value (test ratio determining step S109-3).
検定比判定工程S109−3で検定比ME/MUが適正値であると判定されると、次に、地震時軸力の最大値NL+Eにおける検定比ME/MUが適正値であるか否かを判定する(検定比判定工程S109−4)。そして、本工程S109−4で検定比ME/MUが適正値であると判定されると、工程S108−2で算出した定着力が確実に必要最小限の定着力を確保することが分かるので、次工程となる定着部仕様決定工程S110(図3参照)で所望の大きさの定着力を確保可能な定着部26a、26bの仕様を決定できる。 When test ratio M E / M U in the assay ratio determination step S109-3 is determined to be proper value, then test ratio M E / M U at the maximum value N L + E Seismic axial force in a proper value It is determined whether or not there is (test ratio determination step S109-4). When the test ratio M E / M U in this step S109-4 is determined to be proper value, it can be seen that the fixing force calculated in step S108-2 to secure the fixing force of reliably minimum necessary Therefore, the specifications of the fixing units 26a and 26b that can secure a fixing force of a desired size can be determined in the fixing unit specification determining step S110 (see FIG. 3) as the next step.
すなわち、曲げ応力検討工程S109を実施することによって、曲げ耐力算定工程108の工程S108−2で算出した曲げ耐力に対する曲げ応力の妥当性を踏まえた上で、鋼管18の上端部18a及び下端部18bにおける所望の大きさの定着力を確保するための定着部26a、26bの仕様を決定するので、より安全性を確保した定着部26a、26bを確実に設計できるようになる。なお、検定比判定工程S109−3、S109−4における検定比ME/MUの適正値は、設計者が地盤情報や過去の設計データ等の場所打ち杭10の設計に係る所定のデータに基づいて、事前に設定される。 That is, by performing the bending stress examination step S109, the upper end portion 18a and the lower end portion 18b of the steel pipe 18 are taken into consideration based on the validity of the bending stress with respect to the bending strength calculated in step S108-2 of the bending strength calculation step 108. Since the specifications of the fixing portions 26a and 26b for securing the fixing force of a desired size in are determined, it is possible to reliably design the fixing portions 26a and 26b that ensure further safety. Incidentally, the test ratio determining step S109-3, the proper value of the test ratio M E / M U in S109-4 is the predetermined data designer in the design of the place pile 10 such as ground information and past design data Based on the pre-set.
一方、検定比判定工程S109−3、S109−4において、検定比ME/MUが適正値でないと判定された場合には、次に、検定比ME/MUが過大か過小かを判定される(過大過小判定工程S109−5、S109−6)。 On the other hand, the test ratio determining step S109-3, in S109-4, when the test ratio M E / M U is determined not to be appropriate values, then, whether test ratio M E / M U excessive or too small It is determined (over / under determination step S109-5, S109-6).
具体的には、検定比判定工程S109−3において、最小値NL−Eにおける検定比ME/MUが適正値でないと判定されてから、過大過小判定工程S109−5で最小値NL−Eにおける検定比ME/MUが過大と判定された場合には、図8に示すように、後述する引張側比較工程S109−9に移る。これに対して、過大過小判定工程S109−5で最小値NL−Eにおける検定比ME/MUが過小と判定された場合には、鋼管18の仕様を選定する鋼管巻き仕様選定工程S105に戻る。 Specifically, in the assay ratio determination step S109-3, the minimum value N test ratio M E / M U from being determined not to be a proper value in L-E, the minimum value at an excessive under-determining step S109-5 N L If the test ratio M E / M U in -E is judged excessive, as shown in FIG. 8, and proceeds to the tension side comparison step S109-9 to be described later. On the contrary, when the test ratio M E / M U at the minimum value N L-E in an excessive under-determining step S109-5 is determined to too small, the steel pipe rolled specification selection step S105 to select the specifications of the steel pipe 18 Return to.
一方、検定比判定工程S109−4において、最大値NL+Eにおける検定比ME/MUが適正値でないと判定されてから、過大過小判定工程S109−6で最大値NL+Eにおける検定比ME/MUが過大と判定された場合には、図8に示すように、後述する圧縮側比較工程S109−7に移る。これに対して、過大過小判定工程S109−6で最大値NL+Eにおける検定比ME/MUが過小と判定された場合には、鋼管18の仕様を選定する鋼管巻き仕様選定工程S105に戻る。 On the other hand, the test ratio determined in step S109-4, the maximum value N L + test ratio M E / M U from being determined not to be a proper value in E, test ratio M E at the maximum value N L + E with excessive under-determining step S109-6 / M when U is determined excessive, as shown in FIG. 8, it shifts to the compression side comparison step S109-7 to be described later. On the contrary, when the test ratio M E / M U at the maximum value N L + E with excessive under-determining step S109-6 is determined to too small, the flow returns to the steel pipe winding specification selection step S105 to select the specifications of the steel pipe 18 .
このように、曲げ耐力算定工程で算出した定着力に基づいて算定された検定比ME/MUが適正値でない場合には、鋼管18の仕様を再度選定して、より確実に鋼管18の上端部18a及び下端部18bに設けられる定着部26a、26bにおける必要な定着力を確保可能な定着部26a、26bの再設計を行って、より好適な設計ができるようになる。 Thus, when the test ratio is calculated based on the fixing force calculated in bending strength calculation step M E / M U is not appropriate values, and selecting the specification of the steel pipe 18 again, the steel pipe 18 more reliably By redesigning the fixing portions 26a and 26b that can secure the necessary fixing force in the fixing portions 26a and 26b provided at the upper end portion 18a and the lower end portion 18b, a more suitable design can be achieved.
また、曲げ応力値判定工程S109−1において、地震時軸力の最小値NL−Eにおける杭体11に発生する曲げ応力MEが曲げ耐力MUより大きい、すなわち、発生した曲げ応力MEが累加強度相関曲線内に含まれていないと判定された場合に、当該最小値NL−Eにおける曲げ応力MEが累加強度相関曲線内に含まれていないと判定された際には、鋼管18の引張降伏軸力(−tNs)と引張力に対する定着力(−tNb)との大小関係を比較する(引張側比較工程S109−9)。 Further, in the bending stress value determination step S109-1, the bending stress M E generated in the pile body 11 at the minimum value N L-E of the axial force at the time of the earthquake is greater than the bending strength M U , that is, the generated bending stress M E. There when it is determined not to be included in the cumulative intensity correlation curve, when the bending stress M E in the minimum value N L-E is found not included in the cumulative intensity correlation curve, steel The magnitude relationship between the tensile yielding axial force (-tNs) of 18 and the fixing force (-tNb) with respect to the tensile force is compared (tensile side comparison step S109-9).
そして、引張側比較工程S109−9で引張降伏軸力(−tNs)が引張力に対する定着力(−tNb)より小さいと判定された場合に、引張降伏軸力(−tNs)を大きくするための必要コストC(tNb)と軸力が0の場合における鋼管の曲げ耐力Msを大きくするための必要コストC(Ms)との大小関係を検討する引張側コスト比較工程S109−10に移行する。   When it is determined in the tension side comparison step S109-9 that the tensile yield axial force (-tNs) is smaller than the fixing force (-tNb) with respect to the tensile force, the tensile yield axial force (-tNs) is increased. The process proceeds to the tension side cost comparison step S109-10 for examining the magnitude relationship between the necessary cost C (tNb) and the necessary cost C (Ms) for increasing the bending strength Ms of the steel pipe when the axial force is zero.
一方、曲げ応力値判定工程S109−2において、地震時軸力の最大値NL+Eにおける杭体11に発生する曲げ応力MEが曲げ耐力MUより大きい、すなわち、発生した曲げ応力MEが累加強度相関曲線内に含まれていないと判定された場合に、当該最大値NL+Eにおける曲げ応力MEが累加強度相関曲線内に含まれていないと判定された際には、鋼管18の圧縮降伏軸力(cNs)と圧縮力に対する定着力(cNb)との大小関係を比較する(圧縮側比較工程S109−7)。 On the other hand, the bending stress value determination step S109-2, greater than the maximum value N L + Strength Flexural bending stress M E generated in the pile 11 in E M U Seismic axial force, i.e., generated bending stress M E is cumulatively If it is determined not to be included in the intensity correlation in curves, when the maximum value N L + bending in E stress M E is determined not to be included in the cumulative intensity correlation curve, the compressive yield of the steel pipe 18 The magnitude relationship between the axial force (cNs) and the fixing force (cNb) with respect to the compression force is compared (compression side comparison step S109-7).
そして、圧縮側比較工程S109−7で圧縮降伏軸力(cNs)が圧縮力に対する定着力(cNb)より大きいと判定された場合に、圧縮降伏軸力(cNs)を大きくするための必要コストC(cNb)と軸力が0の場合における鋼管の曲げ耐力Msを大きくするための必要コストC(Ms)との大小関係を検討する圧縮側コスト比較工程S109−8に移行する。   Then, when it is determined in the compression side comparison step S109-7 that the compression yield axial force (cNs) is larger than the fixing force (cNb) with respect to the compression force, the necessary cost C for increasing the compression yield axial force (cNs). The process proceeds to the compression-side cost comparison step S109-8 that examines the magnitude relationship between (cNb) and the necessary cost C (Ms) for increasing the bending strength Ms of the steel pipe when the axial force is zero.
一方、圧縮側比較工程S109−7で圧縮降伏軸力(cNs)が圧縮力に対する定着力(cNb)より小さいと判定された場合、及び前述した引張側比較工程S109−9で引張降伏軸力(−tNs)が引張力に対する定着力(−tNb)より大きいと判定された場合には、鋼管18の仕様を選定する鋼管巻き仕様選定工程S105に戻る。また、圧縮側コスト比較工程S109−8、引張側コスト比較工程S109−10で軸力が0の場合における鋼管の曲げ耐力Msを大きくするための必要コストC(Ms)の方が小さいと判定された場合には、同様に鋼管18の仕様を選定する鋼管巻き仕様選定工程S105に戻る。さらに、引張側比較工程S109−9で引張降伏軸力(−tNs)が引張力に対する定着力(−tNb)より大きいと判定された場合も、同様に鋼管18の仕様を選定する鋼管巻き仕様選定工程S105に戻る。   On the other hand, when it is determined in the compression side comparison step S109-7 that the compression yield axial force (cNs) is smaller than the fixing force (cNb) with respect to the compression force, and in the tension side comparison step S109-9 described above, the tensile yield axial force ( When it is determined that -tNs) is larger than the fixing force (-tNb) with respect to the tensile force, the process returns to the steel pipe winding specification selection step S105 for selecting the specifications of the steel pipe 18. Further, it is determined that the required cost C (Ms) for increasing the bending resistance Ms of the steel pipe when the axial force is 0 in the compression side cost comparison step S109-8 and the tension side cost comparison step S109-10 is smaller. In the case of the failure, the process returns to the steel pipe winding specification selection step S105 for selecting the specifications of the steel pipe 18 in the same manner. Further, when it is determined in the tension side comparison step S109-9 that the tensile yield axial force (-tNs) is larger than the fixing force (-tNb) with respect to the tensile force, the steel pipe winding specification selection for selecting the specifications of the steel pipe 18 is also performed. The process returns to step S105.
一方、圧縮側コスト比較工程S109−8、引張側コスト比較工程S109−10で軸力が0の場合における鋼管の曲げ耐力Msを大きくするための必要コストC(Ms)の方が大きいと判定された場合には、杭体11の曲げ耐力を算定する曲げ耐力算定工程S108に戻る。なお、軸力が0の場合における鋼管の曲げ耐力Msを大きくする方法には、鋼管材質の向上や、鋼管板厚、 杭径の増大等がある。   On the other hand, in the compression side cost comparison step S109-8 and the tension side cost comparison step S109-10, it is determined that the necessary cost C (Ms) for increasing the bending strength Ms of the steel pipe when the axial force is 0 is larger. If it is, the bending strength calculation step S108 for calculating the bending strength of the pile body 11 is returned to. Note that methods for increasing the bending strength Ms of the steel pipe when the axial force is 0 include improvement of the steel pipe material, increase of the steel pipe plate thickness, and pile diameter.
このように、本実施形態では、圧縮側及び引張側における杭体に発生した応力と杭体の耐力を示す累加強度とを比較して、杭体に発生した応力が杭体の耐力を示す累加強度より大きい場合に、その不具合の原因を効率的に検討することができる。また、圧縮側及び引張側における算出した定着力の不具合を解消するための必要コストを検討した上で、より好適な工程からの設計のやり直しができる。   As described above, in the present embodiment, the stress generated in the pile body on the compression side and the tension side is compared with the cumulative strength indicating the yield strength of the pile body, and the stress generated in the pile body indicates the cumulative strength indicating the yield strength of the pile body. When it is larger than the strength, the cause of the defect can be efficiently examined. In addition, after considering the necessary cost for solving the problem of the calculated fixing force on the compression side and the tension side, it is possible to redo the design from a more suitable process.
このように、本実施形態では、曲げ応力検討工程S109において、曲げ耐力算定工程108の工程S108−2で算出した曲げ耐力に対する曲げ応力の妥当性を検討できる。このため、定着部26の仕様を決定する際に、より確実に鋼管18の上端部18a及び下端部18bに設けられる定着部26a、26bにおける定着力が確保されるので、より安全性を確保した定着部26a、26bを確実に設計できるようになる。また、曲げ応力が妥当でないものである場合に、その不具合の原因に応じて、適宜、好適な工程からやり直せるように振り分けられるので、場所打ち杭10を再設計する際における作業効率の向上が図れる。   Thus, in this embodiment, in the bending stress examination step S109, the validity of the bending stress with respect to the bending strength calculated in step S108-2 of the bending strength calculation step 108 can be examined. For this reason, when determining the specifications of the fixing unit 26, the fixing force in the fixing units 26a and 26b provided on the upper end 18a and the lower end 18b of the steel pipe 18 is more reliably ensured, so that safety is further ensured. The fixing portions 26a and 26b can be reliably designed. In addition, when the bending stress is not appropriate, according to the cause of the failure, the allocation is performed so that it can be started again from a suitable process, so that the working efficiency can be improved when the cast-in-place pile 10 is redesigned. .
なお、前述した本発明の一実施形態に係る場所打ち杭の設計方法では、ユーザが図3に示す各工程S101乃至S115を全て実施しているが、曲げ耐力算定工程S108と曲げ応力検討工程S109のみを実施して、定着部26a、26bの仕様の妥当性を判断する方法も可能である。   In the above-mentioned method for designing a cast-in-place pile according to one embodiment of the present invention, the user performs all the steps S101 to S115 shown in FIG. 3, but the bending strength calculation step S108 and the bending stress examination step S109. It is also possible to determine the validity of the specifications of the fixing units 26a and 26b by performing only the above.
例えば、図10に示すように、他のユーザが実施した工程S101乃至S107により設定された各種データを得てから(工程S201)、これらの各種データに基づいて、曲げ耐力算定工程S108と曲げ応力検討工程S109を実施することができる。   For example, as shown in FIG. 10, after obtaining various data set in steps S101 to S107 performed by other users (step S201), based on these various data, the bending strength calculation step S108 and the bending stress are obtained. The examination step S109 can be performed.
その後、曲げ耐力算定工程S108により求められた累加強度相関曲線に基づいて、前述した曲げ応力検討工程S109における曲げ応力値判定工程S109−1、S109−2、検定比判定工程S109−3、S109−4、過大過小判定工程S109−5、S109−6、圧縮側比較工程S109−7、及び引張側比較工程S109−9を適宜、実施する。   Thereafter, based on the cumulative strength correlation curve obtained in the bending strength calculation step S108, the bending stress value determination step S109-1, S109-2, the verification ratio determination step S109-3, S109- in the bending stress examination step S109 described above. 4. Over / under determination step S109-5, S109-6, compression side comparison step S109-7, and tension side comparison step S109-9 are appropriately performed.
そして、曲げ応力値判定工程S109−1、S109−2、検定比判定工程S109−3、S109−4において、それぞれ曲げ応力が累加強度相関曲線内に適切に含まれると判定されたら、定着部26a、26bの仕様が妥当として(工程S202)、一旦、検討を終了する。   When it is determined that the bending stress is appropriately included in the cumulative strength correlation curve in each of the bending stress value determination steps S109-1 and S109-2 and the test ratio determination steps S109-3 and S109-4, the fixing unit 26a. , 26b is appropriate (step S202), and the study is temporarily terminated.
また、検定比判定工程S109−3で最小値NL−Eにおける検定比ME/MUが適正値でないと判定され、かつ過大過小判定工程S109−5で当該最小値NL−Eにおける検定比ME/MUが過小と判定された場合も、定着部26a、26bの仕様が妥当として(工程S202)、一旦、検討を終了する。 Also, test ratio M E / M U at the minimum value N L-E in the assay ratio determination step S109-3 is determined not to be a proper value, and test at the minimum value N L-E in an excessive under-determining step S109-5 even when the ratio M E / M U is determined to too small, the fixing portion 26a, 26b specifications as a valid (step S202), temporarily finishes the study.
さらに、検定比判定工程S109−4で最大値NL+Eにおける検定比ME/MUが適正値でないと判定され、かつ過大過小判定工程S109−6で当該最大値NL+Eにおける検定比ME/MUが過小と判定された場合も、定着部26a、26bの仕様が妥当として(工程S202)、一旦、検討を終了する。 Furthermore, test ratio determining test ratio at the maximum value N L + E in step S109-4 M E / M U is determined not to be a proper value, and test ratio in the maximum value N L + E with excessive under-determining step S109-6 M E / sometimes M U is determined to too small, the fixing portion 26a, 26b specifications as a valid (step S202), temporarily finishes the study.
このように、前述したように、定着部26a、26bの仕様が妥当として(工程S202)、一旦、検討を終了した場合は、その後、続いて定着部26a、26bの詳細な検討に入ることも可能である。   As described above, when the specifications of the fixing units 26a and 26b are appropriate (step S202) and the examination is once completed, the detailed examination of the fixing units 26a and 26b may be subsequently started. Is possible.
一方、過大過小判定工程S109−5で当該最小値NL−Eにおける検定比ME/MUが過大と判定された場合は、引張側比較工程S109−9に移行して、鋼管18の引張降伏軸力(−tNs)と引張力に対する定着力(−tNb)との大小関係を比較する。また、過大過小判定工程S109−6で当該最大値NL+Eにおける検定比ME/MUが過大と判定された場合は、圧縮側比較工程S109−7に移行して、鋼管18の圧縮降伏軸力(cNs)と圧縮力に対する定着力(cNb)との大小関係を比較する。 On the other hand, if the test ratio M E / M U with excessive under-determination step S109-5 in the minimum value N L-E is determined excessive, the process moves to the tension side comparison step S109-9, tensile steel pipe 18 The magnitude relationship between the yielding axial force (−tNs) and the fixing force against the tensile force (−tNb) is compared. Also, if the test ratio in the maximum value N L + E with excessive under-determining step S109-6 M E / M U is determined excessive, and proceeds to the compression side comparison step S109-7, the compressive yield axis of the steel pipe 18 The magnitude relationship between the force (cNs) and the fixing force (cNb) with respect to the compression force is compared.
そして、圧縮側比較工程S109−7や引張側比較工程S109−9において、圧縮降伏軸力(cNs)が圧縮力に対する定着力(cNb)より大きいと判定された場合や、引張降伏軸力(−tNs)が引張力に対する定着力(−tNb)より小さいと判定された場合には、曲げ耐力算定工程S108に戻って、曲げ耐力の算定からやり直す。   In the compression side comparison step S109-7 and the tension side comparison step S109-9, when it is determined that the compression yield axial force (cNs) is larger than the fixing force (cNb) with respect to the compression force, or when the tensile yield axial force (− When it is determined that (tNs) is smaller than the fixing force (−tNb) with respect to the tensile force, the process returns to the bending strength calculation step S108 and starts again from the calculation of the bending strength.
一方、圧縮側比較工程S109−7や引張側比較工程S109−9において、圧縮降伏軸力(cNs)が圧縮力に対する定着力(cNb)より小さいと判定された場合や、引張降伏軸力(−tNs)が引張力に対する定着力(−tNb)より大きいと判定された場合には、定着部26a、26bの仕様が不適として(工程S203)、検討作業を終了する。   On the other hand, when it is determined in the compression side comparison step S109-7 or the tension side comparison step S109-9 that the compression yield axial force (cNs) is smaller than the fixing force (cNb) with respect to the compression force, the tensile yield axial force (− When it is determined that (tNs) is larger than the fixing force (−tNb) with respect to the tensile force, the specifications of the fixing units 26a and 26b are inappropriate (step S203), and the examination work is finished.
このようにして、他のユーザが実施した工程S101乃至S107により設定された各種データに基づいて、曲げ耐力算定工程S108と曲げ応力検討工程S109を実施して、曲げ耐力算定工程S108と曲げ応力検討工程S109のみを実施して、定着部26a、26bの仕様の妥当性を判断することも可能である。   In this way, the bending strength calculation step S108 and the bending stress examination step S109 are performed based on the various data set by the steps S101 to S107 performed by other users, and the bending strength calculation step S108 and the bending stress examination are performed. It is also possible to perform only step S109 and determine the validity of the specifications of the fixing units 26a and 26b.
なお、上記のように本発明の各実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。   Although each embodiment of the present invention has been described in detail as described above, it is easily understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. It will be possible. Therefore, all such modifications are included in the scope of the present invention.
例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、場所打ち杭の設計システムの構成、及び場所打ち杭の設計方法の動作も本発明の各実施形態で説明したものに限定されず、種々の変形実施が可能である。   For example, a term described with a different term having a broader meaning or the same meaning at least once in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. Also, the configuration of the cast-in-place pile design system and the operation of the cast-in-place pile design method are not limited to those described in the embodiments of the present invention, and various modifications can be made.
10 杭頭部鋼管巻き場所打ちコンクリート杭(場所打ち杭)、11 杭体、11a 杭頭部、12 鋼管鉄筋コンクリート杭部、14 鉄筋コンクリート杭部、16 主筋、18 鋼管、18a 上端、18b 下端、20 内部鉄筋コンクリート(内部構造部分)、22 杭頭定着筋、24 パイルキャップ、26、26a、26b 定着部、28 突起リング、100 (場所打ち杭の)設計システム、101 コンピュータ、102 記憶部、104 記憶媒体、106 RAM、108 ROM、110 CPU(演算部)、112 設定部、113 相関曲線作成部(鋼管用相関曲線作成部、内部構造用相関曲線作成部、累加強度相関曲線作成部)、114 判定部(定着力判定部)、116 決定部(定着部仕様決定部)、120 入力部、122 出力部、124 通信部、125 システムバス、126 インターネット、S105 鋼管巻き仕様選定工程、S107 曲げ応力算定工程、S108 曲げ耐力算定工程、S108−1 設定工程、S108−2 定着力算出工程、S108−3 鋼管用相関曲線作成工程、S108−4 内部構造用相関曲線作成工程、S108−5 累加強度相関曲線作成工程、S109 曲げ応力検討工程、S109−1、S109−2 曲げ応力値判定工程、S109−3、S109−4 検定比判定工程、S109−5、S109−6 過大過小判定工程、S109−7 圧縮側比較工程、S109−8 圧縮側コスト比較工程、S109−9 引張側比較工程、S109−10 引張側コスト比較工程 DESCRIPTION OF SYMBOLS 10 Pile head steel pipe winding cast-in-place concrete pile (cast-in-place pile), 11 pile body, 11a pile head, 12 steel pipe reinforced concrete pile part, 14 reinforced concrete pile part, 16 main reinforcement, 18 steel pipe, 18a upper end, 18b lower end, 20 inside Reinforced concrete (internal structure part), 22 pile head anchoring muscle, 24 pile cap, 26, 26a, 26b anchoring part, 28 projection ring, 100 (place cast pile) design system, 101 computer, 102 storage part, 104 storage medium, 106 RAM, 108 ROM, 110 CPU (calculation unit), 112 setting unit, 113 correlation curve creation unit (steel pipe correlation curve creation unit, internal structure correlation curve creation unit, cumulative strength correlation curve creation unit), 114 determination unit ( Fixing force determination unit), 116 determination unit (fixing unit specification determination unit), 120 input unit, 12 2 output section, 124 communication section, 125 system bus, 126 internet, S105 steel pipe winding specification selection process, S107 bending stress calculation process, S108 bending strength calculation process, S108-1 setting process, S108-2 fixing force calculation process, S108- 3 Steel pipe correlation curve creation step, S108-4 Internal structure correlation curve creation step, S108-5 Cumulative strength correlation curve creation step, S109 Bending stress examination step, S109-1, S109-2 Bending stress value judgment step, S109- 3, S109-4 test ratio determination step, S109-5, S109-6 over / under determination step, S109-7 compression side comparison step, S109-8 compression side cost comparison step, S109-9 tension side comparison step, S109-10 Tensile side cost comparison process

Claims (10)

  1. 少なくとも杭体の曲げ耐力を算定する曲げ耐力算定工程を含み、前記杭体の杭頭部に鋼管が巻着される場所打ち杭の設計方法であって、
    前記曲げ耐力算定工程は、
    少なくとも前記鋼管の上端部及び下端部における前記鋼管と該鋼管の内部に設けられる内部コンクリート又は内部鉄筋コンクリートの何れかからなる内部構造部分との定着方法を設定する設定工程と、
    前記鋼管の前記上端部及び前記下端部における圧縮側に対する前記内部構造部分との定着力の小さい方の値として算出される最小値と、前記鋼管の前記上端部及び前記下端部における引張側に対する前記内部構造部分との定着力の小さい方の値として算出される最小値とを、前記圧縮側及び前記引張側におけるそれぞれの前記鋼管の定着力として算出する定着力算出工程と、
    前記定着力算出工程で算出した前記圧縮側及び前記引張側の前記定着力と、前記鋼管の圧縮降伏軸力及び前記鋼管の引張降伏軸力との大小関係を比較し、該大小関係に基づいて、前記杭体の前記鋼管部分の軸力と曲げモーメントとの関係を示す鋼管用相関曲線を作成する鋼管用相関曲線作成工程と、
    前記内部構造部分の前記内部コンクリート又は前記内部鉄筋コンクリートの何れかの軸力と曲げモーメントとの関係を示す内部構造用相関曲線を作成する内部構造用相関曲線作成工程と、
    前記内部構造用相関曲線に前記鋼管用相関曲線を累加させて曲げ耐力を示す累加強度相関曲線を作成する累加強度相関曲線作成工程と、を含み、
    前記曲げ耐力算定工程の後工程には、予め設定された軸力の所定の最小値及び最大値における前記杭体に発生する曲げ応力が前記累加強度相関曲線で示される曲げ耐力より小さくなるように前記鋼管と前記内部構造部分との定着部の仕様を決定する定着部仕様決定工程を含むことを特徴とする場所打ち杭の設計方法。
    A method for designing a cast-in-place pile including a bending strength calculation step for calculating at least a bending strength of a pile body, wherein a steel pipe is wound around a pile head of the pile body,
    The bending strength calculation step includes
    A setting step of setting a fixing method between the steel pipe at least at the upper end portion and the lower end portion of the steel pipe and an internal structure portion made of either internal concrete or internal reinforced concrete provided in the steel pipe;
    The minimum value calculated as the smaller value of the fixing force with the internal structure portion relative to the compression side at the upper end and the lower end of the steel pipe, and the tension side at the upper end and the lower end of the steel pipe and a minimum value calculated as smaller of the fixing strength between the inner structural portion, and a fixing force calculation step of calculating as a fixing force of each of the steel pipe in the compression side and the tension side,
    Comparing the magnitude relationship between the compression force of the compression side and the tension side calculated in the fixing force calculation step and the compression yield axial force of the steel pipe and the tensile yield axial force of the steel pipe, and based on the magnitude relation A steel pipe correlation curve creating step for creating a steel pipe correlation curve indicating a relationship between an axial force and a bending moment of the steel pipe portion of the pile body;
    A correlation curve creating step for internal structure that creates a correlation curve for internal structure indicating a relationship between an axial force and a bending moment of either the internal concrete or the internal reinforced concrete of the internal structure portion;
    A cumulative strength correlation curve creating step of creating a cumulative strength correlation curve indicating a bending strength by accumulating the steel pipe correlation curve in the internal structure correlation curve,
    In the subsequent step of the bending strength calculation step, the bending stress generated in the pile body at a predetermined minimum value and maximum value of the axial force set in advance is smaller than the bending strength indicated by the cumulative strength correlation curve. A cast-in-place pile design method comprising a fixing part specification determining step of determining a specification of a fixing part between the steel pipe and the internal structure part.
  2. 前記杭体に発生する曲げ応力を算定する曲げ応力算定工程と、
    前記曲げ耐力算定工程の後に前記曲げ耐力に対する曲げ応力の妥当性を検討する曲げ応力検討工程と、を更に含み、
    前記曲げ応力検討工程は、
    地震時軸力の最小値及び最大値における前記曲げ応力が前記累加強度相関曲線内に含まれるか否かを判定する曲げ応力値判定工程を含むことを特徴とする請求項1に記載の場所打ち杭の設計方法。
    Bending stress calculation step for calculating bending stress generated in the pile body;
    A bending stress examination step for examining the validity of the bending stress with respect to the bending strength after the bending strength calculation step,
    The bending stress examination step
    The cast-in-place value according to claim 1, further comprising a bending stress value determining step of determining whether or not the bending stress at the minimum value and the maximum value of the axial force during an earthquake is included in the cumulative strength correlation curve. Pile design method.
  3. 前記曲げ応力検討工程は、
    前記曲げ応力値判定工程で前記曲げ応力が前記累加強度相関曲線内に含まれる場合に、更に前記最小値及び前記最大値における前記曲げ応力と前記曲げ耐力との比である検定比が適正値であるか否かを判定する検定比判定工程と、
    前記検定比判定工程において、前記最大値又は前記最小値における前記検定比が適正値でないと判定された場合に、前記検定比が過大か過小かを判定される過大過小判定工程と、を更に含み、
    前記過大過小判定工程で、前記検定比が過小と判定された場合に、前記曲げ応力算定工程及び前記曲げ耐力算定工程より前段に有する前記鋼管の仕様を選定する鋼管巻き仕様選定工程に戻ることを特徴とする請求項2に記載の場所打ち杭の設計方法。
    The bending stress examination step
    When the bending stress is included in the cumulative strength correlation curve in the bending stress value determining step, a test ratio that is a ratio between the bending stress and the bending strength at the minimum value and the maximum value is an appropriate value. A test ratio determination step of determining whether or not there is a
    An over / under determination step in which, in the test ratio determination step, when it is determined that the test ratio at the maximum value or the minimum value is not an appropriate value, the test ratio is determined to be over or under. ,
    Returning to the steel pipe winding specification selection step for selecting the specifications of the steel pipe having the preceding stage from the bending stress calculation step and the bending strength calculation step when the verification ratio is determined to be excessive in the over / under determination step. The cast-in-place pile design method according to claim 2,
  4. 前記曲げ応力値判定工程において、前記最大値又は前記最小値における前記曲げ応力が前記累加強度相関曲線内に含まれていないと判定された場合に、
    前記最小値における前記曲げ応力が前記累加強度相関曲線内に含まれていないと判定された際には、前記鋼管の引張降伏軸力と前記引張力に対する前記定着力との大小関係を比較する引張側比較工程に移行し、
    前記最大値における前記曲げ応力が前記累加強度相関曲線内に含まれていないと判定された際には、前記鋼管の圧縮降伏軸力と前記圧縮力に対する前記定着力との大小関係を比較する圧縮側比較工程に移行することを特徴とする請求項2に記載の場所打ち杭の設計方法。
    In the bending stress value determining step, when it is determined that the bending stress at the maximum value or the minimum value is not included in the cumulative strength correlation curve,
    When it is determined that the bending stress at the minimum value is not included in the cumulative strength correlation curve, a tensile strength comparing the magnitude relationship between the tensile yield axial force of the steel pipe and the fixing force with respect to the tensile force is compared. To the side comparison process,
    When it is determined that the bending stress at the maximum value is not included in the cumulative strength correlation curve, compression is performed to compare the magnitude relationship between the compression yield axial force of the steel pipe and the fixing force with respect to the compression force. 3. The cast-in-place pile design method according to claim 2, wherein the method is shifted to a side comparison step.
  5. 前記引張側比較工程で前記鋼管の前記引張降伏軸力が前記引張力に対する前記定着力より小さいと判定された場合に、前記引張降伏軸力を大きくするための必要コストと軸力が0の場合における前記鋼管の曲げ耐力を大きくするための必要コストとの大小関係を検討する引張側コスト比較工程に移行することを特徴とする請求項4に記載の場所打ち杭の設計方法。 When it is determined in the tension side comparison step that the tensile yield axial force of the steel pipe is smaller than the fixing force with respect to the tensile force, the cost and axial force required to increase the tensile yield axial force are zero 5. The cast-in-place pile design method according to claim 4, wherein the cast-in-place pile is transferred to a tension-side cost comparison step for examining a magnitude relationship with a necessary cost for increasing the bending strength of the steel pipe.
  6. 圧縮側比較工程で前記鋼管の前記圧縮降伏軸力が前記圧縮力に対する前記定着力より大きいと判定された場合に、前記圧縮降伏軸力を大きくするための必要コストと軸力が0の場合における前記鋼管の曲げ耐力を大きくするための必要コストとの大小関係を検討する圧縮側コスト比較工程に移行することを特徴とする請求項4に記載の場所打ち杭の設計方法。   When it is determined in the compression side comparison step that the compression yield axial force of the steel pipe is larger than the fixing force with respect to the compression force, the cost required to increase the compression yield axial force and the axial force are 0 5. The cast-in-place pile design method according to claim 4, wherein the cast-in-place pile design method shifts to a compression-side cost comparison step for examining a magnitude relationship with a necessary cost for increasing the bending strength of the steel pipe.
  7. 請求項1乃至請求項6の何れか1項に記載の場所打ち杭の設計方法をコンピュータに実行させるための設計プログラム。   A design program for causing a computer to execute the cast-in-place pile design method according to any one of claims 1 to 6.
  8. 請求項1乃至請求項6の何れか1項に記載の場所打ち杭の設計方法をコンピュータに実行させるための設計プログラムを前記コンピュータで読み取り可能に記憶した記憶媒体。   A storage medium that stores a computer-readable design program for causing a computer to execute the cast-in-place pile design method according to any one of claims 1 to 6.
  9. 杭体の杭頭部に鋼管が巻着される場所打ち杭の設計システムであって、
    少なくとも前記場所打ち杭の設計に係る所定のデータを記憶する記憶部と、
    少なくとも前記鋼管の上端部及び下端部における圧縮側に対する内部コンクリート又は内部鉄筋コンクリートの何れかからなる内部構造部分との定着力の最小値と、引張側に対する前記内部構造部分との定着力の最小値に基づいて、所望の前記鋼管の前記上端部及び前記下端部における定着力を算出する演算部と、
    前記演算部に含まれ、少なくとも前記鋼管の上端部及び下端部における前記鋼管と該鋼管の内部に設けられる内部構造部分との定着方法を設定する設定部と、
    前記演算部に含まれ、前記圧縮側及び前記引張側の前記定着力に基づいて、前記杭体の前記鋼管部分の軸力と曲げモーメントとの関係を示す鋼管用相関曲線を作成する鋼管用相関曲線作成部と、
    前記演算部に含まれ、前記鋼管の内部構造部分の軸力と曲げモーメントとの関係を示す内部構造用相関曲線に前記鋼管用相関曲線を累加させて累加強度相関曲線を作成する累加強度相関曲線作成部と、
    前記演算部に含まれ、少なくとも前記累加強度相関曲線を用いて、予め設定された軸力の所定の最小値及び最大値における前記杭体に発生する曲げ応力が前記累加強度相関曲線内に含まれるか否かを判定する定着力判定部と、
    前記演算部に含まれ、前記軸力の所定の前記最小値及び前記最大値における前記曲げ応力が前記累加強度相関曲線内に含まれている場合に、前記設定部で設定された前記定着方法によって少なくとも前記定着力を確保可能な前記鋼管と前記内部構造部分との定着部の仕様を決定する定着部仕様決定部と、を備えることを特徴とする場所打ち杭の設計システム。
    A cast-in-place pile design system in which a steel pipe is wound around a pile head of a pile body,
    A storage unit for storing at least predetermined data relating to the design of the cast-in-place pile;
    At least at the upper end and lower end of the steel pipe, the minimum value of the fixing force with the internal structure part made of either internal concrete or internal reinforced concrete on the compression side, and the minimum value of the fixing force with the internal structure part on the tension side Based on the calculation unit for calculating the fixing force at the upper end and the lower end of the desired steel pipe,
    A setting unit that is included in the calculation unit and sets a fixing method of the steel pipe at least at the upper end portion and the lower end portion of the steel pipe and an internal structure portion provided inside the steel pipe;
    Correlation for steel pipe that is included in the calculation unit and creates a correlation curve for steel pipe showing the relationship between the axial force and bending moment of the steel pipe portion of the pile body based on the fixing force on the compression side and the tension side A curve generator,
    A cumulative strength correlation curve, which is included in the calculation unit, creates a cumulative strength correlation curve by accumulating the correlation curve for an internal structure to a correlation curve for an internal structure indicating a relationship between an axial force and a bending moment of the internal structure portion of the steel pipe The creation department;
    Bending stress generated in the pile body at a predetermined minimum value and maximum value of axial force set in advance is included in the cumulative strength correlation curve, which is included in the calculation unit and uses at least the cumulative strength correlation curve. a fixing force determination unit to determine whether or not,
    When the bending stress at the predetermined minimum value and the maximum value of the axial force included in the calculation unit is included in the cumulative intensity correlation curve, the fixing method set by the setting unit A cast-in-place pile design system comprising: a fixing unit specification determining unit that determines a specification of a fixing unit between the steel pipe and the internal structure portion capable of securing at least the fixing force.
  10. 杭体の杭頭部に鋼管が巻着される場所打ち杭の曲げ耐力を算定する場所打ち杭の曲げ耐力算定方法であって、A method for calculating the bending strength of a cast-in-place pile that calculates the bending strength of a cast-in-place pile where a steel pipe is wound around the pile head of the pile body,
    少なくとも前記鋼管の上端部及び下端部における前記鋼管と該鋼管の内部に設けられる内部コンクリート又は内部鉄筋コンクリートの何れかからなる内部構造部分との定着方法を設定する設定工程と、  A setting step of setting a fixing method between the steel pipe at least at the upper end portion and the lower end portion of the steel pipe and an internal structure portion made of either internal concrete or internal reinforced concrete provided in the steel pipe;
    前記鋼管の前記上端部及び前記下端部における圧縮側に対する前記内部構造部分との定着力の小さい方の値として算出される最小値と、前記鋼管の前記上端部及び前記下端部における引張側に対する前記内部構造部分との定着力の小さい方の値として算出される最小値とを、前記圧縮側及び前記引張側におけるそれぞれの前記鋼管の定着力として算出する定着力算出工程と、  The minimum value calculated as the smaller value of the fixing force with the internal structure portion relative to the compression side at the upper end and the lower end of the steel pipe, and the tension side at the upper end and the lower end of the steel pipe A fixing force calculation step of calculating a minimum value calculated as a smaller value of the fixing force with the internal structure portion as a fixing force of each of the steel pipes on the compression side and the tension side;
    前記定着力算出工程で算出した前記圧縮側及び前記引張側の前記定着力と、前記鋼管の圧縮降伏軸力及び前記鋼管の引張降伏軸力との大小関係を比較し、該大小関係に基づいて、前記杭体の前記鋼管部分の軸力と曲げモーメントとの関係を示す鋼管用相関曲線を作成する鋼管用相関曲線作成工程と、  Comparing the magnitude relationship between the compression force of the compression side and the tension side calculated in the fixing force calculation step and the compression yield axial force of the steel pipe and the tensile yield axial force of the steel pipe, and based on the magnitude relation A steel pipe correlation curve creating step for creating a steel pipe correlation curve indicating a relationship between an axial force and a bending moment of the steel pipe portion of the pile body;
    前記内部構造部分の前記内部コンクリート又は前記内部鉄筋コンクリートの何れかの軸力と曲げモーメントとの関係を示す内部構造用相関曲線を作成する内部構造用相関曲線作成工程と、  A correlation curve creating step for internal structure that creates a correlation curve for internal structure indicating a relationship between an axial force and a bending moment of either the internal concrete or the internal reinforced concrete of the internal structure portion;
    前記内部構造用相関曲線に前記鋼管用相関曲線を累加させて曲げ耐力を示す累加強度相関曲線を作成する累加強度相関曲線作成工程と、を含むことを特徴とする場所打ち杭の曲げ耐力算定方法。  A cumulative strength correlation curve creating step of creating a cumulative strength correlation curve showing the flexural strength by accumulating the steel pipe correlation curve to the internal structure correlation curve, and a bending strength calculation method for cast-in-place piles, .
JP2014082247A 2014-04-11 2014-04-11 Cast-in-place pile design method, design program, storage medium, cast-in-place pile design system, and cast-in-place pile bending strength calculation method Active JP5730426B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014082247A JP5730426B1 (en) 2014-04-11 2014-04-11 Cast-in-place pile design method, design program, storage medium, cast-in-place pile design system, and cast-in-place pile bending strength calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014082247A JP5730426B1 (en) 2014-04-11 2014-04-11 Cast-in-place pile design method, design program, storage medium, cast-in-place pile design system, and cast-in-place pile bending strength calculation method

Publications (2)

Publication Number Publication Date
JP5730426B1 true JP5730426B1 (en) 2015-06-10
JP2015203201A JP2015203201A (en) 2015-11-16

Family

ID=53486809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014082247A Active JP5730426B1 (en) 2014-04-11 2014-04-11 Cast-in-place pile design method, design program, storage medium, cast-in-place pile design system, and cast-in-place pile bending strength calculation method

Country Status (1)

Country Link
JP (1) JP5730426B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162654A (en) * 2017-03-24 2018-10-18 ジャパンパイル株式会社 Pile head joint part design method, construction method, design drawing, specification for pile head anchor reinforcement, and pile head anchor reinforcement attachment position checking device
JP6505291B2 (en) * 2018-05-23 2019-04-24 ジャパンパイル株式会社 Design method of pile head joint and calculation method of allowable bending moment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114322A (en) * 1982-12-21 1984-07-02 Ube Ind Ltd High-strength concrete pile
JPS60228108A (en) * 1985-03-12 1985-11-13 Asahi Chemical Ind Manufacture of steel pipe concrete composite hollow pile
JP2006138095A (en) * 2004-11-11 2006-06-01 Haseko Corp Cast-in-place steel pipe reinforced concrete pile
JP2006161363A (en) * 2004-12-06 2006-06-22 Shimizu Corp Pile design system
JP2011074569A (en) * 2009-09-29 2011-04-14 Kenichi Onozato Cast-in-place steel pipe concrete pile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114322A (en) * 1982-12-21 1984-07-02 Ube Ind Ltd High-strength concrete pile
JPS60228108A (en) * 1985-03-12 1985-11-13 Asahi Chemical Ind Manufacture of steel pipe concrete composite hollow pile
JP2006138095A (en) * 2004-11-11 2006-06-01 Haseko Corp Cast-in-place steel pipe reinforced concrete pile
JP2006161363A (en) * 2004-12-06 2006-06-22 Shimizu Corp Pile design system
JP2011074569A (en) * 2009-09-29 2011-04-14 Kenichi Onozato Cast-in-place steel pipe concrete pile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014047296; 財団法人国土開発技術研究センター: SCくい設計指針 , 197908, P.3〜5、63〜65, 財団法人国土開発技術研究センター *

Also Published As

Publication number Publication date
JP2015203201A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
Lai et al. Noncompact and slender rectangular CFT members: Experimental database, analysis, and design
Di Sarno et al. Experimental tests on full‐scale RC unretrofitted frame and retrofitted with buckling‐restrained braces
El-Bahey et al. Buckling restrained braces as structural fuses for the seismic retrofit of reinforced concrete bridge bents
Sasani et al. Progressive collapse resistance of hotel San Diego
Sezen et al. Dynamic analysis and seismic performance of reinforced concrete minarets
Liao Performance-Based Plastic Design of Earthquake Resistant Reinforced Concrete Moment Frames.
TWI617724B (en) Seismic-free chemical method for existing steel-braced support structures
US20150143765A1 (en) Connection between a wind turbine tower and its foundation
CN106096211B (en) A kind of underground engineering confined concrete support system design method
JP5955108B2 (en) Pile reinforcement structure of existing building and its construction method
JP6289942B2 (en) Strength judging method and strength judging device for shield tunnel for communication
Song et al. Earthquake damage potential and critical scour depth of bridges exposed to flood and seismic hazards under lateral seismic loads
JP2005054532A (en) Reinforcing structure of concrete structure, and method of reinforcing concrete structure
El-Dakhakhni et al. Seismic performance parameter quantification of shear-critical reinforced concrete masonry squat walls
Kang et al. Tall building with steel plate shear walls subject to load reversal
Sorace et al. Structural assessment of a modern heritage building
Palanci et al. Assessment of one story existing precast industrial buildings in Turkey based on fragility curves
Al-Nimry et al. Rapid assessment for seismic vulnerability of low and medium rise infilled RC frame buildings
Nikoukalam et al. Development of structural shear fuse in moment resisting frames
CN102900169A (en) Concrete-filled steel tube combined shear wall and construction process thereof
Bardakis et al. A displacement-based seismic design procedure for concrete bridges having deck integral with the piers
JP2006016893A (en) Shearing reinforcing method of existing structure
Irtem et al. Causes of collapse and damage to low-rise RC buildings in recent Turkish earthquakes
Babu et al. Stabilisation of vertical cut supporting a retaining wall using soil nailing: a case study
Gentile et al. Refinement and validation of the simple lateral mechanism analysis (SLaMA) procedure for RC frames

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R150 Certificate of patent or registration of utility model

Ref document number: 5730426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250