JP2006138004A - Solid polymer electrolytic membrane type water electrolyzer and method for detecting pinhole in solid polymer electrolytic membrane - Google Patents

Solid polymer electrolytic membrane type water electrolyzer and method for detecting pinhole in solid polymer electrolytic membrane Download PDF

Info

Publication number
JP2006138004A
JP2006138004A JP2004330129A JP2004330129A JP2006138004A JP 2006138004 A JP2006138004 A JP 2006138004A JP 2004330129 A JP2004330129 A JP 2004330129A JP 2004330129 A JP2004330129 A JP 2004330129A JP 2006138004 A JP2006138004 A JP 2006138004A
Authority
JP
Japan
Prior art keywords
voltage
solid polymer
anode
electrolyte membrane
electrolyzed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004330129A
Other languages
Japanese (ja)
Other versions
JP4126501B2 (en
Inventor
Junji Mizutani
淳二 水谷
Tomohiro Motomura
智博 元村
Tomohiro Inoue
智裕 井上
Noriyuki Nagano
紀行 永野
Hideaki Arai
秀晃 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2004330129A priority Critical patent/JP4126501B2/en
Publication of JP2006138004A publication Critical patent/JP2006138004A/en
Application granted granted Critical
Publication of JP4126501B2 publication Critical patent/JP4126501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolytic membrane type water electrolyzer and a method for detecting pinholes in a solid polymer electrolytic membrane which enable the occurrence of pinholes in the solid polymer electrolytic membrane to be effectively detected. <P>SOLUTION: The solid polymer electrolytic membrane type water electrolyzer is provided with: an electrolytic cell in which the internal space is partitioned by the solid polymer electrolytic membrane held by an anode and a cathode, and water to be electrolyzed is fed to the anode side; a main power unit for applying voltage between the anode and the cathode and generating gas for feeding at the anode side; an auxiliary power unit connected in parallel with the main power unit; a voltage detecting means for detecting the voltage between the anode and the cathode; and a pinhole detecting means for detecting pinholes which has occurred in the solid polymer electrolytic membrane based on the voltage detected by the voltage detecting means. The pinhole detecting means compares the voltage detected by the voltage detecting means and detected when the auxiliary power unit applies the voltage for pinhole detection between the anode and the cathode with preset threshold voltage, thus determines whether pinholes occurs or not. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体高分子電解質膜式水電解装置及び固体高分子電解質膜のピンホール検出方法に関する。   The present invention relates to a solid polymer electrolyte membrane water electrolysis apparatus and a pinhole detection method for a solid polymer electrolyte membrane.

固体高分子電解質膜式水電解装置の一つとして、例えばオゾン発生装置がある。オゾン発生装置は、水を原料として高濃度のオゾンガスが発生するので、一般的に中小型の水処理装置に有効に利用されており、その他高純度オゾンガスを超純水に溶解して、電子部品の洗浄、フォトレジストの剥離等の用途にも利用分野が拡大している。   One example of a solid polymer electrolyte membrane water electrolysis apparatus is an ozone generator. Ozone generators generate high-concentration ozone gas using water as a raw material, so they are generally used effectively in small and medium-sized water treatment equipment. Other high-purity ozone gas is dissolved in ultrapure water to produce electronic components. The field of application is expanding to applications such as cleaning of photoresist and stripping of photoresist.

このオゾン発生装置は、固体高分子電解質膜を介して多孔質の陽極と陰極が密接されている電解槽から構成されている。陽極に純水や超純水を供給して陽極と陰極の間に所望の電圧を印加すると、純水は固体高分子電解質膜の界面で電気分解されて、陽極から酸素とオゾンが発生し、陰極から水素が発生する。   This ozone generator is composed of an electrolytic cell in which a porous anode and a cathode are in close contact via a solid polymer electrolyte membrane. When pure water or ultrapure water is supplied to the anode and a desired voltage is applied between the anode and the cathode, the pure water is electrolyzed at the interface of the solid polymer electrolyte membrane, and oxygen and ozone are generated from the anode. Hydrogen is generated from the cathode.

固体高分子電解質膜は、厚さが50〜200mmという非常に薄い有機質の膜であり、接触抵抗を低減させるために相当の機械的圧縮が必要とされる。また、この固体高分子電解質膜の寿命は、3〜5年程度であり、その使用期間中に損耗してゆく。使用中にこの膜が損耗してゆきピンホールが発生すると、発生した水素ガスと酸素ガスやオゾンガスが混合することになり、オゾンの生産効率が低下するが、このようなピンホールの発生を有効に検知する方法は従来知られていなかった。     The solid polymer electrolyte membrane is a very thin organic membrane having a thickness of 50 to 200 mm, and considerable mechanical compression is required to reduce the contact resistance. Moreover, the lifetime of this solid polymer electrolyte membrane is about 3 to 5 years, and it wears out during the period of use. If this film wears out during use and a pinhole is generated, the generated hydrogen gas will be mixed with oxygen gas or ozone gas, resulting in a decrease in ozone production efficiency. A method for detecting the above has not been known in the past.

また、ピンホールの発生を検知するために装置の作動を停止して、固体高分子電解質膜のピンホールを直接検査することも考えられるが、この場合、電解槽を分解したり、オゾンの供給を停止したりしなければならないため、検査に時間がかかるだけでなく、連続的にオゾンガスが必要である場合などには不都合が生じる。     In addition, it is conceivable to stop the operation of the device to detect the occurrence of pinholes and directly inspect the pinholes in the solid polymer electrolyte membrane. In addition to taking time for the inspection, there are inconveniences when ozone gas is required continuously.

このような問題は、オゾン発生装置だけでなく、他の固体高分子電解質膜式水電解装置(例えば酸素発生装置)においても生じていた。     Such a problem has occurred not only in the ozone generator, but also in other solid polymer electrolyte membrane water electrolyzers (for example, oxygen generators).

本発明は、上述した問題を解決するためになされたものであって、固体高分子電解質膜のピンホールの発生を有効に検知することができる固体高分子電解質膜式水電解装置及び固体高分子電解質膜のピンホール検出方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and is a solid polymer electrolyte membrane water electrolysis device and a solid polymer capable of effectively detecting the occurrence of pinholes in the solid polymer electrolyte membrane An object of the present invention is to provide a method for detecting pinholes in an electrolyte membrane.

本発明の前記目的は、陽極及び陰極で挟持された固体高分子電解質膜により内部空間が仕切られ、前記陽極側に被電解水が供給される電解槽と、前記陽極及び陰極間に電圧を印加して前記陽極側で供給用ガスを発生させる主電源装置と、前記主電源装置と並列に接続された補助電源装置と、前記陽極及び陰極間の電圧を検出する電圧検出手段と、前記電圧検出手段の検出電圧に基づいて、前記固体高分子電解質膜に発生したピンホールを検出するピンホール検出手段とを備え、前記ピンホール検出手段は、前記補助電源装置により前記陽極及び陰極間にピンホール検出用電圧が印加された時の前記電圧検出手段の検出電圧を、予め設定された閾値電圧と比較することにより、ピンホール発生の有無を判別することを特徴とする固体高分子電解質膜式水電解装置により達成される。   The object of the present invention is to apply a voltage between the anode and cathode, and an electrolytic cell in which the internal space is partitioned by a solid polymer electrolyte membrane sandwiched between an anode and a cathode, and water to be electrolyzed is supplied to the anode side. A main power supply for generating supply gas on the anode side, an auxiliary power supply connected in parallel with the main power supply, voltage detection means for detecting a voltage between the anode and the cathode, and the voltage detection Pinhole detection means for detecting a pinhole generated in the solid polymer electrolyte membrane based on a detection voltage of the means, and the pinhole detection means is a pinhole between the anode and the cathode by the auxiliary power supply device. Solid polymer electrolysis characterized in that the presence or absence of pinholes is determined by comparing the detection voltage of the voltage detection means when a detection voltage is applied with a preset threshold voltage It is achieved by the membrane-type water electrolysis apparatus.

この固体高分子電解質膜式水電解装置は、前記電解槽との間で循環させる被電解水を貯留すると共に、該被電解水に含まれる前記供給用ガスを排出する排出口を有する供給タンクと、被電解水供給源から前記供給タンクに被電解水を供給する被電解水供給手段と、前記主電源装置及び前記被電解水供給手段の作動を制御する制御手段とを更に備え、前記制御手段は、前記被電解水供給手段の作動時に、前記主電源装置を停止させて、前記陽極及び陰極間にピンホール検出電圧を印加することを特徴とする。   The solid polymer electrolyte membrane water electrolysis apparatus stores an electrolyzed water to be circulated between the electrolyzer and a supply tank having a discharge port for discharging the supply gas contained in the electrolyzed water; The electrolyzed water supply means for supplying electrolyzed water from the electrolyzed water supply source to the supply tank; and the control means for controlling the operation of the main power supply device and the electrolyzed water supply means. Is characterized in that when the electrolyzed water supply means is operated, the main power supply device is stopped and a pinhole detection voltage is applied between the anode and the cathode.

また、前記供給タンクは、内部の水位を検出する水位検出手段を備えており、前記制御装置は、ピンホールの検出を行う際に前記被電解水供給手段を停止させ、前記水位検出手段が所定の水位低下を検出した後に、前記被電解水供給手段を作動させると共に、前記主電源装置を停止させることができる。   The supply tank includes water level detection means for detecting an internal water level, and the control device stops the electrolyzed water supply means when detecting a pinhole, and the water level detection means is a predetermined level. After the water level drop is detected, the electrolyzed water supply means can be operated and the main power supply device can be stopped.

また、本発明の前記目的は、陽極及び陰極で挟持された固体高分子電解質膜により内部空間が仕切られた電解槽の前記陽極側に被電解水を供給し、主電源装置により前記陽極及び陰極間に通常運転電圧を印加することにより、前記電解槽の前記陽極側で供給用ガスを発生させる固体高分子電解質膜式水電解装置において、前記固体高分子電解質膜のピンホールを検出する方法であって、前記主電源装置を一時停止させて、補助電源装置により前記陽極及び陰極間にピンホール検出電圧を印加する電圧印加ステップと、前記ピンホール検出電圧の印加時における前記陽極及び陰極間の電圧を検出する電圧検出ステップと、前記検出電圧を予め設定された閾値電圧と比較することにより、ピンホール発生の有無を判別する判別ステップとを備える固体高分子電解質膜のピンホール検出方法により達成される。   Further, the object of the present invention is to supply water to be electrolyzed to the anode side of an electrolytic cell in which an internal space is partitioned by a solid polymer electrolyte membrane sandwiched between an anode and a cathode, and the anode and the cathode by a main power supply device. In a solid polymer electrolyte membrane water electrolyzer that generates a supply gas on the anode side of the electrolytic cell by applying a normal operating voltage in between, a method for detecting pinholes in the solid polymer electrolyte membrane A voltage application step of temporarily stopping the main power supply device and applying a pinhole detection voltage between the anode and the cathode by the auxiliary power supply device, and between the anode and the cathode when the pinhole detection voltage is applied. A voltage detection step for detecting a voltage; and a determination step for determining whether or not a pinhole has occurred by comparing the detection voltage with a preset threshold voltage. It is achieved by the pinhole detection method body polymer electrolyte membrane.

また、前記固体高分子電解質膜式水電解装置は、前記電解槽との間で循環させる被電解水を貯留すると共に、該被電解水に含まれる前記供給用ガスを排出する排出口を有する供給タンクと、被電解水供給源から前記供給タンクに被電解水を供給する被電解水供給手段とを更に備え、前記電圧印加ステップは、前記被電解水供給手段による前記供給タンクへの被電解水の供給時に行われることができる。   The solid polymer electrolyte membrane water electrolyzer stores supply water to be circulated between the electrolytic bath and a supply having a discharge port for discharging the supply gas contained in the supply water. A tank and electrolyzed water supply means for supplying electrolyzed water from the electrolyzed water supply source to the supply tank; and the voltage applying step includes electrolyzed water to the supply tank by the electrolyzed water supply means. Can be done at the time of supply.

また、前記固体高分子電解質膜式水電解装置は、前記主電源装置及び前記被電解水供給手段の作動を制御する制御手段を更に備え、前記供給タンクは、内部の水位を検出する水位検出手段を備えており、前記電圧印加ステップは、前記制御装置が、ピンホールの検出を行う際に前記被電解水供給手段を停止させ、前記水位検出手段が所定の水位低下を検出した後に、前記被電解水供給手段を作動させると共に、前記主電源装置を停止させるステップを備えることができる。     The solid polymer electrolyte membrane water electrolyzer further comprises control means for controlling the operation of the main power supply device and the electrolyzed water supply means, and the supply tank is a water level detection means for detecting an internal water level. And the voltage application step stops the electrolyzed water supply means when the control device detects a pinhole, and after the water level detection means detects a predetermined drop in the water level, A step of operating the electrolyzed water supply means and stopping the main power supply device may be provided.

本発明によれば、固体高分子電解質膜のピンホールの発生を有効に検知することができる固体高分子電解質膜式水電解装置及び固体高分子電解質膜のピンホール検出方法を提供することができる。   According to the present invention, it is possible to provide a solid polymer electrolyte membrane type water electrolysis device and a solid polymer electrolyte membrane pinhole detection method capable of effectively detecting the occurrence of pinholes in the solid polymer electrolyte membrane. .

以下、本発明の実態形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係る固体高分子電解質膜式水電解装置の一例であるオゾン発生装置の概略構成図である。   Hereinafter, actual forms of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of an ozone generator that is an example of a solid polymer electrolyte membrane water electrolysis apparatus according to an embodiment of the present invention.

図1に示すように、このオゾン発生装置は、電解セル7と、電解セル7に純水を供給する純水供給タンク10と、電圧検出器20と、直流電源装置21とを備えている。   As shown in FIG. 1, the ozone generator includes an electrolysis cell 7, a pure water supply tank 10 that supplies pure water to the electrolysis cell 7, a voltage detector 20, and a DC power supply device 21.

電解セル7は、陽極2及び陰極3により狭持された固体高分子電解質膜1で電解槽6の内部を仕切ることにより形成された陽極室4及び陰極室5を備えている。     The electrolytic cell 7 includes an anode chamber 4 and a cathode chamber 5 formed by partitioning the inside of the electrolytic cell 6 with a solid polymer electrolyte membrane 1 sandwiched between the anode 2 and the cathode 3.

陽極2及び陰極3は、通気性のある多孔質の材料を焼結した板状体により構成されている。陽極2としては、チタンなどの基材で、固体高分子電解質膜1に接する面を二酸化鉛で被覆したものを例示することができる。陽極2の被覆材料としては、二酸化鉛の他に、二酸化錫やダイヤモンドなどの水素を活性化しない材料を例示することができる。陰極3は、固体高分子電解質膜1に接する面に水素を合成する触媒層を有している多孔質体であり、ステンレスなどの基材をめっき等により白金で被覆したものを例示することができる。     The anode 2 and the cathode 3 are constituted by a plate-like body obtained by sintering a porous material having air permeability. Examples of the anode 2 include a substrate made of titanium or the like and a surface in contact with the solid polymer electrolyte membrane 1 covered with lead dioxide. Examples of the coating material for the anode 2 include materials that do not activate hydrogen, such as tin dioxide and diamond, in addition to lead dioxide. The cathode 3 is a porous body having a catalyst layer that synthesizes hydrogen on the surface in contact with the solid polymer electrolyte membrane 1, and examples include a base material such as stainless steel coated with platinum by plating or the like. it can.

陽極室4は、純水などの原料水が供給される原料水入口11、及び生成されたオゾンを含む原料水を排出する原料水出口12を有しており、陰極室5は、水素が排出される水素出口13を有している。     The anode chamber 4 has a raw material water inlet 11 to which raw water such as pure water is supplied, and a raw water outlet 12 for discharging raw water containing generated ozone, and the cathode chamber 5 discharges hydrogen. A hydrogen outlet 13 is provided.

純水供給タンク10は、チタン等からなる容器であり、原料水となる純水を貯留すると共に、原料水から分離されたオゾンガスなどの気体を気体出口19から排出可能に構成されている。純水供給タンク10には、内部の液面高さを検出する上部レベルスイッチ15a及び下部レベルスイッチ15bが設けられている。純水供給タンク10は、原料水供給ライン14a及び原料水回収ライン14bからなる循環ライン14を介して電解セル7に接続されており、原料水供給ライン14aを介して原料水入口11から陽極室4に原料水を供給する一方、原料水出口12から排出された原料水を原料水回収ライン14bから回収する。循環ライン14による原料水の循環は、原料水供給ライン14aに介設された循環ポンプ17によって行われる。循環ポンプ17は、純水供給タンク10を電解セル7より上部に配置することにより省略することも可能であり、原料水回収ライン14bにおけるガスリフト効果により原料水の自然循環が可能である。     The pure water supply tank 10 is a container made of titanium or the like, and is configured to store pure water as raw material water and to discharge a gas such as ozone gas separated from the raw water from the gas outlet 19. The pure water supply tank 10 is provided with an upper level switch 15a and a lower level switch 15b for detecting the liquid level inside. The pure water supply tank 10 is connected to the electrolysis cell 7 through a circulation line 14 including a raw water supply line 14a and a raw water recovery line 14b, and from the raw water inlet 11 to the anode chamber via the raw water supply line 14a. 4, the raw water discharged from the raw water outlet 12 is recovered from the raw water recovery line 14b. The circulation of the raw material water by the circulation line 14 is performed by a circulation pump 17 interposed in the raw material water supply line 14a. The circulation pump 17 can be omitted by disposing the pure water supply tank 10 above the electrolysis cell 7, and natural circulation of the raw material water is possible by the gas lift effect in the raw water recovery line 14b.

原料水補充ポンプ16は、純水供給タンク10に接続されており、原料水補充ポンプ16のオン/オフにより、図示しない原料水供給源から純水供給タンク10に原料水を間歇的に補充することができる。     The raw water replenishment pump 16 is connected to the pure water supply tank 10, and raw water is intermittently replenished to the pure water supply tank 10 from a raw water supply source (not shown) by turning on / off the raw water replenishment pump 16. be able to.

直流電源装置21は、陽極側配線25a及び陰極側配線25bを介して陽極2及び陰極3にそれぞれ接続されている。また、直流電源装置21は、起動/停止スイッチ29aを備えており、オン状態で電解セル7に所望の電圧(例えば3〜3.5V)を印加することができる。     The DC power supply device 21 is connected to the anode 2 and the cathode 3 via the anode side wiring 25a and the cathode side wiring 25b, respectively. Further, the DC power supply device 21 includes a start / stop switch 29a, and can apply a desired voltage (for example, 3 to 3.5 V) to the electrolysis cell 7 in an on state.

補助電源装置22は、直流電源装置21と並列に配置されており、陽極側配線25a及び陰極側配線25bを介して陽極2及び陰極3にそれぞれ接続されている。この補助電源装置22は、直流電源装置21の動作から独立しており、直流電源装置21の起動/停止スイッチ29aがオフ状態でも電解セル7に直流電源装置21よりも低い所定の電圧を印加することができる。この所定の電圧は、平衡電極電位に過電圧を加えた値であり、例えば陽極の被覆材が二酸化鉛である本実施形態のオゾン発生装置では、約2Vである。     The auxiliary power supply device 22 is disposed in parallel with the DC power supply device 21, and is connected to the anode 2 and the cathode 3 via the anode side wiring 25a and the cathode side wiring 25b, respectively. The auxiliary power supply 22 is independent of the operation of the DC power supply 21 and applies a predetermined voltage lower than that of the DC power supply 21 to the electrolysis cell 7 even when the start / stop switch 29a of the DC power supply 21 is off. be able to. This predetermined voltage is a value obtained by adding an overvoltage to the balanced electrode potential. For example, in the ozone generator of this embodiment in which the anode coating material is lead dioxide, it is about 2V.

電圧検出器20は、陽極側配線25aと陰極側配線25bとの間に配置されており、陽極2と陰極3との間の電圧を検出する。     The voltage detector 20 is disposed between the anode side wiring 25 a and the cathode side wiring 25 b and detects the voltage between the anode 2 and the cathode 3.

原料水補充ポンプ16及び循環ポンプ17の作動、起動/停止スイッチ29aの開閉は、制御装置100によって行われ、制御装置100は、上部レベルスイッチ15a及び下部レベルスイッチ15bからの検出信号に基づいて所定の作動制御を行う。又、制御装置100は、電圧検出器20での検出電圧に基づいて、ピンホールの発生の有無を判別するピンホール検出装置を兼ねる。     The operation of the raw water replenishment pump 16 and the circulation pump 17 and the opening / closing of the start / stop switch 29a are performed by the control device 100. The control device 100 is predetermined based on detection signals from the upper level switch 15a and the lower level switch 15b. The operation control is performed. The control device 100 also serves as a pinhole detection device that determines whether or not a pinhole has occurred based on the voltage detected by the voltage detector 20.

以上のような構成により、本発明に係るオゾン発生装置は次のように作動する。     With the above configuration, the ozone generator according to the present invention operates as follows.

オゾン発生装置の通常運転中には、直流電源装置21により陽極2と陰極3の間に3〜3.5V程度の電圧が印加されており、陽極2からオゾンと酸素が、又、陰極3から水素が発生している。この際、制御装置100が、上部レベルスイッチ15aからの信号に基づいて原料水補充ポンプ16の作動をオン/オフ制御することにより、純水供給タンク10内部の液面高さは、上部レベルスイッチ15aの近傍に維持されている。この運転状態では、オゾン出力の増減や作動温度の変動などにより図2の矢印Aに示すように陽極2と陰極3との間の電圧が2〜3.5Vの間で大きく変動するため、電圧変動の原因の特定が困難であることから、固体高分子電解質膜1に小さなピンホールが発生していてもピンホールの発生を有効に検知することができない。     During normal operation of the ozone generator, a voltage of about 3 to 3.5 V is applied between the anode 2 and the cathode 3 by the DC power source device 21, and ozone and oxygen are supplied from the anode 2 and from the cathode 3. Hydrogen is generated. At this time, the control device 100 performs on / off control of the operation of the raw water replenishment pump 16 based on the signal from the upper level switch 15a, so that the liquid level inside the pure water supply tank 10 is changed to the upper level switch. It is maintained in the vicinity of 15a. In this operating state, the voltage between the anode 2 and the cathode 3 greatly fluctuates between 2 and 3.5 V as shown by the arrow A in FIG. Since it is difficult to specify the cause of the fluctuation, even if a small pinhole is generated in the solid polymer electrolyte membrane 1, the generation of the pinhole cannot be detected effectively.

このため、固体高分子電解質膜のピンホールを検出する場合、まず、図示しない制御装置100の運転ボタンを押すことにより、制御装置100が原料水補充ポンプ16を停止させる。これにより、純水供給タンク10内部の液面高さは、電解セル7で純水が消費されてオゾンが発生するにしたがい、上部レベルスイッチ15aから下部レベルスイッチ15bまで徐々に低下してゆく。この液面の低下に伴い、純水供給タンク10内部に貯留されるオゾンガスの量は、通常運転時に比べて徐々に増加してゆく。     For this reason, when detecting a pinhole in the solid polymer electrolyte membrane, first, the control device 100 stops the raw water replenishment pump 16 by pressing an operation button of the control device 100 (not shown). As a result, the liquid level inside the pure water supply tank 10 gradually decreases from the upper level switch 15a to the lower level switch 15b as the pure water is consumed in the electrolysis cell 7 and ozone is generated. As the liquid level decreases, the amount of ozone gas stored in the pure water supply tank 10 gradually increases as compared with that during normal operation.

純水供給タンク10内部の液面が下部レベルスイッチ15bまで低下すると、制御装置100は、下部レベルスイッチ15bからの信号に基づき、原料水補充ポンプ16による純水の供給を開始すると共に、起動/停止スイッチ29aをオフにする。これにより、印加電圧が補助電源装置22に切り替えられ、陽極2と陰極3との間の電圧が、例えば2Vまで低下する。この結果、電解セル7での電解が微弱となるので、陽極からオゾンがほとんど発生しなくなる。一方、純水供給タンク10においては、原料水補充ポンプ16の作動により液面が上昇するので、内部に溜まっていたオゾンガスが純水供給タンク10の気体出口19へと押出され、引き続きオゾンガスを連続的に供給することができる。     When the liquid level in the pure water supply tank 10 drops to the lower level switch 15b, the control device 100 starts the supply of pure water by the raw water replenishment pump 16 based on the signal from the lower level switch 15b and The stop switch 29a is turned off. As a result, the applied voltage is switched to the auxiliary power supply device 22, and the voltage between the anode 2 and the cathode 3 decreases to, for example, 2V. As a result, the electrolysis in the electrolytic cell 7 becomes weak, so that almost no ozone is generated from the anode. On the other hand, in the pure water supply tank 10, the liquid level rises due to the operation of the raw material water replenishment pump 16. Can be supplied automatically.

こうして、純水の供給中、純水供給タンク10内部の液面高さが下部レベルスイッチ15bから上部レベルスイッチ15aまで上昇する間に、電圧検出器20によって陽極2と陰極3との間の電圧を検出する。この時、固体高分子電解質膜1にピンホールが発生していなければ、図2の矢印Bに示すように、陽極2と陰極3との間の電圧は補助電源装置22の印加電圧(例えば2V)となる。しかし、固体高分子電解質膜1にピンホールが発生していると、固体高分子電解質膜1を通して電子が流れるようになるので、両極間の電圧は補助電源装置22の印加電圧よりも小さな値となっている。ピンホールが微小である場合、回路の電流はピンホール部分での導通による電流と微弱な電解反応電流の合成となり、図2の矢印Cに示すように、両極間の電圧はピンホール発生の初期段階の電圧(例えば1.7〜1.8V程度)となっており、ピンホールの進行に伴って、矢印Dに示すようにさらに低下してゆく。ピンホールが十分に大きい場合は、固体高分子電解質膜1は導電状態になるから、図2の矢印Eに示すように、両極間の電圧は0Vとなる。このように、補助電源装置22による電圧の印加時においては、電圧検出器20の検出電圧とピンホールの大きさとの間に相関関係があるため、電圧検出器20によって検出された電圧が予め設定された閾値電圧(例えば1.8V)以下であれば、固体高分子電解質膜1にピンホールが発生していることを有効に検知することができる。制御装置100は、電圧検出器20により検出された電圧と予め設定された閾値電圧とを比較し、固体高分子電解質膜1にピンホールが発生していれば、図示しない警報装置により警報する。     Thus, during the supply of pure water, the voltage between the anode 2 and the cathode 3 is detected by the voltage detector 20 while the liquid level inside the pure water supply tank 10 rises from the lower level switch 15b to the upper level switch 15a. Is detected. At this time, if no pinhole is generated in the solid polymer electrolyte membrane 1, as shown by an arrow B in FIG. 2, the voltage between the anode 2 and the cathode 3 is applied to the auxiliary power supply 22 (for example, 2V). ) However, if pinholes are generated in the solid polymer electrolyte membrane 1, electrons flow through the solid polymer electrolyte membrane 1, so that the voltage between both electrodes is smaller than the applied voltage of the auxiliary power supply device 22. It has become. When the pinhole is very small, the current in the circuit is a combination of the current due to conduction in the pinhole portion and a weak electrolytic reaction current. As shown by the arrow C in FIG. The voltage is stepped (for example, about 1.7 to 1.8 V), and further decreases as indicated by an arrow D as the pinhole progresses. When the pinhole is sufficiently large, the solid polymer electrolyte membrane 1 is in a conductive state, so that the voltage between both electrodes is 0 V as shown by the arrow E in FIG. As described above, when the voltage is applied by the auxiliary power supply device 22, the voltage detected by the voltage detector 20 is set in advance because there is a correlation between the detected voltage of the voltage detector 20 and the size of the pinhole. If it is below the threshold voltage (for example, 1.8V) made, it can detect effectively that the pinhole has generate | occur | produced in the solid polymer electrolyte membrane 1. FIG. The control device 100 compares the voltage detected by the voltage detector 20 with a preset threshold voltage, and if a pinhole is generated in the solid polymer electrolyte membrane 1, an alarm device (not shown) issues an alarm.

その後、純水供給タンク10内部の液面が上部レベルスイッチ15aまで上昇したとき、制御装置100が上部レベルスイッチ15aからの信号に基づいて原料水補充ポンプ16による純水の供給量を調節することにより、水電解装置は通常運転となる。     Thereafter, when the liquid level in the pure water supply tank 10 rises to the upper level switch 15a, the control device 100 adjusts the amount of pure water supplied by the raw water replenishment pump 16 based on the signal from the upper level switch 15a. Thus, the water electrolysis apparatus becomes a normal operation.

以上のようにして、オゾンをユースポイントへ連続的に供給しつつ、固体高分子電解質膜1のピンホールの発生を有効に検知することができる。     As described above, it is possible to effectively detect the occurrence of pinholes in the solid polymer electrolyte membrane 1 while continuously supplying ozone to the use point.

本実施形態では、ピンホールの検出を、制御装置100による自動運転で行っているが、手動で行うこともできる。     In the present embodiment, pinhole detection is performed by automatic operation by the control device 100, but can also be performed manually.

以上、本発明の一実施形態について説明したが、本発明の具体的な態様は上記実施形態に限定されない。本実施形態においては、固体高分子電解質膜式水電解装置の一例としてオゾン発生装置の構成について説明したが、例えば、酸素発生装置などの他の固体高分子電解質膜式水電解装置でも、図1と同様に構成することができる。     As mentioned above, although one Embodiment of this invention was described, the specific aspect of this invention is not limited to the said embodiment. In the present embodiment, the configuration of an ozone generator has been described as an example of a solid polymer electrolyte membrane water electrolysis device. However, for example, other solid polymer electrolyte membrane water electrolysis devices such as an oxygen generator are also shown in FIG. It can be configured in the same manner.

本発明の他の実施形態である酸素発生装置では、図1に示す構成において、陽極2の被覆材として白金−イリジジウムを例示することができる。この場合、酸素発生装置の通常運転中には、直流電源装置21により陽極2と陰極3の間に1.6〜1.8V程度の電圧が印加されており、陽極2から酸素が、又、陰極3から水素が発生する。     In the oxygen generator which is other embodiment of this invention, platinum-iridium can be illustrated as a coating | covering material of the anode 2 in the structure shown in FIG. In this case, during the normal operation of the oxygen generator, a voltage of about 1.6 to 1.8 V is applied between the anode 2 and the cathode 3 by the DC power source device 21, and oxygen from the anode 2 Hydrogen is generated from the cathode 3.

補助電源装置22の所定の電圧は、陽極2の被覆材が白金−イリジウムである酸素発生装置では、約1.4Vであり、起動/停止スイッチ29aがオフ状態の時に陽極2と陰極3の間に印加される。そして、オゾン発生装置の場合と同様に、電圧検出器20によって検出された電圧が予め設定された閾値電圧(例えば1.2V)以下であれば、固体高分子電解質膜1にピンホールが発生していると判断することができる。     The predetermined voltage of the auxiliary power supply device 22 is about 1.4 V in the oxygen generator in which the covering material of the anode 2 is platinum-iridium, and is between the anode 2 and the cathode 3 when the start / stop switch 29a is off. To be applied. As in the case of the ozone generator, if the voltage detected by the voltage detector 20 is equal to or lower than a preset threshold voltage (eg, 1.2 V), a pinhole is generated in the solid polymer electrolyte membrane 1. Can be determined.

以上のような構成により、酸素をユースポイントへ連続的に供給しつつ、固体高分子電解質膜1のピンホールの発生を有効に検知することができる。     With the above configuration, it is possible to effectively detect the occurrence of pinholes in the solid polymer electrolyte membrane 1 while continuously supplying oxygen to the use point.

本発明の一実施形態に係るオゾン発生装置の概略構成図である。It is a schematic block diagram of the ozone generator which concerns on one Embodiment of this invention. 陽極と陰極との間の時間−電圧曲線である。3 is a time-voltage curve between an anode and a cathode.

符号の説明Explanation of symbols

1 固体高分子電解質膜
2 陽極
3 陰極
7 電解セル
10 純水供給タンク
15a 上部レベルスイッチ
15b 下部レベルスイッチ
16 原料水補充ポンプ
20 電圧検出器
21 直流電源装置
22 補助電源装置
29a 起動/停止スイッチ
100 制御装置
DESCRIPTION OF SYMBOLS 1 Solid polymer electrolyte membrane 2 Anode 3 Cathode 7 Electrolysis cell 10 Pure water supply tank 15a Upper level switch 15b Lower level switch 16 Raw material water replenishment pump 20 Voltage detector 21 DC power supply 22 Auxiliary power supply 29a Start / stop switch 100 Control apparatus

Claims (6)

陽極及び陰極で挟持された固体高分子電解質膜により内部空間が仕切られ、前記陽極側に被電解水が供給される電解槽と、
前記陽極及び陰極間に電圧を印加して前記陽極側で供給用ガスを発生させる主電源装置と、
前記主電源装置と並列に接続された補助電源装置と、
前記陽極及び陰極間の電圧を検出する電圧検出手段と、
前記電圧検出手段の検出電圧に基づいて、前記固体高分子電解質膜に発生したピンホールを検出するピンホール検出手段とを備え、
前記ピンホール検出手段は、前記補助電源装置により前記陽極及び陰極間にピンホール検出用電圧が印加された時の前記電圧検出手段の検出電圧を、予め設定された閾値電圧と比較することにより、ピンホール発生の有無を判別することを特徴とする固体高分子電解質膜式水電解装置。
An electrolytic cell in which an internal space is partitioned by a solid polymer electrolyte membrane sandwiched between an anode and a cathode, and electrolyzed water is supplied to the anode side;
A main power supply for generating a supply gas on the anode side by applying a voltage between the anode and the cathode;
An auxiliary power supply connected in parallel with the main power supply;
Voltage detecting means for detecting a voltage between the anode and the cathode;
A pinhole detection means for detecting a pinhole generated in the solid polymer electrolyte membrane based on a detection voltage of the voltage detection means;
The pinhole detection means compares the detection voltage of the voltage detection means when a pinhole detection voltage is applied between the anode and the cathode by the auxiliary power supply device with a preset threshold voltage, A solid polymer electrolyte membrane water electrolyzer characterized by determining whether or not pinholes are generated.
前記電解槽との間で循環させる被電解水を貯留すると共に、該被電解水に含まれる前記供給用ガスを排出する排出口を有する供給タンクと、
被電解水供給源から前記供給タンクに被電解水を供給する被電解水供給手段と、
前記主電源装置及び前記被電解水供給手段の作動を制御する制御手段とを更に備え、
前記制御手段は、前記被電解水供給手段の作動時に、前記主電源装置を停止させて、前記陽極及び陰極間にピンホール検出電圧を印加することを特徴とする請求項1に記載の固体高分子電解質膜式水電解装置。
A supply tank for storing electrolyzed water to be circulated between the electrolyzer and having a discharge port for discharging the supply gas contained in the electrolyzed water;
Electrolyzed water supply means for supplying electrolyzed water from an electrolyzed water supply source to the supply tank;
Control means for controlling the operation of the main power supply device and the electrolyzed water supply means,
2. The solid height according to claim 1, wherein when the electrolyzed water supply unit is operated, the control unit stops the main power supply device and applies a pinhole detection voltage between the anode and the cathode. Molecular electrolyte membrane water electrolyzer.
前記供給タンクは、内部の水位を検出する水位検出手段を備えており、
前記制御装置は、ピンホールの検出を行う際に前記被電解水供給手段を停止させ、前記水位検出手段が所定の水位低下を検出した後に、前記被電解水供給手段を作動させると共に、前記主電源装置を停止させる請求項2に記載の固体高分子電解質膜式水電解装置。
The supply tank includes a water level detecting means for detecting an internal water level,
The control device stops the electrolyzed water supply means when performing pinhole detection, operates the electrolyzed water supply means after the water level detection means detects a predetermined water level drop, and The solid polymer electrolyte membrane water electrolysis device according to claim 2, wherein the power supply device is stopped.
陽極及び陰極で挟持された固体高分子電解質膜により内部空間が仕切られた電解槽の前記陽極側に被電解水を供給し、主電源装置により前記陽極及び陰極間に通常運転電圧を印加することにより、前記電解槽の前記陽極側で供給用ガスを発生させる固体高分子電解質膜式水電解装置において、前記固体高分子電解質膜のピンホールを検出する方法であって、
前記主電源装置を一時停止させて、補助電源装置により前記陽極及び陰極間にピンホール検出電圧を印加する電圧印加ステップと、
前記ピンホール検出電圧の印加時における前記陽極及び陰極間の電圧を検出する電圧検出ステップと、
前記検出電圧を予め設定された閾値電圧と比較することにより、ピンホール発生の有無を判別する判別ステップとを備える固体高分子電解質膜のピンホール検出方法。
Supplying electrolyzed water to the anode side of an electrolytic cell whose internal space is partitioned by a solid polymer electrolyte membrane sandwiched between an anode and a cathode, and applying a normal operating voltage between the anode and the cathode by a main power supply device In the solid polymer electrolyte membrane type water electrolysis apparatus for generating a supply gas on the anode side of the electrolytic cell, a method for detecting pinholes in the solid polymer electrolyte membrane,
A voltage application step of temporarily stopping the main power supply and applying a pinhole detection voltage between the anode and the cathode by an auxiliary power supply;
A voltage detection step of detecting a voltage between the anode and the cathode when the pinhole detection voltage is applied;
A method for detecting a pinhole in a solid polymer electrolyte membrane, comprising: a step of determining whether or not a pinhole is generated by comparing the detection voltage with a preset threshold voltage.
前記固体高分子電解質膜式水電解装置は、前記電解槽との間で循環させる被電解水を貯留すると共に、該被電解水に含まれる前記供給用ガスを排出する排出口を有する供給タンクと、被電解水供給源から前記供給タンクに被電解水を供給する被電解水供給手段とを更に備え、
前記電圧印加ステップは、前記被電解水供給手段による前記供給タンクへの被電解水の供給時に行われる請求項4に記載の固体高分子電解質膜のピンホール検出方法。
The solid polymer electrolyte membrane water electrolysis apparatus stores an electrolyzed water to be circulated between the electrolyzer and a supply tank having a discharge port for discharging the supply gas contained in the electrolyzed water; And an electrolyzed water supply means for supplying electrolyzed water from the electrolyzed water supply source to the supply tank,
5. The method for detecting pinholes in a solid polymer electrolyte membrane according to claim 4, wherein the voltage application step is performed when the electrolyzed water is supplied to the supply tank by the electrolyzed water supply means.
前記固体高分子電解質膜式水電解装置は、前記主電源装置及び前記被電解水供給手段の作動を制御する制御手段を更に備え、
前記供給タンクは、内部の水位を検出する水位検出手段を備えており、
前記電圧印加ステップは、前記制御装置が、ピンホールの検出を行う際に前記被電解水供給手段を停止させ、前記水位検出手段が所定の水位低下を検出した後に、前記被電解水供給手段を作動させると共に、前記主電源装置を停止させるステップを備える請求項5に記載の固体高分子電解質膜のピンホール検出方法。
The solid polymer electrolyte membrane water electrolysis apparatus further comprises control means for controlling the operation of the main power supply apparatus and the electrolyzed water supply means,
The supply tank includes a water level detecting means for detecting an internal water level,
In the voltage application step, the control device stops the electrolyzed water supply means when detecting a pinhole, and after the water level detection means detects a predetermined water level drop, the electrolyzed water supply means is 6. The method for detecting a pinhole in a solid polymer electrolyte membrane according to claim 5, further comprising the step of operating and stopping the main power supply device.
JP2004330129A 2004-11-15 2004-11-15 Solid polymer electrolyte membrane water electrolyzer and pinhole detection method for solid polymer electrolyte membrane Expired - Fee Related JP4126501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004330129A JP4126501B2 (en) 2004-11-15 2004-11-15 Solid polymer electrolyte membrane water electrolyzer and pinhole detection method for solid polymer electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004330129A JP4126501B2 (en) 2004-11-15 2004-11-15 Solid polymer electrolyte membrane water electrolyzer and pinhole detection method for solid polymer electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2006138004A true JP2006138004A (en) 2006-06-01
JP4126501B2 JP4126501B2 (en) 2008-07-30

Family

ID=36619011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004330129A Expired - Fee Related JP4126501B2 (en) 2004-11-15 2004-11-15 Solid polymer electrolyte membrane water electrolyzer and pinhole detection method for solid polymer electrolyte membrane

Country Status (1)

Country Link
JP (1) JP4126501B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045221A1 (en) * 2015-01-19 2016-07-20 Siemens Aktiengesellschaft Checking the integrity of a membrane using at least one membrane of an electrolyzer
JP2020196906A (en) * 2019-05-30 2020-12-10 株式会社豊田中央研究所 Abnormality diagnosis program of water electrolysis apparatus, and water electrolysis system
JP7468599B2 (en) 2021-12-20 2024-04-16 トヨタ自動車株式会社 Method for detecting short circuit in water electrolysis device, method for producing hydrogen, and water electrolysis device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045221A1 (en) * 2015-01-19 2016-07-20 Siemens Aktiengesellschaft Checking the integrity of a membrane using at least one membrane of an electrolyzer
WO2016116211A1 (en) * 2015-01-19 2016-07-28 Siemens Aktiengesellschaft Checking the tightness of at least one membrane of an electrolyzer
US10557206B2 (en) 2015-01-19 2020-02-11 Siemens Aktiengesellschaft Electrolysis membrane systems and methods
JP2020196906A (en) * 2019-05-30 2020-12-10 株式会社豊田中央研究所 Abnormality diagnosis program of water electrolysis apparatus, and water electrolysis system
JP7275868B2 (en) 2019-05-30 2023-05-18 株式会社豊田中央研究所 Water electrolysis device abnormality diagnosis program and water electrolysis system
JP7468599B2 (en) 2021-12-20 2024-04-16 トヨタ自動車株式会社 Method for detecting short circuit in water electrolysis device, method for producing hydrogen, and water electrolysis device

Also Published As

Publication number Publication date
JP4126501B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US6387228B1 (en) Electrochemical generation of carbon dioxide and hydrogen from organic acids
US7922890B2 (en) Low maintenance on-site generator
JP2011522123A (en) Electrolytic cell cleaning method including electrode and electrolytic product generator
KR20130108546A (en) Electrolytic on-site generator
JP6869188B2 (en) Reduction water production equipment and reduction water production method
GB2582049A (en) Method for operating an electrolysis system and electrolysis system
JP3788489B2 (en) Water electrolyzer
JP4126501B2 (en) Solid polymer electrolyte membrane water electrolyzer and pinhole detection method for solid polymer electrolyte membrane
JP2000218271A (en) Electrolytic device
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
JP4204955B2 (en) Electrolyzed water generation method and apparatus
JP3679984B2 (en) Method for supplying electrolyzed water to electrolytic cell for ozone generation and ozone generator
KR20190067281A (en) Apparatus for generating nano electrolytic ionized water
JP2010207668A (en) Electrolytic water generator
JP2541163Y2 (en) Hydrogen / oxygen mixed gas generator
JP3667436B2 (en) Electrolyzed water generator
JP2009191362A (en) Apparatus for molten salt electrolysis and method for producing fluorine gas
JPH07242402A (en) Water-electrolysis ozonizer
JP6503054B2 (en) Electrolyzed water generating device, electrode unit, and electrolytic water generating method
JPH1066973A (en) Electrolyzed water forming device
KR101744425B1 (en) Generation device of hydrogen water
JP4958541B2 (en) Ozone generator
JP5975392B2 (en) Ozone water generator
JP2007169734A (en) Ozone water producing apparatus
CN115786936A (en) Electrolysis system and electrolysis method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4126501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees