JP2006137931A - Fluorescent substance and spontaneously light emitting device - Google Patents

Fluorescent substance and spontaneously light emitting device Download PDF

Info

Publication number
JP2006137931A
JP2006137931A JP2005294322A JP2005294322A JP2006137931A JP 2006137931 A JP2006137931 A JP 2006137931A JP 2005294322 A JP2005294322 A JP 2005294322A JP 2005294322 A JP2005294322 A JP 2005294322A JP 2006137931 A JP2006137931 A JP 2006137931A
Authority
JP
Japan
Prior art keywords
phosphor
fluorescent substance
light emitting
self
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005294322A
Other languages
Japanese (ja)
Inventor
Mami Ebara
摩美 江原
Yasumasa Takeuchi
安正 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI KIBAN ZAIRYO KENKYUSHO
International Center for Materials Research
Original Assignee
KOKUSAI KIBAN ZAIRYO KENKYUSHO
International Center for Materials Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI KIBAN ZAIRYO KENKYUSHO, International Center for Materials Research filed Critical KOKUSAI KIBAN ZAIRYO KENKYUSHO
Priority to JP2005294322A priority Critical patent/JP2006137931A/en
Publication of JP2006137931A publication Critical patent/JP2006137931A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new fluorescent substance, and to provide a spontaneously light emitting device, including a display device and a light source, given by using the fluorescent substance. <P>SOLUTION: This fluorescent substance contains Mo, RE (RE is one or more kinds of Eu, Tb or Pr), and O as components and is expressed by general formula: (Mo, REx)Oy [x is a number of moles of RE and satisfies: 0<x≤5; and y is a number of moles of O and satisfies: 0<y≤(3x/2)+3]. Indium oxide, zinc oxide, or tin oxide is preferably mixed into the fluorescent substance as an electrically-conductive substance. The electrically-conductive substance is mixed thereinto in an amount w (based on an amount of Mo) satisfying: 0 wt.%<w≤40 wt.%, and preferably satisfying: 0.5 wt.%≤w≤30 wt.%. The spontaneously light emitting-type device capable of being driven by a low voltage is constituted by using the fluorescent substance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蛍光体及び前記蛍光体を使用した表示装置や光源等の自発光型装置に関する。   The present invention relates to a phosphor and a self-luminous device such as a display device or a light source using the phosphor.

従来から、ブラウン管(CRT)、蛍光表示管(VFD)、電界放出ディスプレイ(FED)、プラズマディスプレイパネル(PDP)、無機エレクトロルミネッセンスディスプレイ(IELD)、表示装置のバックライト、光源等の自発光型装置には、蛍光体が使用されており、高輝度化、長寿命化、低電圧駆動化、カラー化等のために種々の蛍光体が開発されている(例えば、特許文献1参照)。
例えば、自発光型装置の一種であるブラウン管は、電子線で蛍光体を発光させる表示装置であり、大画面で薄型扁平かつ軽量化を図るための開発が行われている。
Conventionally, a self-luminous device such as a cathode ray tube (CRT), a fluorescent display tube (VFD), a field emission display (FED), a plasma display panel (PDP), an inorganic electroluminescence display (IELD), a backlight of a display device, and a light source For example, phosphors are used, and various phosphors have been developed in order to achieve high brightness, long life, low voltage driving, colorization, and the like (for example, see Patent Document 1).
For example, a cathode ray tube, which is a type of self-luminous device, is a display device that emits a phosphor with an electron beam, and has been developed to reduce the thickness, flatness, and weight of a large screen.

しかしながら、電子線源の印加電圧は30kV程度と高圧になる。アノード面である蛍光体層と電子線源との間隔距離は数十cmとなるため奥行きが長くなり、大画面用のブラウン管の場合には、1メートルを越えるような大きなものになってしまう。
即ち、ブラウン管型表示装置を大画面化にするためには、電子線源に印加する電圧を高める必要があり、かつ、電子線源とアノード面である蛍光体層との間隔距離を大きく取らなければならないため、奥行きが大にならざるを得ず、過大に大型化してしまうという問題がある。
However, the applied voltage of the electron beam source is as high as about 30 kV. Since the distance between the phosphor layer, which is the anode surface, and the electron beam source is several tens of centimeters, the depth becomes long, and in the case of a cathode ray tube for a large screen, it becomes as large as more than 1 meter.
In other words, in order to increase the screen size of the cathode ray tube type display device, it is necessary to increase the voltage applied to the electron beam source, and it is necessary to increase the distance between the electron beam source and the phosphor layer which is the anode surface. Therefore, there is a problem that the depth is inevitably increased and the size becomes excessively large.

それに対して、自発光型ではない表示装置ではあるが、液晶表示装置が現在、広く使用されている。液晶表示装置は、扁平であるが、液晶表示自体は非発光型であり、背面よりの白色ライト(バックライト)の透過光を利用しているため、電力消費が非効率に行われるという問題がある。
また、液晶表示装置ほど薄型扁平かつ軽量ではないが、自発光型の表示装置であるPDPも使用されている。しかし、PDPの場合、放電によって発生する励起光(真空紫外線)の発生効率が低いという問題がある。また、蛍光体は高い密度の真空紫外線にさらされているため、他の表示装置よりも劣化の問題が生じやすく、長寿命化が困難という問題がある。
このように、従来の蛍光体や該蛍光体を用いた表示装置には前記したような種々の問題があるため、既存の蛍光体とは異なった低電圧で効率よく発光する新規な蛍光体の開発が求められている。
On the other hand, liquid crystal display devices are widely used at present, although they are not self-luminous display devices. Although the liquid crystal display device is flat, the liquid crystal display itself is a non-light-emitting type and uses the transmitted light of the white light (backlight) from the back surface, so that there is a problem that power consumption is performed inefficiently. is there.
Further, although not as thin and flat and light as a liquid crystal display device, a PDP which is a self-luminous display device is also used. However, in the case of PDP, there is a problem that the generation efficiency of excitation light (vacuum ultraviolet light) generated by discharge is low. In addition, since the phosphor is exposed to high-density vacuum ultraviolet rays, there is a problem that deterioration is more likely to occur than other display devices, and it is difficult to extend the life.
As described above, since the conventional phosphor and the display device using the phosphor have various problems as described above, a novel phosphor that efficiently emits light at a low voltage different from the existing phosphors. Development is required.

特開2004−123786号公報JP 2004-123786 A

本発明は、上記のような問題点に鑑みてなされたもので、新規な蛍光体を提供することを課題としている。
また、本発明は、前記蛍光体を使用した自発光型装置を提供することを課題としている。
This invention is made | formed in view of the above problems, and makes it a subject to provide a novel fluorescent substance.
Another object of the present invention is to provide a self-luminous device using the phosphor.

本発明によれば、一般式が(Mo,REx)Oyで表される蛍光体が提供される。但し、REはEu、Tb、Prの中の一種以上であり又、x、yは各々RE、Oのモル数を表す数値であって、0<x≦5、0<y≦(3x/2)+3である。
ここで、導電性物質として、酸化インジウム、酸化亜鉛及び酸化スズの中の少なくとも一種が混合されて成るように構成してもよい。
According to the present invention, there is provided a phosphor whose general formula is represented by (Mo, REx) Oy. However, RE is at least one of Eu, Tb, and Pr, and x and y are numerical values representing the number of moles of RE and O, respectively, and 0 <x ≦ 5, 0 <y ≦ (3x / 2 ) +3.
Here, as the conductive material, at least one of indium oxide, zinc oxide, and tin oxide may be mixed.

また、前記導電性物質の混合量wは、Moに対して、0重量%<w≦40重量%であり、好ましくは0.5重量%≦w≦30重量%であるように構成してもよい。
また、蛍光体は、600℃〜1000℃の温度で焼成して成るように構成してもよい。
また、本発明によれば、電極上又は電極間に配設した蛍光体を発光駆動するようにした自発光型装置において、前記蛍光体として、前記いずれか一に記載の蛍光体を使用して成ることを特徴とする自発光型装置が提供される。
Further, the mixing amount w of the conductive material may be 0 wt% <w ≦ 40 wt%, preferably 0.5 wt% ≦ w ≦ 30 wt% with respect to Mo. Good.
Moreover, you may comprise a fluorescent substance by baking at the temperature of 600 to 1000 degreeC.
Moreover, according to the present invention, in the self-luminous device configured to drive the phosphor disposed on or between the electrodes, the phosphor according to any one of the above is used as the phosphor. A self-luminous device is provided.

本発明によれば、新規な蛍光体を提供することが可能になる。また、導電性物質を混在することによって、低速電子線励起用蛍光体に適した蛍光体が構成でき、FED用やVFD用の蛍光体としては特に有用である。また、赤色発光蛍光体や緑色発光蛍光体のカラー蛍光体を提供することが可能になる。
また、本発明によれば、発光開始電圧が低い自発光型装置を提供することが可能になる。
According to the present invention, it is possible to provide a novel phosphor. In addition, by mixing a conductive substance, a phosphor suitable for a phosphor for low-energy electron beam excitation can be configured, and is particularly useful as a phosphor for FED or VFD. In addition, it is possible to provide a color phosphor such as a red light-emitting phosphor or a green light-emitting phosphor.
Further, according to the present invention, it is possible to provide a self-luminous device having a low light emission starting voltage.

本発明の実施の形態に係る蛍光体は、Mo、RE、Oを成分として含む蛍光体である。本実施の形態に係る蛍光体は一般式(Mo,REx)Oyで表されるMoと希土類(RE)より成る酸化物蛍光体であり、Moと希土類の複合酸化物蛍光体である。ここで、REはEu、Tb、Prの中から選択した一種以上のものであり、又、x、yは各々RE、Oのモル数を表す数値であって、0<x≦5、0<y≦(3x/2)+3の範囲の正数値である。   The phosphor according to the embodiment of the present invention is a phosphor containing Mo, RE, and O as components. The phosphor according to the present embodiment is an oxide phosphor composed of Mo and rare earth (RE) represented by the general formula (Mo, REx) Oy, and is a composite oxide phosphor of Mo and rare earth. Here, RE is at least one selected from Eu, Tb, and Pr, and x and y are numerical values representing the number of moles of RE and O, respectively, and 0 <x ≦ 5, 0 < It is a positive value in the range of y ≦ (3x / 2) +3.

蛍光体にMoOが含まれる場合にはMoOの電気伝導性がよいため蛍光体の導電性がよく、さらに、Mo金属(Mo単体)を混合物として混在させることにより、蛍光体の導電性を更によくすることができる。
蛍光体粉体層自体の導電性をよくすることにより、電子線源とアノード面である蛍光体層との間隔距離を狭くし、かつ、電位勾配を低くでき、蛍光体粉体層の電気的チャージアップを防ぐことができ、蛍光体粉体層へ電子線を効率よく引き付けることができる。これにより、低速電子線での蛍光体の励起が容易になる。蛍光体に混合する導電性物質としては、導電性の優れた良導電性物質、例えば、酸化インジウム、酸化亜鉛及び酸化スズの中の少なくとも一種を混合することが好ましい。
When MoO 2 is contained in the phosphor, the conductivity of the phosphor is good because the electrical conductivity of MoO 2 is good. Furthermore, by mixing Mo metal (Mo alone) as a mixture, the conductivity of the phosphor is improved. It can be even better.
By improving the conductivity of the phosphor powder layer itself, the distance between the electron beam source and the phosphor layer on the anode surface can be narrowed, and the potential gradient can be lowered. Charge-up can be prevented, and an electron beam can be efficiently attracted to the phosphor powder layer. This facilitates excitation of the phosphor with a slow electron beam. As the conductive material to be mixed with the phosphor, it is preferable to mix a highly conductive material having excellent conductivity, for example, at least one of indium oxide, zinc oxide and tin oxide.

図1は、本発明の実施の形態に係る蛍光体に混合する導電性物質の割合を変化させた場合の輝度のIn濃度依存性を示している。図1の例では、導電性物質として酸化インジウムを混合した例であるが、酸化スズや酸化亜鉛を混合させた場合にも同様の特性が得られる。
図1から、実用上必要な輝度が得られるか否かという観点から、導電性物質の混合量wは、Moに対して、0重量%<w≦40重量%が好ましく、より好ましくは、0.5重量%<w≦30重量%の範囲となる。
FIG. 1 shows the In 2 O 3 concentration dependence of luminance when the ratio of the conductive material mixed in the phosphor according to the embodiment of the present invention is changed. In the example of FIG. 1, indium oxide is mixed as a conductive material, but similar characteristics can be obtained when tin oxide or zinc oxide is mixed.
From the viewpoint of whether or not the luminance necessary for practical use can be obtained from FIG. 1, the amount w of the conductive material is preferably 0 wt% <w ≦ 40 wt%, more preferably 0 wt% with respect to Mo. .5% by weight <w ≦ 30% by weight.

図2は、Moに対する希土類元素の濃度を変化させたときの、希土類元素濃度と発光強度の関係である。励起源には短波紫外線の254nmを使用した。図2には希土類元素としてEuを使用した例を示してある。図2からわかるように、希土類の濃度は80mol%前後が好ましい。   FIG. 2 shows the relationship between the rare earth element concentration and the light emission intensity when the concentration of the rare earth element relative to Mo is changed. As an excitation source, 254 nm of short wave ultraviolet rays was used. FIG. 2 shows an example in which Eu is used as the rare earth element. As can be seen from FIG. 2, the rare earth concentration is preferably around 80 mol%.

以上のように、本発明の実施の形態によれば、Mo、RE、Oを成分として含む蛍光体(一般式が(Mo,REx)Oyで表される蛍光体(但し、REはEu、Tb、Prの中の一種以上であり、又、x、yは各々RE、Oのモル数を表す数値であって、0<x≦5、0<y≦((3x/2)+3)の範囲の正数値である。))が提供される。導電性物質を混在させることにより、低速電子線励起用蛍光体に適しており、特に、開発が急がれているFED用蛍光体、あるいはVFD用蛍光体には有用である。付活剤を適宜選択することによって、高輝度で安定した特性の赤色発光蛍光体や緑色発光蛍光体が得られる。本実施の形態に係る蛍光体は硫化物蛍光体ではないため、VFDやFEDに使用した場合に長寿命化を図ることが可能になる。また、発光開始電圧が低いため、VFD、FEDをはじめとして、低電圧駆動が望まれる種々の表示装置や光源等の自発光型装置に適用可能である。   As described above, according to the embodiment of the present invention, a phosphor including Mo, RE, and O as components (a phosphor represented by the general formula (Mo, REx) Oy (provided that RE is Eu, Tb) , Pr, and x and y are numerical values representing the number of moles of RE and O, respectively, and range of 0 <x ≦ 5, 0 <y ≦ ((3x / 2) +3) )) Is provided. By mixing a conductive material, the phosphor is suitable for a phosphor for low-energy electron beam excitation, and is particularly useful for a phosphor for FED or a phosphor for VFD that is urgently developed. By appropriately selecting the activator, a red light emitting phosphor and a green light emitting phosphor having high luminance and stable characteristics can be obtained. Since the phosphor according to the present embodiment is not a sulfide phosphor, it is possible to extend the life when used in a VFD or FED. In addition, since the light emission start voltage is low, the present invention can be applied to various display devices such as VFD and FED, which are desired to be driven at low voltage, and self-luminous devices such as light sources.

また、本発明の実施の形態に係る蛍光体は、電子線励起及び紫外線励起下で発光する蛍光体であり、特にFED、VFD及びPDP用に適した発光効率高く、安定な、色純度の良い新規な蛍光体であり、本発明の実施の形態によれば、電極上又は電極間に配設した蛍光体を電子線励起又は紫外線励起によって発光駆動する構成の自発光型装置が提供される。
また、本発明の実施の形態に係る蛍光体は、X線回折により、既存の錯イオン形発光中心の蛍光体であるモリブデン酸錯イオンを発光中心に持つ蛍光体ではなく、従来には無い新規な蛍光体であり、発光色および発光スペクトルは希土類元素由来のものである。
本蛍光体の製造法は、通常の蛍光体の焼成温度よりも低温である600℃から1000℃の温度で焼成する点に特徴がある。焼成温度が600℃よりも低い温度及び1000℃を超える温度の場合には、十分な輝度が得られない。
Moreover, the phosphor according to the embodiment of the present invention is a phosphor that emits light under electron beam excitation and ultraviolet excitation, and is particularly suitable for FED, VFD, and PDP, and has high emission efficiency, stability, and good color purity. According to an embodiment of the present invention, which is a novel phosphor, a self-luminous device having a configuration in which a phosphor disposed on or between electrodes is driven to emit light by electron beam excitation or ultraviolet excitation is provided.
In addition, the phosphor according to the embodiment of the present invention is not a phosphor having an emission complex of molybdate complex ion, which is a phosphor of an existing complex ion-type emission center, by X-ray diffraction, and is not a new novel The fluorescent color and emission spectrum are derived from rare earth elements.
This phosphor production method is characterized in that it is fired at a temperature of 600 ° C. to 1000 ° C., which is lower than the firing temperature of a normal phosphor. When the firing temperature is lower than 600 ° C and higher than 1000 ° C, sufficient luminance cannot be obtained.

次に、本発明の実施例について説明するが、本発明は下記の実施例に限定されるものではない。
(実施例1)
蛍光体原料として、10.0gのMoOと3.7gのEuとを用いて、これらを十分に混合し、アルミナ製るつぼに充填して空気中において600℃で1時間焼成を行った。
図3に、得られた(Mo,Eu0.3)O3.45粉末(Moが1モル、Euが0.3モル、Oが3.45モルの蛍光体粉末)のX線回折(XRD)図を示す。図3において、□はMoO、○はMo金属(metal)であり、MoOと重なる2カ所の位置にMoO(□の近傍に+MoO2と表記)が存在している。
図3の回折図より明らかなように、蛍光体組成物の大半はMoOであったが、明らかにMo金属とMoOのピークも見られた。
Next, examples of the present invention will be described, but the present invention is not limited to the following examples.
Example 1
Using 10.0 g of MoO 3 and 3.7 g of Eu 2 O 3 as phosphor materials, these are mixed well, filled in an alumina crucible, and fired at 600 ° C. for 1 hour in air. It was.
FIG. 3 shows X-ray diffraction (XRD) of the obtained (Mo, Eu 0.3 ) O 3.45 powder (phosphor powder having 1 mol of Mo, 0.3 mol of Eu and 3.45 mol of O). ) Show the figure. In FIG. 3, □ is MoO 3 , and ◯ is Mo metal (metal), and MoO 2 (expressed as + MoO 2 in the vicinity of □) exists at two positions overlapping with MoO 3 .
As is clear from the diffraction pattern of FIG. 3, most of the phosphor composition was MoO 3 , but clearly peaks of Mo metal and MoO 2 were also observed.

(実施例2)
蛍光体原料として、10.0gのMoOと9.8gのEuとを用いて、これらを十分に混合し、アルミナ製るつぼに充填して空気中において600℃で1時間焼成を行った。この蛍光体は実施例1の蛍光体よりも高輝度な特性を示した。
図4は、本実施例2で作製した蛍光体を短波紫外線の254nmで励起した際の発光スペクトルである。
(Example 2)
Using 10.0 g of MoO 3 and 9.8 g of Eu 2 O 3 as phosphor materials, these are mixed well, filled in an alumina crucible, and fired at 600 ° C. for 1 hour in air. It was. This phosphor exhibited characteristics with higher luminance than the phosphor of Example 1.
FIG. 4 is an emission spectrum when the phosphor prepared in Example 2 is excited at 254 nm of short wave ultraviolet light.

図4から明らかなように、本実施例2に係る蛍光体(Mo,Eux)Oyの発光スペクトルは、既存の赤色蛍光体であるY:Euに比べて620nm付近の発光ピーク位置が長波長側であり、発光強度が大きくなった。
また、図5に、実施例2に係る蛍光体と比較例の蛍光体であるY:Euの発光時の色度を現すCIE色度図を示す。図5から解るように、実施例2に係る蛍光体の色度座標はNTSCの赤色(0.67, 0.33)と一致し、Y:Euの(0.603, 0.371)よりも明らかに良好であった。
As is clear from FIG. 4, the emission spectrum of the phosphor (Mo, Eux) Oy according to Example 2 has an emission peak position near 620 nm as compared with Y 2 O 3 : Eu, which is an existing red phosphor. On the long wavelength side, the emission intensity increased.
FIG. 5 is a CIE chromaticity diagram showing the chromaticity at the time of light emission of the phosphor according to Example 2 and the phosphor of the comparative example, Y 2 O 3 : Eu. As can be seen from FIG. 5, the chromaticity coordinates of the phosphor according to Example 2 coincide with NTSC red (0.67, 0.33), and Y 2 O 3 : Eu (0.603, 0.371). ) Was clearly better.

(実施例3)
蛍光体原料として、10.0gのMoOと1.4gのTbClとを用いて、これらを十分に混合し、アルミナ製るつぼに充填して空気中において800℃で1時間焼成を行った。
この緑色発光の蛍光体のXRDでの結晶構造は、図3で示したようにMo金属およびMoOが混在するMoOであった。
(Example 3)
Using 10.0 g of MoO 3 and 1.4 g of TbCl 3 as phosphor raw materials, these were mixed well, filled in an alumina crucible, and baked at 800 ° C. for 1 hour in the air.
The XRD crystal structure of this green light emitting phosphor was MoO 3 in which Mo metal and MoO 2 were mixed as shown in FIG.

(実施例4)
実施例1で作成した30gの赤色蛍光体(Mo,Eux)Oyに、導電性良好な0.9gのSnOを添加した。その添加、混合法は実施例1で示した30gの赤色蛍光体(Mo,Eu0.3)O3.45に0.9gのSnOを添加、混合後、300−meshナイロン製ふるいを通過させ、均一混合させた。この赤色蛍光体(Mo,Eu0.3)O3.45と良導電性物質SnOとの混合物の発光スペクトルは図4と同様であった。発光開始電圧は後述する図6と同様であり、実施例1で示したSnO無添加品と同じく、約400Vであった。また、印加電圧3kVにおける輝度もSnO無添加品と同じく約4cd/cmであった。
Example 4
To 30 g of red phosphor (Mo, Eux) Oy prepared in Example 1, 0.9 g of SnO 2 having good conductivity was added. The addition and mixing method was performed by adding 0.9 g of SnO 2 to 30 g of red phosphor (Mo, Eu 0.3 ) O 3.45 shown in Example 1, mixing, and passing through a 300-mesh nylon sieve. And evenly mixed. The emission spectrum of the mixture of the red phosphor (Mo, Eu 0.3 ) O 3.45 and the highly conductive substance SnO 2 was the same as that shown in FIG. The light emission start voltage was the same as in FIG. 6 described later, and was about 400 V, similar to the SnO 2 -free product shown in Example 1. In addition, the luminance at an applied voltage of 3 kV was about 4 cd / cm 2 as in the SnO 2- free product.

図6は、本発明の実施例に係る蛍光体において、Eu濃度を0.4モル、0.6モル、0.8モル、1モルと変えた場合の電子線励起下での輝度−電圧特性をしている。図6において発光開始電圧は約400Vであり、陽極印加電圧6kVにおける輝度は約145cd/mであった。
尚、焼成を複数回繰り返すことにより、また、600℃より高温での再焼成を行うことにより輝度の改善がみられた。
FIG. 6 shows luminance-voltage characteristics under electron beam excitation when the Eu concentration is changed to 0.4 mol, 0.6 mol, 0.8 mol, and 1 mol in the phosphor according to the example of the present invention. I am doing. In FIG. 6, the light emission start voltage was about 400 V, and the luminance at an anode applied voltage of 6 kV was about 145 cd / m 2 .
In addition, the brightness was improved by repeating the firing a plurality of times and by performing the firing again at a temperature higher than 600 ° C.

本発明の蛍光体は、カラーTV、大型スクリーン用大画面投射型撮影装置、パソコン用CRTモニタ、蛍光表示管、カーボンナノチューブ等を電子線源とする冷陰極管、FED、PDP、バックライト、光源等の各種自発光型装置に使用可能である。
本発明の自発光型装置は、前記各種の自発光型表示装置として利用可能である。
The phosphor of the present invention includes a color TV, a large screen projection type photographing apparatus for a large screen, a CRT monitor for a personal computer, a fluorescent display tube, a cold cathode tube using a carbon nanotube or the like as an electron beam source, an FED, a PDP, a backlight, and a light source. It can be used for various self-luminous devices such as.
The self-luminous device of the present invention can be used as the various self-luminous display devices.

本発明の実施例に係る蛍光体に導電性物質を添加し、電子線を照射した際の、輝度のIn濃度依存性を示す特性図である。And adding a conductive material to the phosphor according to an embodiment of the present invention, when irradiated with electron beams, a characteristic diagram showing the In 2 O 3 concentration dependence of brightness. 本発明の実施例に係る蛍光体における、発光強度と付活剤であるEu濃度の関係を示す特性図である。It is a characteristic view which shows the relationship between the light emission intensity and Eu concentration which is an activator in the fluorescent substance which concerns on the Example of this invention. 本発明の実施例に係る蛍光体粉末のXRD測定における回折角と回折ピーク強度を示す図である。It is a figure which shows the diffraction angle and diffraction peak intensity in the XRD measurement of the fluorescent substance powder which concerns on the Example of this invention. 本発明の実施例に係る蛍光体(Mo,Eux)Oyの発光スペクトルと既存の蛍光体Y:Euの発光スペクトルの比較図である。Phosphor according to an embodiment of the present invention (Mo, Eux) existing phosphor the emission spectrum of Oy Y 2 O 3: is a comparison diagram of the emission spectrum of Eu. 本発明の実施例に係る蛍光体(Mo,Eux)Oyと既存の蛍光体Y:Euの発光時の色度を比較したCIE色度図である。Phosphor according to an embodiment of the present invention (Mo, Eux) Oy existing phosphor Y 2 O 3: it is a CIE chromaticity diagram comparing the chromaticity of time of light emission of Eu. 本発明の実施の形態に係る蛍光体に電子線を照射した際の、印加電圧と輝度の関係を示す特性図である。It is a characteristic view which shows the relationship between an applied voltage and a brightness | luminance at the time of irradiating the electron beam to the fluorescent substance which concerns on embodiment of this invention.

Claims (5)

一般式が(Mo,REx)Oyで表される蛍光体。
但し、REはEu、Tb、Prの中の一種以上であり又、x、yは各々RE、Oのモル数を表す数値であって、0<x≦5、0<y≦(3x/2)+3である。
A phosphor whose general formula is represented by (Mo, REx) Oy.
However, RE is at least one of Eu, Tb, and Pr, and x and y are numerical values representing the number of moles of RE and O, respectively, and 0 <x ≦ 5, 0 <y ≦ (3x / 2 ) +3.
導電性物質として、酸化インジウム、酸化亜鉛及び酸化スズの中の少なくとも一種が混合されて成ることを特徴とする請求項1記載の蛍光体。   The phosphor according to claim 1, wherein at least one of indium oxide, zinc oxide and tin oxide is mixed as the conductive material. 前記導電性物質の混合量wは、Moに対して、0重量%<w≦40重量%であり、好ましくは0.5重量%≦w≦30重量%であることを特徴とする請求項2記載の蛍光体。   3. The mixed amount w of the conductive material is 0 wt% <w ≦ 40 wt%, preferably 0.5 wt% ≦ w ≦ 30 wt% with respect to Mo. The phosphor described. 600℃〜1000℃の温度で焼成して成ることを特徴とする請求項1乃至3のいずれか一に記載の蛍光体。   The phosphor according to any one of claims 1 to 3, wherein the phosphor is fired at a temperature of 600 ° C to 1000 ° C. 電極上又は電極間に配設した蛍光体を発光駆動するようにした自発光型装置において、
前記蛍光体として、請求項1乃至4のいずれか一に記載の蛍光体を使用して成ることを特徴とする自発光型装置。
In the self-luminous type device that is configured to drive the phosphor disposed on or between the electrodes to emit light,
A self-luminous device comprising the phosphor according to any one of claims 1 to 4 as the phosphor.
JP2005294322A 2004-10-13 2005-10-07 Fluorescent substance and spontaneously light emitting device Pending JP2006137931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294322A JP2006137931A (en) 2004-10-13 2005-10-07 Fluorescent substance and spontaneously light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004298338 2004-10-13
JP2005294322A JP2006137931A (en) 2004-10-13 2005-10-07 Fluorescent substance and spontaneously light emitting device

Publications (1)

Publication Number Publication Date
JP2006137931A true JP2006137931A (en) 2006-06-01

Family

ID=36618942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294322A Pending JP2006137931A (en) 2004-10-13 2005-10-07 Fluorescent substance and spontaneously light emitting device

Country Status (1)

Country Link
JP (1) JP2006137931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195688A (en) * 2010-03-18 2011-10-06 Toshiba Corp Red phosphor and method for producing the same, and light emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3186950A (en) * 1962-04-30 1965-06-01 Du Pont Rare earth tungstate and molybdate luminophors
US3294701A (en) * 1961-11-16 1966-12-27 Ibm Method of preparing fluorescent rare earth compounds
US3328311A (en) * 1965-05-05 1967-06-27 Du Pont Selected luminescent molybdates and tungstates of sc., la, eu, gd, and lu
JPS6337183A (en) * 1986-07-31 1988-02-17 Futaba Corp Fluorescent substance
JPH11152469A (en) * 1997-11-21 1999-06-08 Nec Kagoshima Ltd Slow electron beam-excited fluorescent display device
WO2003037788A1 (en) * 2001-11-01 2003-05-08 Oxonica Limited Water soluble luminescent nanoparticles
JP2004189783A (en) * 2002-12-09 2004-07-08 National Institute Of Advanced Industrial & Technology Luminescent material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294701A (en) * 1961-11-16 1966-12-27 Ibm Method of preparing fluorescent rare earth compounds
US3186950A (en) * 1962-04-30 1965-06-01 Du Pont Rare earth tungstate and molybdate luminophors
US3328311A (en) * 1965-05-05 1967-06-27 Du Pont Selected luminescent molybdates and tungstates of sc., la, eu, gd, and lu
JPS6337183A (en) * 1986-07-31 1988-02-17 Futaba Corp Fluorescent substance
JPH11152469A (en) * 1997-11-21 1999-06-08 Nec Kagoshima Ltd Slow electron beam-excited fluorescent display device
WO2003037788A1 (en) * 2001-11-01 2003-05-08 Oxonica Limited Water soluble luminescent nanoparticles
JP2004189783A (en) * 2002-12-09 2004-07-08 National Institute Of Advanced Industrial & Technology Luminescent material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195688A (en) * 2010-03-18 2011-10-06 Toshiba Corp Red phosphor and method for producing the same, and light emitting device

Similar Documents

Publication Publication Date Title
KR101005369B1 (en) Plasma display device
US7416685B2 (en) Fluorescent material and fluorescent display apparatus
JP4931175B2 (en) Phosphor for electron beam excited light emitting device, method for producing the same, and electron beam excited light emitting device
Yocom Future requirements of display phosphors from an historical perspective
JP2009185275A (en) Red phosphor for display unit and display unit including the same
JP2008050523A (en) Plasma display device and light-emitting device
JP4413642B2 (en) Plasma display device and phosphor manufacturing method
JP4931176B2 (en) Phosphor, method for manufacturing the same, and light emitting device
US7067073B2 (en) Yellow ZnS-based phosphor, process of preparing the same and display device using the phosphor
JP2006137931A (en) Fluorescent substance and spontaneously light emitting device
JP2008034302A (en) Light-emitting device
JP2007308641A (en) Blue phosphor and its application
JP2006299098A (en) Light emitting apparatus and image display unit
JP5011082B2 (en) Image display device
JP2009001699A (en) Red-emitting phosphor, fed device, and eld device
JP2004269870A (en) Plasma display panel and method for producing phosphor
JP3514836B2 (en) Green light emitting phosphor
US20060145591A1 (en) Green light emitting phosphor for low voltage/high current density and field emission type display including the same
JP5016804B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP2008081625A (en) Electron beam-excited blue phosphor
JP2005154770A (en) Green light-emitting phosphor for vacuum ultraviolet-excited light-emitting device, method of preparing the same, and light-emitting device including the same
JP2004099692A (en) Zinc oxide phosphor
JP2006089692A (en) Green light-emitting fluorophor and mercury fluorescent lamp using the same
JP2003113374A (en) Phosphor for low-speed electron beam and fluorescent tube
KR100773949B1 (en) Blue emitting phosphor and cold cathode fluorescence lamp comprising the blue emitting phosphor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20080112

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20080115

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Effective date: 20080306

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110613

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Effective date: 20111025

Free format text: JAPANESE INTERMEDIATE CODE: A02