JP2006135488A - 電力制御装置及びこれを用いた無線通信装置 - Google Patents

電力制御装置及びこれを用いた無線通信装置 Download PDF

Info

Publication number
JP2006135488A
JP2006135488A JP2004320436A JP2004320436A JP2006135488A JP 2006135488 A JP2006135488 A JP 2006135488A JP 2004320436 A JP2004320436 A JP 2004320436A JP 2004320436 A JP2004320436 A JP 2004320436A JP 2006135488 A JP2006135488 A JP 2006135488A
Authority
JP
Japan
Prior art keywords
power
signal
circuit
voltage
power control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004320436A
Other languages
English (en)
Inventor
Hideshi Motoyama
英志 本山
Hideo Kawamura
英男 河村
Hidetoshi Kawasaki
英俊 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004320436A priority Critical patent/JP2006135488A/ja
Publication of JP2006135488A publication Critical patent/JP2006135488A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

【課題】
パワーアンプの電源電圧を各モードに対応して変化させる電力制御装置を提供する。
【解決手段】
入力信号が供給されて第1の制御信号に応じて該入力信号のレベルを制御する信号レベル可変回路2と、電力制御信号と前記入力信号の切り換え信号が供給され、入力信号のレベルを制御する第1の制御信号出力する第1の関数発生回路3と、電力制御信号が供給され該電力制御信号に応じた電圧を発生する第2の関数発生回路4と、信号レベル可変回路からの信号が供給され、第2の関数発生回路から電力制御信号に応じた電源電圧が供給され、信号レベル可変回路から入力された信号を増幅する増幅器4とを有し、通信方式のそれぞれのモードによってコントロール方式を変えることなく、同一の方式を用いてパワーコントロールを行うようにした。
【選択図】図1

Description

無線通信装置などに用いられるパワーアンプの出力電力を入力信号のモードにより切り換え制御する電力制御装置及びこれを用いた無線通信装置に関する。
セルラー電話、コードレスホンなどの無線通信システム、高周波信号計測システム、レーダーなどのデジィタル、アナログ高周波回路などにパワーアンプが用いられている。近年、多バンド多モードの通信機器の開発要請が高まり、特に多モードの通信機器用のパワーアンプのコントロール方式が開発されている。携帯電話を例にとると、日本国内ではPDC(Personal Digital Celluar)方式、WCDMA(Wideband Code Division Multiplex Access)方式、PHS(Personal Handy System)方式などの通信方式を一つの端末で使用することのできる他モード携帯電話、海外ではGSM(Global System for Mobile Communication)方式、EDGE(Enhanced Data Rate for GSM Evolution)方式、UMTS(Universal Mobile Telecommunication System)方式、CDMA(Code Division Multiple Access)方式などを一つの携帯電話で使用することのできる他モード携帯電話などがある。
初期の携帯電話での出力電力の制御は図13に示すように、PA(パワーアンプ)133からの出力の一部をカップラー134を用いてトランシーバ131に帰還し、PA133の出力をモニターしつつ、ドライバーアンプ132の出力電力を制御するものであった。
この方式はPA133を非飽和状態で用いることができるため、現在でもCDMAなどの線形性を必要とする通信方式では一般的に用いられている。しかし、この方式ではPA133の入力電力に対する利得変動のためにカップラー134を用いて出力電力Poutをモニターする必要があり、そのカップラー134は出力電力Poutのロスとなっていた。
ポーラーループ方式は図14に示すように入力信号を位相成分と振幅成分に分け、それぞれを増幅した後、それを合成し信号を出力する方式である。
信号が入力端子Pin151に供給され、リミッタ156と包絡線検波器152に供給される。リミッタ156で振幅を制限された信号は位相検波器157に供給され、またこの位相検波器157にはリミッタ158から帰還された信号が供給され位相差を検出してこの結果をミキサー162に供給する。またミキサー162には発振器161から発振信号が供給され、位相検波器157から出力された位相差に応じてキャリヤとしての発振信号の位相が制御される。
一方、包絡線検波器152からの検波された信号は演算処理器(減算器)153の一方の端子に供給される。また、パワーアンプPA163からカプラー164を介して抽出された出力信号の一部が包絡線検波器165に供給され検波され、その検波された値が演算処理器(減算器)153に供給され、前述の包絡線検波器152からの出力信号と減算処理されて、増幅器154を介してパワーアンプPA163に振幅情報が供給される。
また、位相を検出する帰還ループにおいて、パワーアンプ163の出力をカプラー164を介して抽出して、出力信号の一部をミキサー159に供給する。このミキサー159にはまた発振器160からの発振信号が供給されて、その後リミッタ158を介して位相検波器157に供給される。
そして、ミキサー162から供給された位相補償された信号と増幅器154で得られた振幅情報がパワーアンプPA163に供給され、パワーアンプPA163で電力が制御され、位相と振幅が制御された信号が出力される。
このように、包絡線検波器152、包絡線検波器165、演算処理器153の構成を用いてPoutの出力振幅をモニターしてPA163振幅情報を制御し、またリミッタ156,158、発振器160,161、ミキサー159.162と位相検波器157の構成ではPoutの出力位相をモニターしてPA163の位相情報を制御している。
この場合、GSM方式とEDGE方式の二つの方式を一つのパワーアンプPAを用いることができるという利点があるが、位相成分と振幅成分に分けなければならないという問題と、それぞれを適正に増幅するためにトランシーバーICもしくはベースバンドICにおいて複雑な制御を行わなければいけないという問題と、適正な信号合成を行うために、タイミングを合わせなくてはいけないという問題と、パワーアンプの特に位相成分の変動に対して非常に脆弱であるという問題をもつ。また、これら本質的な問題の他に、従来のGSMのパワーアンプPAのパワー制御方式と比べて、大きくかけ離れて複雑な構造を持つため、システム開発に際して多くのことを学ぶ必要があり、この方式を実現するのに非常に大きな設計工数が発生する。
また、パワーアンプPAを線形動作させる必要の無いGSM用パワーアンプPAでは出力電力のロスを無くするためと、ドライバーアンプPAを無くするために、ドレインレギュレーションというパワーコントロール方式が開発され、現在一般的に用いられている。GSM用パワーアンプPAに用いられているドレインレギュレーションパワーコントロール方式を図15に示す。
このパワーアンプPA173のパワーコントロール方式の構成において、入力信号Pinが入力端子171に入力され、またVramp信号(電圧)が制御端子174から関数発生回路175入力される。関数発生回路175は、この時間経過と共にパルス矩形波の振幅がランプ状に減衰したVramp電圧をもとにPMOSトランジスタ176に制御電圧を発生する。ゲート電圧にしたがってPMOSトランジスタ176のソース電圧は可変され、その可変された電圧が電源電圧としてパワーアンプPA173に供給される。また、パワーアンプPA173の電源電圧またはPMOSトランジスタ176のソース電圧を検出し、関数発生回路175にフィードバックする。そして、予め作成したROMテーブルなどのデータを参照して関数発生回路175からPMOSトランジスタ176のゲートに制御電圧を供給して出力電圧を可変し、PA173の電源電圧を制御して、パワーをコントロールする。
GSM方式では飽和状態でパワーアンプを用いることができるので、入力電力は一定にしたままで、パワーアンプの電源電圧を上下させ出力電力を制御する。入力電圧を一定にした条件において、パワー効率を向上させることは、パワーアンプの電源電圧を下げることになるので、入力電力を制御した場合よりもパワーアンプの効率は良くなる。また、Vramp電圧に対し、出力電力が一義に決まるため、出力電力のモニターを行う必要がない。
従来、多モードの携帯電話ではそれぞれの通信方式に対してパワーアンプを用意しておく必要があった。モード数の増加に応じてパワーアンプの数を増やすと、コストの増大、端末サイズの肥大化が発生するという問題があった。この問題を克服するために、ポーラーループ方式、リニアアンプ兼用方式といった方式が、GSM−EDGEのデュアル方式パワーアンプでは用いられようとしている。GSM方式とEDGE方式の決定的な差はその出力信号に求められる線形性に関する特性にある。従来方式のGSM方式ではその信号の包絡線の変動がないため、パワーアンプに対する線形性はほぼ求められておらず、飽和状態で使うことができた。しかしながら、新方式であるEDGE方式では包絡線の変動があり、パワーアンプを飽和状態で用いることはできない。
リニアアンプ兼用方式では図15のドレインレギュレーション方式を用いる。GSMモードでは当然のことながら、Vramp電圧を用いて出力電力の制御を行う。EDGEモードではパワーアンプPA173の線形性を維持するため図15のPMOSトランジスタ176を完全にオンにした状態で入力電力を調節し、出力電力を制御する。この場合、ドレインレギュレーション方式では行っていなかった、トランシーバーICを用いてのパワーアンプPA173への入力電力制御、もしくはトランシーバーとパワーアンプPA173の間にドライバーアンプを挿入し、パワーアンプPA173への入力電力の制御を行う必要がある。また、ドレインレギュレーション方式によってドライバーアンプを無くすることができ、カップラーを再度挿入し、入力電力によるパワーアンプPA173のゲイン差を補償するための出力電力をモニターが必要にある。
このように、従来のデュアルモードパワーコントロール方式では様々な問題が存在していた。
特開2001−168647号公報 特開2002−208869号公報
上述したように、本発明では、入力信号の各モードを切り換えるための関数発生回路とパワーアンプのドレインレギュレーション回路を用いてパワーアンプの電源電圧を変化させることによる多モードパワーアンプの電力制御装置及びこれを用いた無線通信装置を提供する。
本発明の電力制御装置は、入力信号が供給されて第1の制御信号に応じて該入力信号のレベルを制御する信号レベル可変回路と、電力制御信号と前記入力信号の切り換え信号が供給され、前記入力信号のレベルを制御するための前記第1の制御信号出力する第1の関数発生回路と、前記電力制御信号が供給され該電力制御信号に応じた電圧を発生する第2の関数発生回路と、前記第2の関数発生回路から前記電力制御信号に応じた電源電圧が供給され、前記信号レベル可変回路から入力された信号を増幅する増幅器とを有する。
本発明の電力制御装置は、入力信号が供給されて第1の制御信号に応じて該入力信号のレベルを制御する信号レベル可変回路と、電力制御信号と前記入力信号の切り換え信号が供給され、該切り換え信号に応じて前記信号レベル可変回路に前記第1の制御信号を供給し、前記入力信号に応じて前記入力信号を制御する第1の関数発生回路と、前記電力制御信号が供給され該電力制御信号に応じた第2の制御信号を出力する第2の関数発生回路と、前記第2の関数発生回路から前記第2の制御信号が供給され、該第2の制御信号に応じた電源電圧を出力する電圧発生回路と、前記電圧発生回路から前記第2の制御信号に応じた電源電圧が供給されて前記信号レベル可変回路から入力された信号を増幅する増幅器とを有する。
本発明の電力制御装置は、入力信号の信号レベルを可変する電力化変回路と、前記電力可変回路からの出力を増幅するパワーアンプと、前記電力可変回路に入力端子が接続され、前記パワーアンプの電源端子に電力制御電圧が電源端子を介して接続された第1の関数発生回路と、前記電力制御電圧が供給され、一つ以上のモード切換端子を有し該モードに応じて電力可変制御信号を前記電力可変回路に供給する第2の関数発生回路とを有し、前記モード切換端子によって多モードの通信に対応し、前記電力制御電圧によってパワーコントロールすることを特徴とする。
本発明の無線通信装置は、無線信号を周波数変換し、復調してベースバンド処理する受信回路と、ベースバンド処理された信号を変調し周波数変換し電力増幅する送信回路を有する無線通信装置であって、前記電力増幅する電力制御装置は、入力信号の信号レベルを可変する電力可変回路と、前記電力可変回路からの出力を増幅するパワーアンプと、出力端子に接続されるパワーアンプと、該パワーアンプの入力に接続される電力可変回路と、前記電力可変回路に入力端子が接続され、前記パワーアンプの電源端子に電力制御電圧が電源端子を介して接続された第1の関数発生回路と、前記電力制御電圧が供給され、一つ以上のモード切換端子を有し該モードに応じて電力可変制御信号を前記電力可変回路に供給する第2の関数発生回路とを有し、前記モード切換端子によって多モードの通信に対応し、前記電力制御電圧によってパワーコントロールすることを特徴とする。
多モードの通信方式において、それぞれのモードによってコントロール方式を変えることなく、同一の方式を用いてパワーコントロールを行うことが可能である。パワーコントロールに必要なソフトウエアーは従来のものと同様なもので動作可能なので、開発時間の短縮につながる。また、パワーアンプの電源電圧を落としてパワーコントロールを行う方式であるため、パワーアンプの中低出力時の効率を高く保つことが可能である。しかも、Vrampに対する出力電力の校正を行うことにより出力電力のモニター機能を有する素子が必要なくなり、パワーアンプとアンテナ間の損失を最小限に抑えることができる。
図1に本発明の実施形態例であるパワーアンプを用いた電力制御装置10について示す。図1において、入力端子が電圧可変回路(アッテネーター回路)2の入力端子に接続され、その出力端子がパワーアンプPA1の入力端子に接続され、出力端子Poutから電力増幅された信号が出力される。
パワーアンプPA1を制御するための電力制御用電圧Vrampが入力される端子は、関数発生回路3を経て、電圧可変回路2例えば電圧可変のアッテネーター回路またはVGA(Variable Gain Amplifier)に接続され、それとともに電源電圧の接続された関数発生回路4に接続される。関数発生回路4の出力はパワーアンプPA1の電源電圧に接続される。
また、モード(MOD)端子から関数発生回路3にGSMやEDGE信号が供給され、モード切り換信号(ロジック電圧)を発生して、電圧可変回路2にVramp信号に応じた制御信号を出力し、入力信号Pinの振幅を制御するようにしている。
またこれ以外に、たとえばMOD端子から入力される信号をGSMまたはEDGEのロジック信号とし、このロジック信号を用いて関数発生回路3を切り替えるようにしてもよい。切り換え信号はこれらに限定されるべきでなく、その他の信号に応じて設けることができる。
説明を簡略化するため、飽和-非飽和デュアルモードの例として、GSM−EDGEのデュアルモードを想定し、回路動作の説明を行う。また電圧可変回路2にアッテネーター回路を用いた例を示す。
GSMは包絡線変動の無い信号であるため、パワーアンプPA1を飽和出力で用いることができる。パワーアンプPA1は飽和状態で用いる方がその効率が向上するため、アッテネーター回路2での減衰は必要ない。よってGSM使用時にはMODを例えばハイ状態の場合、このMODのハイ状態の信号に応じて、関数発生回路3から出力される制御信号でアッテネーター回路2での減衰が無い(ゼロ)もしくは減衰量を小さくするように制御する。この状態は従来のGSMパワーアンプのコントロール方式と同じく、関数発生回路4を用いてVrampに対応した電圧を発生し、この発生した電圧をPA1の電源電圧として供給し、パワーアンプPA1の出力をコントロールする方式となる。パワーを大きく出力する状態では電源電圧は高く、パワーを小さく出力する状態では電源電圧を低くなるように関数発生回路4は構成される。電源電圧が高いときにはパワーアンプPA1はその電源電圧で出力することのできる最大電力を出力し、電源電圧が低くなるにつれて、パワーアンプPA1の駆動能力が少なくなるため出力電力は小さくなる。
EDGEモードで用いる場合、EDGEの信号には包絡線変動があるためパワーアンプPA1をある程度リニアに動作させる必要がある。先ほど説明したGSMモードと同じ動作状態では、PA1が飽和状態で動いているために振幅情報が失われてしまう。GSMで用いたパワーアンプPA1と同一のパワーアンプPA1を用いて振幅情報を失わずに動作させるためには、パワーアンプPA1に入力される電力を減らす必要がある。本発明の実施形態例においてはパワーアンプPA1に入力される電力を減らすために、電圧可変回路2を用いる。
アッテネーター(電圧可変)回路2はMOD信号を切り換えることにより、動作状態となり、Vrampに対応した減衰量を実現する。
図2にVrampに対するパワーアンプPA1の出力特性を示す。縦軸はパワーアンプPA1の出力電力(Power)、横軸に関数発生回路4に入力されるVramp電圧を示す。パワーアンプPA1の最大飽和出力電力をPoutmax、それに対応する入力電力をPinGSM、また線形動作領域での出力をPoutlinとしこれに対応する入力電力をPin−PAとする。
MOD信号としてGSM信号が関数発生回路3に入力された時、関数発生回路3から出力された制御信号(切り換え信号)をアッテネーター回路2に供給する。このGSMモードにおいて、アッテネーター回路2は非動作状態であり、減衰量は無くスルーとする。あるいは動作状態にした場合は、減衰量を小さく固定したままとする。またこのとき、入力信号Pin(PinGSM)のパワーレベルはVrampの信号レベルの増加または減少に係わらず一定(または飽和状態)となっている。
入力信号(電力)PinGSMが一定の条件で、Vramp電圧を増加させると、それに応じて関数発生回路4が動作して、ドレインレギュレーション機能が働きパワーアンプPA1の電源電圧を可変する。その結果、パワーアンプPA1の最大飽和出力電力(Poutmax)はPinGSMが一定にも係わらず、Vramp電圧の増加に応じて増加することになる。
これに対して、EDGEモードで用いる場合、EDGEの信号には包絡線変動があるためパワーアンプPA1をある程度リニアに動作させる必要がある。上述したGSMモードと同じ動作状態にするとPA1は飽和状態で動作し、その結果振幅情報が失われてしまう。GSMで用いたパワーアンプPA1と同一のパワーアンプPA1を用いて振幅情報を失わずに動作させるためには、パワーアンプPA1に入力する電力を減らす必要がある。この実施形態例において、パワーアンプPA1に入力される電力を減らすために、電圧可変回路2を用いる。また、上述したように、この電圧可変回路2として、説明をわかりやすくするため、たとえば電圧可変のアッテネーター回路2を用いた例を示す。
電圧可変のアッテネーター回路2はMOD信号で関数発生回路3の設定条件を切り換えることにより、動作状態となり、Vramp制御信号(電圧)に対応した減衰特性に設定される。
図2において、Vrampが増加するに従いパワーアンプPA1の出力電力である、最大飽和出力電力がPoutmaxとして示してある。
いま、あるVramp電圧のときEDGE信号の仕様を満たすパワーアンプPA1の出力電力をPoutlinとする。図2から明らかなように、Vrampの変化に対して、PoutmaxとPoutlin間には対応関係があり、一定の差があることがわかる。この差はバックオフ量と言われていて、EDGEの場合には約3dBであることが知られている。
パワーアンプPA1の入出力の関係を明確にするため、Poutlinに対応するパワーアンプPA1の入力(信号)電力をPin−PAとし、その対応グラフを図2に示す。
パワーアンプPA1はいま線形領域で動作していると仮定しているので、PA1の入力電力Pin−PAは、パワーアンプPA1の出力電力Poutlinから利得を差し引いた電力である。
パワーアンプPA1の入力端子からPinGSMと同じレベルの信号が入力されると、EDGE仕様を満足させるためには、入力電力を減衰する必要がある。そのためには、電圧可変のアッテネーター回路2を制御し、Pin−PAのレベルにしてパワーアンプPA1に入力しなければならない。
また、図2に示してあるパワーアンプPA1の入出力特性から、Pin−PAはVrampの関数であるので、減衰量PinGSM−PinPAもまたVrampの関数となる。このような関数を実現する回路を関数発生回路3で構成することにより、EDGEモードでも動作可能とすることができる。
その結果、減衰量PinGSM−PinPAがVrampの関数に設定された関数発生回路3を用いると、図2に図示してあるように、関数発生回路4に入力されるVrampのレベルが増加するにつれて、Pin−PAの各入力レベルに対してパワーアンプPA1の各出力レベルがリニアに増加し、Poutlinラインを示す特性になる。
この入出力特性は、GSMモードの場合の入力(信号)電力レベルPinGSMが一定で、Vrampの増加につれて関数発生回路4で出力電力Poutmaxが増加するようにした入出力特性とは明らかに異なっている。
このように減衰量PinGSM−PinPAがVrampの関数に設定された関数発生回路3を使用することにより、EDGEモードの場合、関数発生回路3で切り換えた後は、パワーアンプPA1の出力電力はVrampのみで制御することができるようになる。
すなわち、関数発生回路3で入力電力の減衰量を予め設定しているので、関数発生回路4を用いてGSMモードと同様のパワーコントロールが可能となる。
関数発生回路3は説明をし易くするためにアッテネーター回路2で説明したが、これ以外のVGA(電圧利得制御回路)などを用いて、減衰量を可変することにより、同様な機能を実現できることは勿論である。
以上述べたように、本実施形態例によれば、モード切り換え信号(電圧)のみを供給することにより、たとえば現在GSM方式携帯電話において一般的に用いられているパワーコントロールと同一の方法によってEDGEモードのパワーコントロールができる。
これまで動作を解り易くするためGSM−EDGEのデュアルモードを例にして説明してきたが、上述した関数発生回路3を用いることにより、GSM−CDMA、OFDM−AMPS−EDGE−GSMなどの多様な信号方式への適用が可能であり、さらにデュアルモードのみならず多モードへの対応も可能である。
つぎに、図3を参照しながら、実際のデバイスに関する非線形動作について述べる。いままでパワーアンプPA1の出力電力がVrampに対して線形に変化する場合について説明してきた。しかし、パワーアンプPA1を構成するデバイスは動作条件により非線形動作する。たとえばデバイスとして、HBT(Hetero Bipolar Transistor)、MOS(Metal Oxide Semiconductor)トランジスタなどがある。ここではFETを用いて説明する。図3において、縦軸にドレイン電流Idsを、横軸にドレイン−ソース電圧Vdsを示し、Vgs(ゲート−ソース間電圧)を可変したときのIds−Vds特性を示す。さらにこのIds−Vds特性上に負荷線を示す。
FETをRF動作させる場合の負荷線をRL1として図3中に示す。Vrampで関数発生回路4をコントロールしてパワーアンプPA1の電源電圧を変化させ、パワーコントロールすることは、FETの電源電圧を可変し負荷線RL1をRL2、RL3と移動させることと等価である。RL1からRL2へ負荷線を移動した時、飽和出力電力は図4のP1からP2に移動する。ところが、負荷線がFET特性のknee電圧にあたるRL2からRL3に移動すると、飽和出力電力のVrampに対する特性は変曲点をもち、P2からP3に移動する。
図4において、縦軸はパワーアンプPA1の出力電力を、横軸はVrampをそれぞれ示し、GSMモードのときのパワーアンプPA1の入力電力PinGSMと出力電力Poutmaxの関係を示し、またEDGEモードの場合、入力電力Pin−PAと出力電力Poutlinの関係をそれぞれ表している。
GSMモードの場合、入力電力PinGSMは一定であるが、Vrampの変化に応じて関数発生回路4からパワーアンプPA1のFETのドレイン−ソース間電圧Vdsを制御して出力電力を制御しているので、Poutmaxの曲線となる。
一方、EDGEモードの場合、関数発生回路3で予め減衰量を設定して、関数発生回路4でパワーアンプの電源電圧を制御し、パワーアンプPA1が線形動作領域で動作するようにしている。すなわち、Vrampを可変することは、関数発生回路4でパワーアンプPA1のFETの電源電圧を可変していて、Vdsを変化していることになる。したがって、Vrampを可変したときそれに伴うPin−PAとPoutlinの曲線はFETの特性に対応した曲線になる。
また前述した、バックオフ量一定の法則が満たされる場合、Poutmaxが変曲点を持つということは、線形動作させようとする場合の出力電力Poutlinも、Poutmaxが平行移動したものに近く、図4に示すような曲線になる。
したがって、このようなPoutlinの特性を満たすように関数発生回路3もしくはアッテネーター(電圧可変)回路2の構成をとることができ、本発明の範囲に含まれることは明らかである。
図5に電圧可変回路32にアッテネーター回路を用いた電力制御装置30の全体ブロック構成図を示す。
この電力制御装置30は、GSM信号とEDGE信号に応じて切り換える関数発生回路33と、入力(信号)電力が入力され関数発生回路33からの制御信号で減衰量が制御されるアッテネーター(回路)32と、このアッテネーター回路32から出力された信号を増幅するパワーアンプPA31と、さらにVrampが供給されてドレインレギュレーションの制御信号を発生する関数発生回路34と、ドレインレギュレーションを行うPMOSトランジスタ35とで構成されている。また、PMOSトランジスタ35の出力電圧が関数発生回路34にフィードバックされる。
GSMモードのとき、入力信号のモードに応じて関数発生回路33が切り換えられて、制御信号がアッテネーター回路32に供給されるが、振幅情報は必要ないのでアッテネーター回路32の出力は一定でよい。そのため、アッテネーター回路32の動作をオフにするかまたは動作させて減衰量は固定される。この場合、関数発生回路34でVramp信号に応じてPMOSトランジスタ55のゲートを制御してパワーアンプPA31の電源電圧を可変し、出力電力を制御する。
一方、EDGEモードの場合、EDGE信号が入力されるとこのモードに応じて関数発生回路33が切り換えられて、Vramp信号に応じた制御信号が関数発生回路33に供給される。またそれと同時にこのVrampは関数発生回路34にも供給される。上述したように、関数発生回路33はVrampを関数とする減衰量PinGSM−PinPAを実現する回路構成である。この関数発生回路33からの出力制御信号により、Vramp信号のレベルに応じて入力信号がアッテネーター回路32で所定量減衰される。
一方関数発生回路34においては、Vrampの制御信号に応じたゲート制御電圧が発生され、PMOSトランジスタ35の動作条件が設定される。PMOSトランジスタ35のソースから出力された電圧が電源電圧としてパワーアンプPA31に供給され、その結果パワーアンプPA31の電源電圧が制御されて、出力電力が設定される。
図6に他の実施形態例である電圧可変回路52にVGA(Variable Gain Amplifier)回路を用いた電力制御装置50の全体ブロック図を示す。
この電力制御装置50は、GSM信号とEDGE信号に応じて切り換える関数発生回路53と、入力(信号)電力が関数発生回路53に供給され、この関数発生回路53から出力された制御信号で利得が制御される電圧利得制御回路(VGA)52と、このVGA52から出力された信号を増幅するパワーアンプPA51と、さらにVrampが供給されてドレインレギュレーションの制御信号を発生する関数発生回路54と、ドレインレギュレーションを行うPMOSトランジスタ55とで構成されている。また、PMOSトランジスタ55の出力電圧が関数発生回路54にフィードバックされ、出力電圧が制御される。
GSMモードのとき、関数発生回路53が切り換えられて、制御信号がVGA52に供給されるが、振幅情報は必要ないのでVGA出力は一定で飽和状態でもよい。そのため、VGA52の利得は固定される。この場合、関数発生回路4でVramp信号に応じてPMOSトランジスタ55のゲートを制御してパワーアンプPA1の電源電圧を可変し、出力電力を制御する。
一方、EDGEモードの場合、EDGE信号が入力されると関数発生回路53が切り換えられて、Vramp信号に応じた制御信号が関数発生回路53と54に供給される。関数発生回路53はVrampを関数とする減衰量PinGSM−PinPAを実現する回路構成とする。この関数発生回路53からの出力制御信号により、Vramp信号のレベルに応じてVGA52の利得が制御され、線形動作するよう入力電力のレベルが調整される。
一方関数発生回路54においては、Vramp制御信号に応じたゲート制御電圧が発生され、PMOSトランジスタ55の動作条件が設定される。PMOSトランジスタ55のソースから出力された電圧がパワーアンプPA51に供給され、その結果、パワーアンプPA51の電源電圧が制御されて出力電力が設定される。
つぎに他の実施形態例を図7に示す。
図7にドレインレギュレーション回路にDC−DCコンバータ回路75を用いた電力制御装置70の構成例を示し、電圧可変回路72としてアッテネーター回路(72)を用いたブロック図を示す。
図5,6にパワーアンプPA31,51の電源電圧を供給するためにPMOSトランジスタ35,55を用いた実施形態例を示した。
しかしながら、PMOSトランジスタ35,55を用いて電源電圧を供給する場合、パワーコントロールするための中間領域ではPMOSトランジスタ35,55は抵抗と等価になってしまう。パワーアンプPA31,PA51は大電流を必要とするデバイスであるため、たとえばパワーコントロールの中間領域であったとしてもPMOSトランジスタ35,55による抵抗から熱ロスが発生し、パワーアンプPA31,PA51の効率が低下する。
そこで、このPMOSトランジスタ35,55の代わりにDC−DCコンバータ回路75を用いた実施形態例を示す。
この電力制御装置70は、GSM信号とEDGE信号に応じて切り換える関数発生回路73と、電力信号が入力され関数発生回路73からの制御信号で減衰量が制御されるアッテネーター回路72と、この電圧可変(アッテネーター)回路72から出力された信号を増幅するパワーアンプPA71と、さらにVrampが供給されてドレインレギュレーションの制御信号を発生する関数発生回路74と、ドレインレギュレーションを行うDC−DCコンバータ回路75とで構成されている。また、DC−DCコンバータ回路75の出力が関数発生回路74にフィードバックされている。
GSMモードのとき、関数発生回路73が切り換えられて、制御信号が電圧可変(アッテネーター)回路72に供給されるが、振幅情報は必要ないので電圧可変回路72の出力は一定でよい。そのため、電圧可変回路72の動作は固定される。この場合、関数発生回路74でVramp信号に応じてDC−DCコンバータ回路75を制御してパワーアンプPP71の電源電圧を可変し、出力電力を制御する。
一方、EDGEモードの場合、EDGE信号が入力されると関数発生回路73が切り換えられて、Vramp信号に応じた制御信号が関数発生回路73に供給される。またこれと同時にVramp信号は関数発生回路74にも供給される。関数発生回路73はVrampを関数とする減衰量PinGSM−PinPAを実現する回路構成とする。この関数発生回路73からの出力制御信号により、Vramp信号のレベルに応じて入力信号がアッテネーター回路72で所定量減衰される。
一方関数発生回路74においては、Vramp制御信号に応じた制御電圧が発生され、DC−DCコンバータ回路75に供給される。DC−DCコンバータ回路75から出力された電圧がパワーアンプPA71に供給され、電源電圧が制御され出力電力が設定され、それと同時にDC−DCコンバータ回路75の出力電圧が関数発生回路74にフィードバックされ、制御される。
図7において、ドレインレギュレーションにDC−DCコンバータ回路75を用いたことにより、電源電圧を可変するため使用していたPMOSトランジスタの抵抗で発生したロスを無くすることができ、パワーアンプの効率を向上させることができた。
つぎに、図8に電圧可変回路2,32,72に用いるアッテネーター回路の実施形態例を示す。図8において、アッテネーター回路にFETを用いた例を示す。Port1に入力信号を供給し、ゲートに関数発生回路3,33,73からの制御信号を供給し、動作状態を制御する。そしてPort2からゲート制御電圧Vgで制御された信号を出力し、パワーアンプPA1,31,71の入力へ供給する。
このFETのゲート制御電圧Vgと減衰量との関係を図9に示す。縦軸にS(スキャッタリング)パラメータのS21を示し、横軸にゲート制御電圧Vgを示す。
ゲート制御電圧Vgが小さいときS21の値はマイナスでその絶対値は大きく、減衰量が大きい。Vgが大きくなるにつれてS21はマイナスでその絶対値は小さくなり、減衰量は小さくなる。
このスキャッタリングパラメータS21のVgに対する減衰度を利用して、入力電力を減衰させることができる。
上述の図8に示す実施形態例において、パワーアンプと電圧可変(アッテネーター)回路2,32,72を1チップに構成すると、関数発生回路3,33,73を構成する際その周辺回路を簡略化できる利点がある。また、本実施形態例の構成によりパワーアンプを線形動作させるためにはその入力電力を図4のPin−PAの曲線に相当する減衰曲線を持つ関数発生回路を構成する必要があり、複雑になるが、FETを同一チップに設けアッテネーターとして用いると簡単な関数発生回路で制御できるようになる。
ところで、この図9に示すゲート制御電圧VgとS21の特性曲線は、図4に示すPin−PAの特性曲線と非常に類似している。このFETのスキャッタリングパラメータS21曲線をアッテネーター回路2,32,72に用いることによって、EDGEモードの入力信号レベルPin−PAに対応する減衰曲線を実現することができ、さらにVramp電圧に対して抵抗分割やそれに準じた簡単な回路で関数発生回路3,33,73を構成することができる。さらに、FETのS21特性がEDGEモードのPIN−PAと類似しているので、FETを電力制御装置と同一チップに設けると簡単な回路で構成でき、チップ面積を小さくできる。
図10に関数発生回路3,33,53,73の回路構成例を示す。Vrampがバッファアンプ(Buffer Amp)81に供給され、その出力が抵抗R82とR82の抵抗分割した電圧がVoutから出力され、電圧可変回路2,32,52,72に制御電圧として供給される。
また上述した電圧可変回路2,32,72を他のアッテネーター(回路)で構成する例としてたとえば以下の回路構成がある。
実施形態例として、たとえば第1のFETの入力と出力に第1と第2の抵抗の一方をそれぞれ接続し、その第1と第2の抵抗の他方を共通接続して第2のFETのドレインに接続し、制御信号により第1と第2のFETのゲートを制御する回路がある。この第1と第2のFETのゲートをアナログ的に制御することによりFET1に入力される信号レベルを任意に減衰してパワーアンプに出力することができる。
さらに、アッテネーター回路の他の実施形態例として、入力と出力端子間に第1と第2のFETが直列接続され、入力端子と第1のFETの入力端子の共通接続点とグランド間に第3のFETと第1の抵抗が直列接続され、制御信号CTL1で第3のFETのゲートをオン/オフ制御し、第1のFETの出力と第2のFETの入力が共通接続された接続点に第4のFETと第2の抵抗がグランド間に直列接続され、第4のFETのゲートが制御信号CTL2でオン/オフ制御される。さらに第2のFETの出力と出力端子が共通接続された接続点に第5のFETと第3の抵抗がグランド間に直列接続され、第5のFETのゲートは制御信号CTL3でオン/オフ制御される。また、上述した第1と第2のFETのゲートは制御信号CTL4,5でそれぞれオン/オフ制御される。
このアッテネーターの回路構成において、制御信号CTL1〜5のハイレベルとローレベルを組み合わせて、各FET1〜5のゲートに供給することにより、ディジタル的に各FET1〜5をオン/オフさせて、減衰量を設定することができる。
このように、電圧可変回路に、アナログ的、またはディジタル的に減衰量を設定する回路を用いることができる。
つぎに、図11に電力制御装置の他の実施形態例を示す。
この電力制御装置90は、いままで示した実施形態と異なり、関数発生回路93がGSM信号とEDGE信号に応じて切り換える機能、構成となっていない。Vrampが供給され電圧可変回路92に制御信号を出力する関数発生回路93と、入力(電力)信号が入力され関数発生回路93からの制御信号で減衰量が制御される電圧可変回路92と、この電圧可変回路92から出力された信号を増幅するパワーアンプPA91と、さらにVrampが供給されてドレインレギュレーションの制御信号を発生し、パワーアンプPA91の電源電圧を可変する関数発生回路94とで構成されている。
電圧可変回路92において、Vrampと関数発生回路93により、パワーアンプPA91が高出力条件の場合、信号が飽和する程度に減衰量を小さくして飽和状態で用いたとえばGSMモードとしてパワーアンプPA91を動作させ、低出力条件では出力信号が線形に動作する範囲になるよう減衰量を大きくしてEDGEモードとしてパワーアンプPA91を動作させることができる。
すなわち、高出力条件では飽和信号の出力、低出力条件では線形信号の出力とすることができる。またこれとは逆に、高出力条件では線形信号の出力、低出力条件では飽和信号の出力とすることができる。
図12に本発明の電力制御装置の実施形態例を用いた無線通信装置の例である携帯電話のブロック構成例を示す。図12において、携帯電話のブロック構成の受信経路は、アンテナ111、アンテナ共用部112、LNA(ローノイズアンプ)113、周波数変換部114、IFアンプ115、復調部116、ベースバンド処理部117で構成されている。
また、送信経路は、ベースバンド処理部117、変調部118、バッファアンプ119、周波数変換部120、電力増幅部121、アンテナ共用部112、アンテナ111で構成されている。
上述した電力制御装置10,50,70,90はこの図12における電力増幅部121に相当する。
ベースバンド処理部117または変調部118から出力された、たとえばGSMまたはEDGEモードの制御信号が関数発生回路でモードにより切り換えられ、その制御信号が電圧可変回路に入力され減衰量が制御される。また周波数変換部120から出力された送信用の信号は電圧可変回路に入力されGSMまたはEDGEモードとVrampに応じて減衰量が設定され、パワーアンプに出力される。またVrampにより、他の関数発生回路で制御信号が発生し、この発生した制御信号でドレインレギュレーションが行われ、パワーアンプの電源電圧が可変されて電力が制御される。
以上のべたパワーアンプのデバイスとして、HEMT、またHEMTで正電源で動作させるよう構成してもよい。
また、HEMT以外のデバイスとしてゲートにP−N接合を用いた電界効果トランジスタを用いても良い。
このように、本発明の実施形態例を用いることにより、線形、非線形多モードにおけるパワーコントロールはポーラーループよりも容易となり、リニアアンプ方式よりも高効率となる。
上述したように、本発明はモードの通信方式において、それぞれのモードによってコントロール方式を変えることなく、同一の方式を用いてパワーコントロールを行うことが可能である。パワーコントロールに必要なソフトウエアーは従来のものと同様なもので動作可能なので、開発時間の短縮につながる。また、パワーアンプの電源電圧を落としてパワーコントロールを行う方式であるため、パワーアンプの中低出力時の効率を高く保つことが可能である。しかも、Vrampに対する出力電力の校正を行うことにより出力電力のモニター機能を有する素子が必要なくなり、パワーアンプとアンテナ間の損失を最小限に抑えることができる。
本発明の実施形態例である電力制御装置の全体ブロック回路構成を示す回路図である。 図1に示した電力制御装置のパワーアンプの入力−出力特性を示す図である。 図1に示した電力制御装置のパワーアンプの負荷特性を示す図である。 図1に示した電力制御装置のパワーアンプの入力信号モードに対する特性を示す図である。 本発明の実施形態例である電圧可変回路にアッテネーター回路を用いた全体ブロック回路構成を示す回路図である。 本発明の実施形態例である電圧可変回路にVGA回路を用いた全体ブロック回路構成を示す回路図である。 本発明の実施形態例であるドレインレギュレーションにDC−DCコンバータ回路を用いた全体ブロック回路構成を示す回路図である。 本発明の実施形態例である電圧可変回路にFETを用いた回路図である。 図8に示すFETの電気的減衰特性を示す特性図である。 本発明の実施形態例である関数発生回路の回路構成を示す回路図である。 本発明の実施形態例である電力制御装置の全体ブロック回路構成を示す回路図である。 本発明の実施形態例である電力制御装置を用いた無線通信装置のブロック構成図である。 従来例のリニアアンプの電力制御装置の構成図である。 従来例のポーラーループの電力制御装置の構成図である。 従来例のGSM用電力制御装置の構成図である。
符号の説明
10,30,50,70,90,130,150,170…電力制御装置、11,31,51,71,91,133,163,173…パワーアンプ(PA)、12,32,52,92…電圧可変回路、13,14,33,34,53,54,73,74,93,94…関数発生回路、35,55,176…PMOSトランジスタ、75…DC−DCコンバータ回路、111…アンテナ、112…アンテナ共用部、113…ローノイズアンプ(LNA)、114,120…周波数変換部、115…IFアンプ、116…復調部、117…ベースバンド処理部、118…変調部、119…バッファアンプ、121…電力増幅部、131…トランシーバー、132…ドライバーアンプ、134,164…カプラー、152,165…包絡線検波器、153…演算処理器(減算器)、154…増幅器(アンプ)、160,161…発振器、156,158…リミッタ、157…位相検波器、159,162…ミキサー。

Claims (23)

  1. 入力信号が供給されて第1の制御信号に応じて該入力信号のレベルを制御する信号レベル可変回路と、
    電力制御信号と前記入力信号に応じた切り換え信号が供給され、前記入力信号のレベルを制御するための前記第1の制御信号を出力する第1の関数発生回路と、
    前記電力制御信号が供給され該電力制御信号に応じた電圧を発生する第2の関数発生回路と、
    前記第2の関数発生回路から前記電力制御信号に応じた電源電圧が供給され、前記信号レベル可変回路から入力された信号を増幅する増幅器と
    を有する電力制御装置。
  2. 前記信号レベル可変回路は可変アッテネーターを有する
    請求項1記載の電力制御装置。
  3. 前記信号レベル可変回路は可変利得増幅器を有する
    請求項1記載の電力制御装置。
  4. 入力信号が供給されて第1の制御信号に応じて該入力信号のレベルを制御する信号レベル可変回路と、
    電力制御信号と前記入力信号の切り換え信号が供給され、該切り換え信号に応じて前記信号レベル可変回路に前記第1の制御信号を供給し、前記入力信号に応じて前記入力信号のレベルを制御する第1の関数発生回路と、
    前記電力制御信号が供給され該電力制御信号に応じた第2の制御信号を出力する第2の関数発生回路と、
    前記第2の関数発生回路から前記第2の制御信号が供給され、該第2の制御信号に応じた電源電圧を出力する電圧発生回路と、
    前記電圧発生回路から前記第2の制御信号に応じた電源電圧が供給されて前記信号レベル可変回路から入力された信号を増幅する増幅器と
    を有する電力制御装置。
  5. 前記信号レベル可変回路は可変アッテネーターを有する
    請求項4記載の電力制御装置。
  6. 前記信号レベル可変回路は可変利得増幅器を有する
    請求項4記載の電力制御装置。
  7. 前記電圧発生回路は、前記増幅器と基準電圧間に接続されて、前記第2の関数発生回路からの第2の制御信号により前記電源電圧を出力する電界効果トランジスタを有する
    請求項4記載の電力制御装置。
  8. 入力信号の信号レベルを可変する電力可変回路と、
    前記電力可変回路からの出力を増幅するパワーアンプと、
    前記電力可変回路に入力端子が接続され、前記パワーアンプの電源端子に電力制御電圧が電源端子を介して接続された第1の関数発生回路と、
    前記電力制御電圧が供給され、一つ以上のモード切換端子を有し該モードに応じて電力可変制御信号を前記電力可変回路に供給する第2の関数発生回路とを有し、
    前記モード切換端子によって多モードの通信に対応し、前記電力制御電圧によってパワーコントロールするようにした電力制御装置。
  9. 前記電力化変回路はアッテネーターを有する
    請求項8記載の電力制御装置。
  10. 前記電力可変回路は電圧可変アンプを有する
    請求項8記載の電力制御装置。
  11. 前記電力制御装置はさらに、前記パワーアンプと基準電源間に接続され、前記第2の関数発生回路からの制御信号により前記パワーアンプに供給する電圧を出力する電界効果トランジスタタを有する
    請求項8記載の電力制御装置。
  12. 前記パワーコントロールのために前記パワーアンプに供給する電圧はDC−DCコンバータを用いて発生するようにした
    請求項8記載の電力制御装置。
  13. 前記電圧可変アンプと前記パワーアンプは1チップに形成された
    請求項10記載の電力制御装置。
  14. 前記第2の関数発生回路は前記モード切換端子を持たず前記電力制御電圧のみで2モード以上の動作を行うようにした
    請求項8記載の電力制御装置。
  15. 前記パワーアンプはHEMTを用いた
    請求項8記載の電力制御装置。
  16. 無線信号を周波数変換し、復調してベースバンド処理する受信回路と、ベースバンド処理された信号を変調し周波数変換し電力増幅する送信回路を有する無線通信装置であって、
    前記電力増幅する電力制御装置は、
    入力信号の信号レベルを可変する電力可変回路と、
    前記電力可変回路からの出力を増幅するパワーアンプと、
    前記電力可変回路に入力端子が接続され、前記パワーアンプの電源端子に電力制御電圧が電源端子を介して接続された第1の関数発生回路と、
    前記電力制御電圧が供給され、一つ以上のモード切換端子を有し該モードに応じて電力可変制御信号を前記電力可変回路に供給する第2の関数発生回路とを有し、
    前記モード切換端子によって多モードの通信に対応し、前記電力制御電圧によってパワーコントロールするようにした無線通信装置。
  17. 前記電力化変回路はアッテネーターを有する
    請求項16記載の無線通信装置。
  18. 前記電力可変回路は電圧可変アンプにより形成した
    請求項16記載の無線通信装置。
  19. 前記無線装置は、前記パワーコントロールのために、さらに前記パワーアンプと基準電位間に接続され、前記第2の関数発生回路により前記パワーアンプに電圧を供給する電界効果トランジスタを有する
    請求項16記載の無線通信装置。
  20. 前記パワーコントロールのために前記パワーアンプに供給する電圧はDC−DCコンバータを用いて発生する
    請求項16記載の無線通信装置。
  21. 前記電圧可変アンプと前記パワーアンプは1チップに形成された
    請求項18記載の無線通信装置。
  22. 前記第2の関数発生回路は前記モード切換端子を持たず前記電力制御電圧のみで2モード以上の動作を行うようにした
    請求項16記載の無線通信装置。
  23. 前記パワーアンプはHEMTを用いた
    請求項16記載の無線通信装置。
JP2004320436A 2004-11-04 2004-11-04 電力制御装置及びこれを用いた無線通信装置 Pending JP2006135488A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320436A JP2006135488A (ja) 2004-11-04 2004-11-04 電力制御装置及びこれを用いた無線通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320436A JP2006135488A (ja) 2004-11-04 2004-11-04 電力制御装置及びこれを用いた無線通信装置

Publications (1)

Publication Number Publication Date
JP2006135488A true JP2006135488A (ja) 2006-05-25

Family

ID=36728655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320436A Pending JP2006135488A (ja) 2004-11-04 2004-11-04 電力制御装置及びこれを用いた無線通信装置

Country Status (1)

Country Link
JP (1) JP2006135488A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100197A (ja) * 2007-10-16 2009-05-07 Renesas Technology Corp Rf電力増幅装置およびrf電力増幅器の電源電圧を制御する電源供給回路
WO2011108103A1 (ja) * 2010-03-04 2011-09-09 三菱電機株式会社 送信モジュールおよびフェーズドアレイアンテナ装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235401A (ja) * 1991-01-10 1992-08-24 Mitsubishi Electric Corp 電力増幅装置
JPH06252797A (ja) * 1993-02-23 1994-09-09 Sony Corp 送受信装置
JP2000183763A (ja) * 1998-12-18 2000-06-30 Nec Corp 送信出力制御回路
JP2003087059A (ja) * 2001-09-11 2003-03-20 Hitachi Ltd 高周波電力増幅器、高周波電力増幅器モジュール及び携帯電話機
JP2003243994A (ja) * 2001-12-12 2003-08-29 Hitachi Ltd 高周波電力増幅回路および無線通信用電子部品
JP2003298360A (ja) * 2002-03-29 2003-10-17 Hitachi Ltd 高周波増幅器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235401A (ja) * 1991-01-10 1992-08-24 Mitsubishi Electric Corp 電力増幅装置
JPH06252797A (ja) * 1993-02-23 1994-09-09 Sony Corp 送受信装置
JP2000183763A (ja) * 1998-12-18 2000-06-30 Nec Corp 送信出力制御回路
JP2003087059A (ja) * 2001-09-11 2003-03-20 Hitachi Ltd 高周波電力増幅器、高周波電力増幅器モジュール及び携帯電話機
JP2003243994A (ja) * 2001-12-12 2003-08-29 Hitachi Ltd 高周波電力増幅回路および無線通信用電子部品
JP2003298360A (ja) * 2002-03-29 2003-10-17 Hitachi Ltd 高周波増幅器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100197A (ja) * 2007-10-16 2009-05-07 Renesas Technology Corp Rf電力増幅装置およびrf電力増幅器の電源電圧を制御する電源供給回路
WO2011108103A1 (ja) * 2010-03-04 2011-09-09 三菱電機株式会社 送信モジュールおよびフェーズドアレイアンテナ装置
JP5349679B2 (ja) * 2010-03-04 2013-11-20 三菱電機株式会社 送信モジュールおよびフェーズドアレイアンテナ装置
US8774737B2 (en) 2010-03-04 2014-07-08 Mitsubishi Electric Corporation Transmission module and phased array antenna apparatus

Similar Documents

Publication Publication Date Title
US7595694B2 (en) Electronics parts for high frequency power amplifier
EP3322097B1 (en) Envelope tracking apparatus and method
EP3771098B1 (en) Open loop digital pwm envelope tracking system with dynamic boosting
US7738845B2 (en) Electronic parts for high frequency power amplifier and wireless communication device
US7439808B2 (en) High-frequency power amplifier
US7224228B2 (en) Semiconductor integrated circuit for high frequency power amplifier, electronic component for high frequency power amplifier, and radio communication system
JP3241012B2 (ja) 送信時消費電力低減回路及びこれを用いた無線通信装置並びに線形動作制御方法
US6885246B2 (en) High frequency amplifier
US7688156B2 (en) Polar modulation transmission circuit and communication device
KR950010413A (ko) 이동체 통신장치 및 방법
CN101627547A (zh) 对基于电流导引的rf可变增益放大器的电流控制偏置
JP2005518684A (ja) 電力増幅器の制御
KR20120024486A (ko) 조절 가능한 다중 대역 전력 증폭기 모듈을 위한 장치 및 방법
JP2006500884A (ja) 切換可能な可変出力電力レベルを有する飽和電力増幅器
JP3664990B2 (ja) 高周波回路及び通信システム
US20060202756A1 (en) Radio-frequency power amplifier apparatus and method of adjusting output power thereof
US7701285B2 (en) Power amplifiers having improved startup linearization and related operating methods
KR101766628B1 (ko) 전치 보상기를 갖는 송신기
JP2005295533A (ja) 送信装置及び無線通信装置
JP2006303850A (ja) 高周波電力増幅回路および無線通信端末
US8232839B2 (en) Semiconductor integrated circuit device and transmission and reception system
US10608592B2 (en) Linear amplifier having higher efficiency for envelope tracking modulator
US8482355B2 (en) Power amplifier
JP2006135488A (ja) 電力制御装置及びこれを用いた無線通信装置
US7164319B2 (en) Power amplifier with multi mode gain circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906