JP2006135024A - 気相成長装置および気相成長方法 - Google Patents

気相成長装置および気相成長方法 Download PDF

Info

Publication number
JP2006135024A
JP2006135024A JP2004320964A JP2004320964A JP2006135024A JP 2006135024 A JP2006135024 A JP 2006135024A JP 2004320964 A JP2004320964 A JP 2004320964A JP 2004320964 A JP2004320964 A JP 2004320964A JP 2006135024 A JP2006135024 A JP 2006135024A
Authority
JP
Japan
Prior art keywords
vapor phase
phase growth
reaction tube
source gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004320964A
Other languages
English (en)
Inventor
Yutaka Araki
豊 新木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004320964A priority Critical patent/JP2006135024A/ja
Publication of JP2006135024A publication Critical patent/JP2006135024A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

【課題】 組立性の良い簡略な構造を有し、被処理基板上に良質な膜を形成することができる、気相成長装置および気相成長方法を提供する。
【解決手段】 原料ガスを導入する上流部反応管と、上流部反応管から導入された原料ガスとその内部に向かって保持された基板とを反応させ、反応した原料ガスを排出する中央部反応管とを有している。上流部反応管は、一対の板部材21,22と、板部材21,22の間に挟持されたフッ素樹脂製の側壁体23とで構成する。フッ素樹脂の適度な弾性により、別部材を用いなくても側壁体23と板部材21,22との間に隙間が生じない。
【選択図】 図7

Description

この発明は、原料ガスを供給して被処理基板を成膜処理する気相成長装置および気相成長方法に関し、特に、均一な膜を被処理基板上に形成することができる気相成長装置および気相成長方法に関する。
従来から原料ガスを供給して被処理基板を成膜処理する気相成長方法が用いられている。以下、一例として、その気相成長方法のひとつである、有機金属気相成長(Metal Organic Chemical Vapor Deposition、以下、「MOCVD」という。)法を用いる従来の気相成長装置について説明する。
MOCVD法を用いる装置のひとつとして、横型MOCVD装置がある。この横型MOCVD装置は、反応管内に水平方向に設けられた反応管を有しており、この反応管内に載置される被処理基板に対し、ガスを水平方向に反応管内に導入して被処理基板上で反応させるものである。この構成により、ガスの流れが、被処理基板の成膜される面に沿った層流状となるので、膜厚および膜質の面内均一性に優れるという利点がある。そのため横型MOCVD装置は一般的に広く用いられている。このような横型MOCVD装置を開示したものとして、たとえば、特許文献1がある。
図25は、従来の気相成長装置の構造を示す図26のXXV−XXV矢視断面図、図26は、従来の気相成長装置の構造を示す図25のXXVI−XXVI矢視断面図である。図25および図26に示した気相成長装置においては、被処理基板204をヒータ206により加熱された基板ホルダ205を介して加熱しておき、被処理基板204に向かって1種類乃至複数種類の原料ガスを供給する。被処理基板204の近傍で加熱された原料ガスが化学反応して、被処理基板204上に膜が形成される。
気相成長装置においては、原料ガスの流れが成膜品質に大きく影響するので、多くの気相成長装置で次のように構成している。まず、金属製の気密チャンバ201の内部にガス流を制御する為の反応管202を設ける。被処理基板204は反応管202の内部に位置させ、原料ガスをガス導入管213から反応管202の内部に供給する。気密チャンバ201の反応管202の外部の空間には、反応管202から漏れ出た原料ガスが滞留して成膜に悪影響を及ぼさないように、比較的少量の不活性ガスが、不活性ガス供給口212から導入され、気密チャンバ201の内部を循環した後、不活性ガス排気口207から排出される。
このような横型MOCVD装置で品質の良い結晶成長を実現させるためには、被処理基板204付近において、ガス導入管213から導入されて反応管202を流れる原料ガスの流速分布や温度分布が、空間的に均一でなければならない。そのためには、反応管202の内部における原料ガスの流れが渦や乱れがない層流となるような原料ガスの通路となる反応管202の形状としなければならない。
一方、気相反応の中には、所望の成膜には悪影響を与えるので抑制しなければならないものがある。たとえばトリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)、アンモニア(NH3)の3種類の原料ガスからAlGaN膜を成膜するMOCVD装置では、これら3種類の原料ガスが混合された状態を過剰な時間を経過すると必要としない気相反応が発生しAlGaN膜の正常成膜を妨げられる。そのため、被処理基板近傍までは、TMAおよびTMGとNH3とは混合しないで別々に供給し、被処理基板近傍で3種類の原料ガスが混ざり合うような原料ガスの供給方法が望ましい。
このような供給方法を実現するために特許文献2に開示された気相成長装置のように、反応管の上流部分を上下2段に仕切ったものがある。この気相成長装置においては、TMAとTMGにキャリアガス(水素または窒素または水素と窒素の混合)を混合した原料ガスを上段から供給し、NH3にキャリアガスを混合した原料ガスを下段から層流で供給している。これにより、反応管内の上下の仕切りがなくなった短い区間内でTMAおよびTMGとNH3が拡散混合されて、被処理基板の表面には3種類のガスが混合された状態で供給されるが、混合された状態で流れる時間は短いので不要な気相反応は抑制される。
また、反応管の材料としては、加熱時に材料表面あるいは材料内部から、成膜時の不純物となる何らかの物質放出が発生する事を防ぐ為に、石英やステンレス、モリブデンなどが適する。
さらに、原料ガスの使用量を少なくする為に、反応管の流路高さは小さいほうが好ましい。また膜の結晶品位を高める為に、反応管の流路高さを小さくして流路断面積を減少させ、原料ガスを高速で供給することもある。このような条件を満たすため、最小板厚など加工上の制約が少ない金属で構成し、また高い寸法精度を得る為に溶接工程を用いずに、金属部材同士をビスなどの固定機構を用いて結合した反応管が特許文献3に開示されている。
金属同士を溶接ではなくビスなどで結合した反応管においては、金属同士の結合部に微小な隙間が生じ、その隙間から反応管内を流れる原料ガスが反応管の外に流出することがあり、原料ガスの材料使用効率を低下させたり、原料ガスから生じるなんらかの不要生成物が反応管の外の機構部品やビューポートに付着して悪影響を及ぼしたりすることがある。さらには、逆に反応管の外に流している不活性ガスが隙間から反応管内に滲入し、反応管内部での成膜に悪影響を及ぼすという問題があった。
そこで、特許文献3に記載の気相成長装置においては、金属部材同士の接合部からのガス漏れを防止する為に、側壁体と板部材すなわち天板または底板または仕切り板の間に、板部材より硬度の低い材料からなる薄膜部材を挟み込んでいる。
特開2001−185488号公報 特開2001−118799号公報 特開2000−228362号公報
上述の特許文献3のように薄膜部材を挟み込む構造には以下の欠点がある。まず、側壁体の上下面に薄膜部材を取り付けるので、構成部材の数が多くなり組立性が悪化する。また、反応管上流端部の仕切り板で分離されたガス供給口の流路高さは3mm程度の場合が多いが、薄膜部材の厚みは0.1〜0.3mm程度あり、流路高さに比べ無視できない厚みである。薄膜部材と側壁体の位置あわせが完全でないと、薄膜部材が反応管内部の流路に突き出した状態、あるいは薄膜部材の厚み分流路側面が凹んだ状態になってしまい、流れの均一性が乱され、流れが乱流になるなどの基板上エピタキシャル成長への悪影響が発生してしまう。
この発明は、上記課題を解決するためになされたものであり、組立性の良い簡略な構造を有し、被処理基板上に良質な膜を形成することができる、気相成長装置および気相成長方法を提供することを目的とする。
この発明に基づいた気相成長装置は、原料ガスを導入する原料ガス導入部と、上記原料ガス導入部から導入された原料ガスとその内部に向かって保持された基板とを反応させる反応部と、上記反応部で基板と反応した原料ガスを排出する原料ガス排出部とを有する反応管を備え、上記反応管の少なくとも一部は、少なくとも一対の板部材と上記板部材の間に挟持されたフッ素樹脂製の側壁体とで構成された流路構成部材で構成されている。
流路構成部材は、少なくとも一対の板部材と上記板部材の間に挟持されたフッ素樹脂製の側壁体とで構成され、フッ素樹脂は高温耐性を有するので、基板を加熱する熱で加熱しても問題なく使用でき、また、フッ素樹脂は適度な弾性を有するので、一対の板部材と側壁体との間に隙間が発生せず、原料ガス漏れを防止することができる。また、側壁体を構成するフッ素樹脂そのものの弾性により隙間を無くすことができるので、別途隙間を埋めるための部材などを別途配設する必要が無いので、製造工程を少なくすることができる。
上記気相成長装置において、上記反応部を、上記原料ガス導入部または上記原料ガス排出部の少なくとも一方と分割し、反応部およびそれに連続する部分以外を流路構成部材で構成してもよい。
また、上記気相成長装置において、上記原料ガス導入部を、流路が複数層に分割された上記流路構成部材で構成し、上記流路構成部材は、複数に分割された側壁体の間に挟持され流路を上層と下層とに仕切る板部材により複数層に分割してもよい。
また、上記原料ガス導入部の、ひとつの層には3族元素原料ガス供給源を接続し、他のひとつの層には5族元素原料ガス供給源を接続してもよい。
上記板部材は、金属で構成し、特に、ステンレス鋼、モリブデン、モリブデンを主成分とする合金のいずれかで構成しても良い。
上記の気相成長装置を用い、上記原料ガス導入部を介して上記反応部に原料ガスを導入し、導入された原料ガスと基板とを反応部内で反応させることで気相成長させることができる。
本発明に係る気相成長装置によると、組立性の良い簡略な構造を有し、被処理基板上に良質な膜を形成することができる、気相成長装置および気相成長方法を提供することができる。
以下、この発明に基づいた各実施の形態における気相成長装置および気相成長方法について、図を参照しながら説明する。なお、各実施の形態において、同一または相当箇所については同一の参照番号を付し、重複する説明は繰り返さない。
(実施の形態1)
以下、本発明に係る実施の形態1について、図1から図8を参照して説明する。なお、図1は、本実施の形態における気相成長装置の構造を示す図2のI−I矢視断面図であり、図2は、気相成長装置の構造を示す図1のII−II矢視断面図である。
本実施の形態の気相成長装置は、チャンバ1と、チャンバ1の内部に設置された上流部反応管8と中央部反応管9とを有する。本実施の形態では、反応管2を上流部反応管8と中央部反応管9とを分割して構成している。上流部反応管8は、原料ガスを導入する原料ガス導入部を構成する。中央部反応管9は、上流部反応管8から導入された原料ガスとその内部に向かって保持された基板4とを反応させる反応部、および、反応部で基板4と反応した原料ガスを排出する原料ガス排出部を構成している。尚、図において、上流部反応管8と中央部反応管9との間に隙間を設けているが、実際には隙間無く当接されている。
中央部反応管9の底板には、円形の開口部が設けられ、その内部には、基板ホルダ5が設けられている。基板ホルダ5の上部には成長面を上向きにした基板4が載置されている。本実施例では基板4を上向き配置して気相成長させる形式の気相成長装置について説明するが、本発明は、基板4を反応管の天井部に下向きに配置する形式の気相成長装置にも、各部の配置を入れ替える事で適用可能である。
この気相成長装置を用いた気相成長時には、上流部反応管8に、図示しない原料ガス供給器から、ガス導入管13を経由して3族原料ガスのTMG(トリメチルガリウム)および5族原料ガスのNH3が、キャリアガスの水素ガスまたは窒素ガスと共に供給される。
チャンバ1の内部の、上流部反応管8および中央部反応管9の外部の空間には、不活性ガス供給口12から窒素ガスまたは水素ガスが導入され、チャンバ1内を循環した後、不活性ガス排気口7から排出される。これにより、上流部反応管8および中央部反応管9から漏れ出た原料ガスがチャンバ1の内部に滞留しないので、滞留したガスによる成膜への悪影響を回避することができる。
導入された原料ガスは、上流部反応管8の上流から下流に向かって流路断面が拡大するようなテーパのついた流路断面拡大部で整流されながら流速を落とした後、中央部反応管9に入る。原料ガスは、基板4の近傍で基板加熱ヒータ6により加熱されて活性化され、気相中で中間化学反応を生じる。そして、原料ガスが1000℃付近の高温に加熱された基板4の表面に接触し、基板4上に所定のGaN結晶膜を生成させる。供給された原料ガスは、基板4の上を通過した後、ガス排気管3から排気される。
ガス導入管13は、フランジ部14を有し、このフランジ部14により上流部反応管8とガス導入管13との隙間を密閉している。
図3は、上流部反応管の側面図、図4は、上流部反応管の平面図、図5は、上流部反応管の側壁体を示す平面図、図6は、上流部反応管の底板を示す平面図、図7は、図4におけるVII−VII矢視断面図であり、図8は、変形例の図4におけるVII−VII矢視断面図である。
まず、原料ガス導入部を構成する流路構成部材である上流部反応管8の構造について説明する。上流部反応管8は、板部材で構成された天板21および底板22と、それらの間に挟持されたフッ素樹脂製の側壁体23とで構成されている。
天板21、底板22および側壁体23は、図7に示すように、天板21、底板22の外周に適宜間隔で貫通孔を設け、側壁体23の対応する箇所に貫通孔を設け、これらにボルト24を貫通させ、ナット25を用いて締結することで固定する。ナット25を用いずに、底板22の貫通孔をねじ孔として、これに直接ボルト24を螺合するようにしてもよい。さらに、ボルト24を用いずに、図8に示すようなコ字型のクランプ材26を、上流部反応管8の外周に適宜間隔で配設して固定してもよい。この場合には、天板21、底板22および側壁体23の貫通孔およびねじ孔は不要である。天板21、底板22および側壁体23の固定構造はこれらに限定されず、他の構造を採用してもよい。
上流部反応管8の形状はガスの乱れを引き起こさない様に、ガス導入管13から基板4の近傍の大きな断面まで徐々に流路断面積が拡大するテーパ形状である必要がある。このため、天板21および底板22は、加工上の制約が少ない金属製にすることが好ましい。
さらに、天板21および底板22は、GaNの成膜では原料ガスとして腐食性を持つNH3が使用されるため、反応性雰囲気に対して耐性がある材料で作製される必要がある。また、基板4の近傍は1000℃程度まで加熱されるため、その温度条件でも強度上および材料からのガスの放出が問題にならない材質で作製される必要があるが、基板4よりも上流側に存在する上流部反応管8の温度は、標準的な寸法の気相成長装置においては100℃以下であるため、その程度の温度でガスの放出は問題がとならなければ足りる。上流部反応管8の構成部材である天板21および底板22の材料としては、このような条件を満たすステンレス鋼やモリブデンやモリブデンを主成分とする合金などが好ましく、原料ガスの種類によってはアルミニウムの使用も可能である。
側壁体23はポリ4フッ化エチレン(テフロン(登録商標))に代表されるフッ素樹脂で作製する。ポリ4フッ化エチレンは250℃程度までの高温耐性とNH3耐性を併せ持つので上流部反応管8の構成部材として使用可能である。またポリ4フッ化エチレンは適度な弾性を持つので、側壁体23と金属性の天板21あるいは底板22との接合部の隙間が塞がれる為、隙間からのガス漏れを防止することができる。また側壁体23と天板21あるいは底板22の接合部に、封止用の別パーツを挟み込んだ際に発生が懸念される、側壁体23と別パーツの段差が生じることもない。また、側壁体を樹脂成型品で構成することで、加工上の制約を受けることなく自由な形状の側壁を構成することができる。
つぎに熱膨張について検討する。側壁体23以外の材質はステンレス材と想定する。ポリ4フッ化エチレンのヤング率4×108Paに対して、ステンレスのヤング率は2.1×1011Paと極めて大きい。構造強度に関してポリ4フッ化エチレンの影響が最も大きいと考えられる厚み方向で検討する。図7のような方式で締結されているとして、幅6mmの側壁体23に50mm間隔でM3ボルトを貫通させている場合を想定する。側壁体23の50mm長さ内でのステンレス材の断面積は、M3ボルトの谷径が約2.5mmであるので、π/4×2.52mm2=4.9×10-62、ステンレス材の圧縮に対する剛性すなわちヤング率×断面積は1.03×106Nとなる。一方、ポリ4フッ化エチレン材の断面積は6mm×50mm=3×10-42、ポリ4フッ化エチレン材の圧縮に対する剛性は1.2×105Nであり、ステンレス材の剛性に比べて1/10程度しかない。
ポリ4フッ化エチレンの熱膨張係数は100×10-6/℃である。ステンレスの熱膨張係数は種類によってやや異なるが、10×10-6/℃程度でありポリ4フッ化エチレンの1/10のオーダである。以上から、ステンレスはポリ4フッ化エチレン部分に比べ、剛性において最も弱い方向でも約10倍強固で、熱膨張係数は1/10なので、熱膨張に関して、ステンレスは剛体と仮定しても問題ない。
側壁体23の温度上昇を多めに見積もって100℃、側壁体23の幅が6mmで側壁体23が図7のように中心部のボルト24で固定されるとすると、熱膨張する長さは6/2=3mmとなる。ポリ4フッ化エチレンは滑り性に富むので側壁体23と天板21あるいは底板22の接触面では滑りが生じると仮定する。
以上から熱膨張量を計算すると、側壁体23片側あたり100℃×3mm×100×10-6/℃=0.03mm、両側で0.06mmである。両側の側壁体23間の流路幅は100mm程度であるので、熱膨張による流路幅の変化率は0.06/100=0.06%と極めて微小である。またこの熱膨張では側壁体の内側面全面がほぼ平面を保ったまま膨張するので、流路面に流れの乱れを誘発するような突起ないし凹みが生じることもない。これにより、基板上に良質な膜を形成することができる。
一方、基板4の近傍が1000℃程度まで加熱される場合には、中央部反応管9は、従来と同様に、高温NH3ガスの腐食に耐え、1000℃で強度上および材料からのガスの放出が問題にならない石英を溶接加工して製作する。尚、基板4の加熱温度が低温の場合には、基板4の近傍を構成する中央部反応管9も上流部反応管8と同様に、フッ素樹脂からなる側壁体23を金属製の板材で挟んで構成することで、上述のような効果を得ることができる。
上記の実施の形態の構成によると、流路幅や高さや仕切り板の厚みなどの構造上の自由度が大きいので、気流の制御性を向上させることができる。また、板材の間に側壁体を挟み込むだけであるので良好な組立性を達成することができる。さらに、別途隙間を塞ぐ部材を挟み込んだ場合のように気流乱れの要因となる部材間の位置ずれ段差が発生しないので、気相成長の条件の精緻な制御が可能となる。これらにより、高品位の成膜処理を実現することができる。
(実施の形態2)
次に、実施の形態2について、図9から図15に基づき説明する。ここで、図9は、本実施の形態における気相成長装置の構造を示す図10のIX−IX矢視断面図であり、図10は、気相成長装置の構造を示す図9のX−X矢視断面図である。
本実施の形態の気相成長装置においては、上流部反応管10を複数層(ここでは3層)に分割した流路構成部材により構成している。具体的には、図10に示すように、側壁体23を高さ方向に3つ(23a,23b,23c)に分割し、その間にそれぞれ仕切り板11a,11bを挟持することで、流路を3層に分割している。この層の数は、必要に応じて、2層にしてもよく、また、4層以上にしてもよい。
気相成長時には、最下層の流路に原料ガスを導入するガス導入管13cに、5族原料ガスのNH3がキャリアガスの水素ガスまたは窒素ガスと共に供給される。また、中間層の流路に原料ガスを導入するガス導入管13bには3族原料ガスのTMG(トリメチルガリウム)がキャリアガスの水素ガスまたは窒素ガスと共に供給される。最上層の流路に原料ガスを導入するガス導入管13aには原料ガスから発生する不要なデポ物が反応管内壁に付着するのを抑制する事を目的として水素ガスあるいは窒素ガスが供給される。
供給された5族原料ガスと3族原料ガスとは仕切り板11aが途切れるまでは混合されることなく搬送され、仕切り板11aが途切れた部分から下流側で適切な量の拡散混合が行なわれる。適当に拡散混合された原料ガスは、基板4の近傍で基板加熱ヒータ6により加熱されて活性化され、気相中で中間化学反応を生じ、1000℃付近の高温の基板4表面に接触して基板4の上に所定のGaN結晶膜を生成させる。
図11は、上流部反応管の側面図、図12は、上流部反応管の平面図、図13は、上流部反応管の底板を示す平面図、図14は、側壁体を示す平面図、図15は、仕切り板を示す平面図である。
図11および図12に示すように、複数層の流路を有する上流部反応管10は、天板21、底板22、仕切り板11a,11b、および、側壁体23a,23b,23cは積層され、これらにボルト24を貫通し、ナット25で緊結することで構成されている。実施の形態1と同様に、ボルト24を用いず、クリップを用いて固定しても良い。
図13および図14に示すように、底板22および側壁体23の構造は、実施の形態1と同じである。また、仕切り板11bの構造は、底板と同じであるが、図15に示す仕切り板11aは流路に相当する部分の一部を切除している。これは、最下層に供給される原料ガスと、中間層に供給される原料ガスとが、基板4に到達するまでに適切に混合されるように、その距離を確保するためである。仕切り板11は、天板21および底板22と同様の金属製であるので、その加工が容易であり、容易にこのような構造とすることができる。また、必要に応じて種々の形状に容易に変更することができる。
このような上流部反応管10の構造を採用する事で、予め混合された状態で原料ガスを供給すると、正常成膜が妨げられてしまうような種類の膜の気相成長に好適な気相成長装置を構成することができる。
(実施の形態3)
続いて、実施の形態3について、図16から図21に基づき説明する。ここで、図16は、本実施の形態における気相成長装置の構造を示す図17のXVI−XVI矢視断面図であり、図17は、気相成長装置の構造を示す図16のXVII−XVII矢視断面図である。
本実施の形態の気相成長装置は、図16および図17に示すように、上記の実施の形態と異なり、反応管2が上流部反応管と中央部反応管とに分割されていない一体の構造となっている。
図18は、反応管の側面図、図19は、反応管の平面図、図20は、側壁体を示す平面図、図21は、底板を示す平面図である。天板21、底板22および側壁体23の固定構造は、図18および図19に示すとおりであり、上述の実施の形態と同様である。図20に示すように、側壁体23は、反応管2の全長に適合するように延長している。また、図21に示すように、底板22には、基板4を保持する基板ホルダ5が挿入される開口が設けられている。
基板など被処理物の、成膜あるいはエッチングあるいは表面改質などの処理に必要な温度が、フッ素樹脂の耐熱温度に近い200℃程度以下である場合には、反応管2の側壁の全てを、フッ素樹脂からなる側壁体23で構成することができ、これにより、構造が簡略で製作が容易な反応管および気相成長装置を提供することができる。
(実施の形態4)
続いて、実施の形態4について説明する。ここで図22は、本実施の形態の気相成長装置を示す断面斜視図、図23は、同断面図、図24は、ガス導入管の近傍の拡大図である。
上記実施の形態では、横型気相成長装置について説明したが、本発明は、図22および図23に示すような縦型気相成長装置にも適用可能である。縦型気相成長装置においては、円筒型チャンバからなる気相成長炉101に一重ないし多重略同心円状に基板4を配置し、中心部にはガス供給口が設けられている。ガス供給口は原料ガスの種類ごとに分離されていて、気相成長炉101の中心から外周方向に原料ガスを供給する。
この縦型気相成長装置においては、大気側と隔離される気相成長炉101の内部に、複数枚の基板4を保持する回転軸105で駆動されるサセプタ102が複数個設置される。気相成長炉101内には、上流路構成部材108および下流路構成部材109により、吹出口103から流出した原料ガスを導く、ガス流路110が形成されている。気相成長炉101の中心部にある三重管の原料ガス導入配管113から基板4に対し垂直方向に原料ガスが導入される。原料ガス導入配管113の外側には不活性ガス、内側にはそれぞれ違った反応性の原料ガスが導入されており、別々にガス流方向転換ノズル111を通過し、ガス流方向転換ノズル111で基板4の表面に沿う放射状のガス流を生成させている。ガス流方向転換ノズル111の下流側には、鍔状仕切り板114が配設されている。
鍔状仕切り板114の間には、側壁体としての、フッ素樹脂からなる整流板117が設けられている。この整流板117をフッ素樹脂で構成しているので、フッ素樹脂の適度な弾性により、整流板117の上下端に隙間が生じず、原料ガスの漏れを防止することができる。また、この整流板をフッ素樹脂で構成しているので、自由な形状に成型することができ、精密に原料ガスの流れを制御することができる。
なお、ガス整流用流路部品、ガス方向転換ノズル111なども、同様の理由で、フッ素樹脂で構成することが好ましい。
なお、今回開示した上記実施の形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施の形態のみによって解釈されるのではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
この発明に基づいた実施の形態1における気相成長装置の構造を示す図2のI−I矢視断面図である。 この発明に基づいた実施の形態1における気相成長装置の構造を示す図1のII−II矢視断面図である。 この発明に基づいた実施の形態1における上流部反応管の側面図である。 この発明に基づいた実施の形態1における上流部反応管の平面図である。 この発明に基づいた実施の形態1における上流部反応管の側壁体を示す平面図である。 この発明に基づいた実施の形態1における上流部反応管の底板を示す平面図である。 この発明に基づいた実施の形態1における図4におけるVII−VII矢視断面図である。 この発明に基づいた実施の形態1の変形例の、図4におけるVII−VII矢視断面図である。 この発明に基づいた実施の形態2における気相成長装置の構造を示す図10のIX−IX矢視断面図である。 この発明に基づいた実施の形態2における気相成長装置の構造を示す図9のX−X矢視断面図である。 この発明に基づいた実施の形態2における気相成長装置の上流部反応管の側面図である。 この発明に基づいた実施の形態2における気相成長装置の上流部反応管の平面図である。 この発明に基づいた実施の形態2における気相成長装置の上流部反応管の底板を示す平面図である。 この発明に基づいた実施の形態2における気相成長装置の側壁体を示す平面図である。 この発明に基づいた実施の形態2における気相成長装置の仕切り板を示す平面図である。 この発明に基づいた実施の形態3における気相成長装置の構造を示す図17のXVI−XVI矢視断面図である。 この発明に基づいた実施の形態3における気相成長装置の構造を示す図16のXVII−XVII矢視断面図である。 この発明に基づいた実施の形態3における気相成長装置の反応管の側面図である。 この発明に基づいた実施の形態3における気相成長装置の反応管の平面図である。 この発明に基づいた実施の形態3における気相成長装置の側壁体を示す平面図である。 この発明に基づいた実施の形態3における気相成長装置の底板を示す平面図である。 この発明に基づいた実施の形態4における気相成長装置を示す断面斜視図である。 この発明に基づいた実施の形態4における気相成長装置を示す断面図である。 この発明に基づいた実施の形態4におけるガス導入管の近傍の拡大図である。 従来の気相成長装置の構造を示す図26のXXV−XXV矢視断面図である。 従来の気相成長装置の構造を示す図25のXXVI−XXVI矢視断面図である。
符号の説明
1 チャンバ、2 反応管、3 原料ガス排気管、4 基板、6 加熱ヒータ、8,10 上流部反応管、9 中央部反応管、11 仕切り板、21 天板、22 底板、23 側壁体、24 ボルト、25 ナット、101 気相成長炉、114 鍔状仕切り板、117 整流板。

Claims (7)

  1. 原料ガスを導入する原料ガス導入部と、前記原料ガス導入部から導入された原料ガスとその内部に向かって保持された基板とを反応させる反応部と、前記反応部で基板と反応した原料ガスを排出する原料ガス排出部とを有する反応管を備えた気相成長装置であって、
    前記反応管の少なくとも一部は、少なくとも一対の板部材と前記板部材の間に挟持されたフッ素樹脂製の側壁体とで構成された流路構成部材で構成されている、気相成長装置。
  2. 前記反応部は、前記原料ガス導入部または前記原料ガス排出部の少なくとも一方と分割されており、
    前記反応部およびそれに連続する部分以外は、前記流路構成部材で構成されている、請求項1に記載の気相成長装置。
  3. 前記原料ガス導入部は、流路が複数層に分割された前記流路構成部材で構成され、
    前記流路構成部材は、複数に分割された側壁体の間に挟持され流路を上層と下層とに仕切る板部材により複数層に分割されている、請求項1または2に記載の気相成長装置。
  4. 前記原料ガス導入部の、ひとつの層には3族元素原料ガス供給源が接続され、他のひとつの層には5族元素原料ガス供給源が接続されている、請求項3に記載の気相成長装置。
  5. 前記板部材は、金属製である、請求項1から4のいずれかに記載の気相成長装置。
  6. 前記板部材を構成する金属は、ステンレス鋼、モリブデンまたはモリブデンを主成分とする合金である請求項5に記載の気相成長装置。
  7. 請求項1から6のいずれかに記載の気相成長装置を用いた気相成長方法であって、
    前記原料ガス導入部を介して前記反応部に原料ガスを導入する工程と、
    導入された原料ガスと基板とを反応部内で反応させる工程とを有する、気相成長方法。
JP2004320964A 2004-11-04 2004-11-04 気相成長装置および気相成長方法 Withdrawn JP2006135024A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320964A JP2006135024A (ja) 2004-11-04 2004-11-04 気相成長装置および気相成長方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320964A JP2006135024A (ja) 2004-11-04 2004-11-04 気相成長装置および気相成長方法

Publications (1)

Publication Number Publication Date
JP2006135024A true JP2006135024A (ja) 2006-05-25

Family

ID=36728311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320964A Withdrawn JP2006135024A (ja) 2004-11-04 2004-11-04 気相成長装置および気相成長方法

Country Status (1)

Country Link
JP (1) JP2006135024A (ja)

Similar Documents

Publication Publication Date Title
US10570508B2 (en) Film forming apparatus, film forming method and heat insulating member
TWI490366B (zh) Cvd腔室之流體控制特徵結構
US9777374B2 (en) Chemical vapor deposition device
US20180320266A1 (en) Chemical vapor deposition device
TWI589724B (zh) 熱絲化學氣相沉積腔室之噴頭設計
JP5172617B2 (ja) 気相成長装置及び気相成長方法
JP5779174B2 (ja) 半導体プロセス反応器及びその構成要素
KR20180054366A (ko) 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
KR20160110137A (ko) 직교류 반응기 및 방법
US20130269612A1 (en) Gas Treatment Apparatus with Surrounding Spray Curtains
CN102576667A (zh) 中空阴极喷头
TWI630282B (zh) 成膜裝置
TW200927295A (en) Multi-gas concentric injection showerhead
JPWO2005024928A1 (ja) ガス処理装置および放熱方法
US9328419B2 (en) Gas treatment apparatus with surrounding spray curtains
JP5051757B2 (ja) 気相成長装置および気相成長方法
EP1024210B1 (en) Apparatus and method for producing tungsten nitride film
JP2010027675A (ja) 気相成長装置
JP2006135024A (ja) 気相成長装置および気相成長方法
JP2007317770A (ja) 気相成長装置
US11555244B2 (en) High temperature dual chamber showerhead
TWI612176B (zh) 應用於沉積系統的氣體分配裝置
KR100972802B1 (ko) 샤워헤드를 구비한 반도체 소자 제조 장비
JP2009259907A (ja) 気相成長装置および半導体基板の製造方法
TWI822023B (zh) 氣體噴淋頭及化學氣相沉積設備

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108