JP2006133490A - Heat developing apparatus - Google Patents

Heat developing apparatus Download PDF

Info

Publication number
JP2006133490A
JP2006133490A JP2004322117A JP2004322117A JP2006133490A JP 2006133490 A JP2006133490 A JP 2006133490A JP 2004322117 A JP2004322117 A JP 2004322117A JP 2004322117 A JP2004322117 A JP 2004322117A JP 2006133490 A JP2006133490 A JP 2006133490A
Authority
JP
Japan
Prior art keywords
film
zone
curvature
guide
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004322117A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kido
一博 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2004322117A priority Critical patent/JP2006133490A/en
Publication of JP2006133490A publication Critical patent/JP2006133490A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photographic Developing Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat developing apparatus where, though the number of parts can be reduced and its miniaturization can be attained, the unevenness in concentration is suppressed, and a film sheet can be stably carried. <P>SOLUTION: The heat developing apparatus is provided with: a first zone 50 composed of fixed guides 51b, 52b having a heater 51c and counter rollers 51a, 52a pressing a film toward the fixed guides; a second zone 53 composed of a curvature guide 53b having a heater 53c and an another curvature guide 53a, and in which a prescribed gap d is formed between the curvature guides; and a cooling means 54 of cooling the film. The film progressing position of each curvature guide in the second zone lies at the position lower than the curvature center P thereof, the carrying direction to the second zone by the counter rollers is made into a separation direction from the center of the curvature guide, and further, the film is guided into the direction opposite to that of gravity via the second zone by the carrying force by the counter rollers. Each curvature guide in the second zone guides the film to the cooling means at the position lower than the curvature center thereof, and visualizes the latent image on the film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シートフィルム上に形成された潜像を可視化する熱現像装置に関するものである。   The present invention relates to a heat development apparatus for visualizing a latent image formed on a sheet film.

下記特許文献1は、柔軟層を有する加熱された加熱ドラムと、複数の対向ローラとの間で、シートフィルムを加熱することで、潜像の形成されたフィルムを現像する装置を開示する。下記特許文献2は、上記加熱ドラムの代わりに、3分割された固定ヒータを用い、当該ヒータ上でフィルムのBC面を摺動させて加熱する方式の装置を開示する。更に、下記特許文献3は、ドラムの外周に形成されたスリットにフィルムを通して加熱する熱現像装置を開示する。また、下記特許文献4は、露光〜現像〜冷却を連続的に行い露光処理と加熱処理とを並行して同時に行うようにし小型化した乾式濃淡画像処理装置を開示する。   Patent Document 1 below discloses an apparatus for developing a film on which a latent image is formed by heating a sheet film between a heated heating drum having a flexible layer and a plurality of opposing rollers. The following Patent Document 2 discloses an apparatus of a system in which a fixed heater divided into three is used instead of the heating drum, and the BC surface of the film is slid and heated on the heater. Further, Patent Document 3 below discloses a heat development apparatus that heats a film through a slit formed on the outer periphery of a drum. Patent Document 4 below discloses a dry gray image processing apparatus that is miniaturized so that exposure, development, and cooling are continuously performed, and exposure processing and heat treatment are simultaneously performed in parallel.

特許文献1〜3のように比較的大型機でも、特許文献4のような小型機でもフィルム搬送方向に均一な加熱方式を採用している。前者の装置では、均一な加熱方式による均一な画質の達成や、大量処理能力を発揮できるが、加熱工程の後半においては、必要以上の精度でフィルムを加熱搬送することとなり、小型化や部品点数削減によるコストダウンは期待できず、一方、後者に於いては、濃度むらが生じ易くまたフィルムの搬送姿勢を良好にすることが困難な場合があった。
特表平10−500497号公報 特開2003−287862号公報 米国特許明細書第3739143号 特開2002−162692号公報
Even a relatively large machine as in Patent Documents 1 to 3 and a small machine as in Patent Document 4 employ a uniform heating method in the film conveyance direction. The former device can achieve uniform image quality by using a uniform heating method and demonstrate a large amount of processing capacity, but in the latter half of the heating process, the film is heated and transported with more precision than necessary. Cost reduction due to reduction cannot be expected. On the other hand, in the latter case, uneven density tends to occur, and it is sometimes difficult to improve the film transport posture.
Japanese National Patent Publication No. 10-500497 JP 2003-287862 A U.S. Pat. No. 3,739,143 JP 2002-162692 A

本発明は、上述のような従来技術の問題に鑑み、部品点数を削減でき小型化が可能でありながら濃度むらを抑えかつフィルムシートを安定して搬送できる熱現像装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a thermal development apparatus that can reduce the number of parts and can be downsized while suppressing unevenness in density and stably transporting a film sheet. To do.

上記目的を達成するために、本発明者は鋭意検討の結果、熱現像プロセスがフィルムを熱現像温度まで昇温する昇温工程と、昇温されたフィルムを保温する保温工程とから成り立ち、前者の昇温工程において、フィルム全面にわたる均一加熱(言い換えると、フィルムと加熱部材との熱伝達上の密な接触)が重要であり、この均一加熱が保障されないと加熱むら(即ち、濃度むら)が発生し易く、後者の保温工程は加熱部材とフィルムとの密な接触は前者に比べそれほど重要では無いという知見を得て、かかる知見に基づき、上述の昇温工程・保温工程を実行可能にかつ搬送安定性及び小型化達成可能な熱現像装置構造に想到したものである。   In order to achieve the above-mentioned object, the present inventor, as a result of earnest studies, the heat development process comprises a temperature raising step for raising the temperature of the film to the heat development temperature and a heat retention step for keeping the heated film warm. In the temperature raising step, uniform heating over the entire surface of the film (in other words, close contact in heat transfer between the film and the heating member) is important. If this uniform heating is not guaranteed, uneven heating (that is, uneven concentration) occurs. It is easy to occur, and the latter heat retention process has acquired the knowledge that close contact between the heating member and the film is not so important as compared to the former, and based on such knowledge, the above-described temperature raising process and heat insulation process can be performed and The present inventors have conceived a heat developing device structure that can achieve conveyance stability and downsizing.

即ち、本発明による熱現像装置は、支持基体の片面上に熱現像感光材料が塗布されたシートフィルムを加熱しながら搬送し前記シートフィルム上に形成された潜像を可視化する熱現像装置であって、ヒータを有する固定ガイドと前記シートフィルムを前記固定ガイドに向けて押圧する回転駆動可能な対向ローラとで構成され搬送方向上流側に配置された第1ゾーンと、ヒータを有する曲率ガイドと別の曲率ガイドとで構成されそれら曲率ガイド間に所定の間隙が形成され搬送方向下流側に配置された第2ゾーンと、を有する加熱手段と、前記加熱手段で加熱された前記シートフィルムを冷却する冷却手段と、を備え、前記第2ゾーンの曲率ガイドのフィルム進入位置がその曲率中心よりも下方位置であり、前記対向ローラによる前記第2ゾーンへの搬送方向を前記曲率ガイドの中心から離間方向とするとともに、前記対向ローラによる搬送力により前記第2ゾーンを介して反重力方向に前記シートフィルムを案内するよう構成され、前記第2ゾーンの曲率ガイドは、その曲率中心よりも下方位置で前記冷却手段へ向け前記シートフィルムを案内することを特徴とする。   That is, the thermal development apparatus according to the present invention is a thermal development apparatus that visualizes a latent image formed on a sheet film that is conveyed while heating a sheet film coated with a photothermographic material on one side of a support substrate. A first zone which is composed of a fixed guide having a heater and a rotationally driven counter roller which presses the sheet film toward the fixed guide, and is arranged on the upstream side in the conveying direction; and a curvature guide having a heater. And a second zone that is formed on the downstream side in the conveying direction with a predetermined gap formed between the curvature guides, and the sheet film heated by the heating unit is cooled. Cooling means, and the film entrance position of the curvature guide of the second zone is a position below the center of curvature, and the second zone by the opposing roller The sheet film is guided in the anti-gravity direction via the second zone by the conveying force of the counter roller, and the conveyance direction to the curvature guide is a direction away from the center of the curvature guide. The curvature guide guides the sheet film toward the cooling means at a position below the center of curvature.

この熱現像装置によれば、第1ゾーンでシートフィルムを対向ローラにより固定ガイドに押圧して接触させながら加熱し昇温し、第2ゾーンで曲率ガイド間に形成されたスリット内においてシートフィルムを加熱し保温することで、濃度むらの発生を抑えながら迅速な熱現像プロセスを実現できる。また、第2ゾーンでは、第1ゾーンの対向ローラによる搬送力でスリット間において加熱(保温)しながら搬送できるので、搬送系の駆動部品が不要になり、またスリット寸法の精度もさほど要求されずに、更に、第2ゾーンは曲率ガイドで構成するので、装置の小型化及びコストダウンが可能になる。また、第2ゾーンを介して反重力方向にシートフィルムを案内し、その曲率ガイドは、その曲率中心よりも下方位置で冷却手段へ向けシートフィルムを案内するので、冷却工程に向けて搬送されるシートフィルムの姿勢を安定化できるとともに、隙間によるスリット部の揮発物質が上昇気流となり第2ゾーンから排出し易くなり好ましい。   According to this thermal development apparatus, in the first zone, the sheet film is heated and heated while being brought into contact with the fixed guide by the opposing roller, and in the second zone, the sheet film is placed in the slit formed between the curvature guides. By heating and keeping warm, a rapid thermal development process can be realized while suppressing the occurrence of density unevenness. Further, in the second zone, it can be conveyed while being heated (insulated) between the slits by the conveying force of the opposing roller of the first zone, so that no driving parts for the conveying system are required, and the accuracy of the slit dimensions is not required so much. Furthermore, since the second zone is constituted by a curvature guide, the apparatus can be reduced in size and cost. Further, the sheet film is guided in the antigravity direction through the second zone, and the curvature guide guides the sheet film toward the cooling means at a position below the center of curvature, so that the sheet film is conveyed toward the cooling process. It is preferable because the posture of the sheet film can be stabilized and the volatile substances in the slit portion due to the gaps become ascending currents and are easily discharged from the second zone.

上記熱現像装置において前記第2ゾーンへのフィルム進入部と、前記第2ゾーンからのフィルム排出部とがなす角度が90度以下であるように構成することが好ましい。   In the heat development apparatus, it is preferable that the angle formed by the film entrance portion to the second zone and the film discharge portion from the second zone is 90 degrees or less.

また、前記第1ゾーンは、ヒータをそれぞれ有する少なくとも2つの固定ガイドが前記搬送方向に並設されており、前記固定ガイドの内の上流側が熱現像開始温度以下まで加熱し、下流側が熱現像温度まで加熱するように構成することが好ましい。これにより、各固定ガイドの各ヒータを独立して制御し、上流側で室温から熱現像開始温度以下まで加熱することで、熱現像温度まで温度上昇させるよりもヒータにおける負荷変動が少なくなるため、下流側で熱現像温度まで上昇させる際の温度制御性を向上できる。   In the first zone, at least two fixed guides each having a heater are juxtaposed in the transport direction, the upstream side of the fixed guides is heated to a heat development start temperature or lower, and the downstream side is a heat development temperature. It is preferable to constitute so that it heats up to. Thereby, each heater of each fixed guide is controlled independently, and by heating from room temperature to the heat development start temperature or lower on the upstream side, the load fluctuation in the heater is less than the temperature rise to the heat development temperature. The temperature controllability at the time of raising to the heat development temperature on the downstream side can be improved.

本発明の熱現像装置によれば、部品点数を削減でき小型化が可能でありながら濃度むらを抑えかつフィルムシートを安定して搬送できる。   According to the heat development apparatus of the present invention, it is possible to reduce the number of parts and reduce the size, while suppressing density unevenness and stably conveying the film sheet.

以下、本発明を実施するための最良の形態について図面を用いて説明する。図1は本実施の形態による熱現像装置の要部を概略的に示す側面図である。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a side view schematically showing a main part of the heat development apparatus according to the present embodiment.

図1に示すように、本実施の形態の熱現像装置40は、PET等からなるシート状の支持基体の片面上に熱現像感光材料が塗布されたEC面と、EC面と反対面の支持基体側のBC面とを有するフィルムFを副走査搬送しながら光走査露光部55からのレーザ光LでEC面に潜像を形成し、次に、フィルムFをBC面側から加熱して現像し潜像を可視化し、曲率のある搬送経路を通して装置上方に搬送し排出するものである。   As shown in FIG. 1, the thermal development apparatus 40 of this embodiment includes an EC surface in which a photothermographic material is coated on one side of a sheet-like support base made of PET or the like, and a support opposite to the EC surface. A latent image is formed on the EC surface by the laser beam L from the optical scanning exposure unit 55 while the film F having the BC side on the substrate side is transported in the sub-scanning state, and then the film F is heated and developed from the BC surface side. Then, the latent image is visualized, conveyed to the upper part of the apparatus through a curved conveying path, and discharged.

図1の熱現像装置40は、装置筐体40aの底部近傍に設けられ未使用の多数枚のフィルムFを収納するフィルム収納部45と、フィルム収納部45の最上のフィルムFをピックアップして搬送するピックアップローラ46と、ピックアップローラ46からのフィルムFを搬送する搬送ローラ対47と、搬送ローラ対47からのフィルムFをガイドし搬送方向をほぼ反転させながらフィルムFを上下反転させて搬送するように曲面状に構成された曲面ガイド48と、曲面ガイド48からのフィルムFを副走査搬送するための搬送ローラ対49a,49bと、搬送ローラ対49aと49bとの間でフィルムFに画像データに基づいてレーザ光Lを光走査して露光することによりEC面に潜像を形成する光走査露光部55と、を備える。   The heat development apparatus 40 in FIG. 1 picks up and conveys a film storage section 45 provided near the bottom of the apparatus housing 40a for storing a large number of unused films F, and the uppermost film F in the film storage section 45. Pick-up roller 46 to be transported, transport roller pair 47 to transport film F from pick-up roller 46, and guide film F from transport roller pair 47 so that the film F is turned upside down and transported while substantially reversing the transport direction. A curved surface guide 48 configured in a curved surface, a pair of conveyance rollers 49a and 49b for sub-scanning conveyance of the film F from the curved surface guide 48, and the image data on the film F between the conveyance roller pairs 49a and 49b. And an optical scanning exposure unit 55 that forms a latent image on the EC surface by performing optical scanning with the laser beam L and performing exposure.

熱現像装置40は、更に、潜像の形成されたフィルムFをBC面側から加熱し所定の熱現像温度まで昇温させる昇温部50と、昇温されたフィルムFを加熱して所定の熱現像温度に保温する保温部53と、加熱されたフィルムFをBC面側から冷却する冷却部54と、冷却部54の出口側に配置されてフィルムFの濃度を測定する濃度計56と、濃度計56からのフィルムFを排出する搬送ローラ対57と、搬送ローラ対57で排出されたフィルムFが載置されるように装置筐体40aの上面に傾斜して設けられたフィルム載置部58と、を備える。   The thermal developing device 40 further heats the film F on which the latent image is formed from the BC surface side to raise the temperature to a predetermined heat development temperature, and heats the heated film F to a predetermined temperature. A heat retaining section 53 that retains the heat development temperature, a cooling section 54 that cools the heated film F from the BC surface side, a densitometer 56 that is disposed on the outlet side of the cooling section 54 and measures the density of the film F, A transport roller pair 57 that discharges the film F from the densitometer 56, and a film mounting portion that is provided on the upper surface of the apparatus housing 40a so that the film F discharged by the transport roller pair 57 is mounted. 58.

図1のように、熱現像装置40では、装置筐体40aの底部から上方に向けて、フィルム収納部45、基板部59、搬送ローラ対49a,49b・昇温部50・保温部53(上流側)の順に配置されており、フィルム収納部45が最下方にあり、また昇温部50・保温部53との間に基板部59があるので、熱影響を受け難くなっている。   As shown in FIG. 1, in the thermal development device 40, upward from the bottom of the apparatus housing 40 a, the film storage unit 45, the substrate unit 59, the conveyance roller pairs 49 a and 49 b, the temperature raising unit 50, and the heat retaining unit 53 (upstream). The film storage portion 45 is at the lowermost position, and the substrate portion 59 is provided between the temperature raising portion 50 and the heat retaining portion 53, so that it is not easily affected by heat.

また、副走査搬送の搬送ローラ対49a,49bから昇温部50までの搬送路は比較的短く構成されているので、光走査露光部55によりフィルムFに対し露光が行われながらフィルムFの先端側では昇温部50、保温部53で熱現像加熱が行われる。   Further, since the conveyance path from the pair of conveyance rollers 49a and 49b for the sub-scan conveyance to the temperature raising unit 50 is configured to be relatively short, the front end of the film F is exposed while the light F is exposed to the film F by the optical scanning exposure unit 55. On the side, heat development heating is performed by the temperature raising unit 50 and the heat retaining unit 53.

昇温部50と保温部53とで加熱部を構成し、フィルムFを熱現像温度まで加熱し熱現像温度に保持する。昇温部50は、フィルムFを上流側で熱現像開始温度以下まで加熱する第1の加熱部51と、下流側で熱現像温度まで加熱する第2の加熱部52と、を有する。   The temperature raising part 50 and the heat retaining part 53 constitute a heating part, and the film F is heated to the heat development temperature and maintained at the heat development temperature. The temperature raising unit 50 includes a first heating unit 51 that heats the film F to the heat development start temperature or lower on the upstream side, and a second heating unit 52 that heats the film F to the heat development temperature on the downstream side.

第1の加熱部51は、アルミニウム等の金属材料からなり固定された平面状の加熱ガイド51bと、加熱ガイド51bの裏面に密着されたシリコンラバーヒータ等からなる平面状の加熱ヒータ51cと、加熱ガイド51bの固定ガイド面51dにフィルムを押圧可能にフィルム厚さよりも狭い隙間を維持するように配置されかつ表面が金属等に比べ熱絶縁性のあるシリコンゴム等からなる複数の対向ローラ51aと、を有する。   The first heating unit 51 includes a planar heating guide 51b made of a metal material such as aluminum and fixed, a planar heating heater 51c made of a silicon rubber heater or the like in close contact with the back surface of the heating guide 51b, A plurality of opposing rollers 51a made of silicon rubber or the like, which is arranged so as to maintain a gap narrower than the film thickness so that the film can be pressed against the fixed guide surface 51d of the guide 51b and whose surface is thermally insulating compared to metal or the like; Have

第2の加熱部52は、アルミニウム等の金属材料からなり固定された平面状の加熱ガイド52bと、加熱ガイド52bの裏面に密着されたシリコンラバーヒータ等からなる平面状の加熱ヒータ52cと、加熱ガイド52bの固定ガイド面52dにフィルムを押圧可能にフィルム厚さよりも狭い隙間を維持するように配置されかつ表面が金属等に比べ熱絶縁性のあるシリコンゴム等からなる複数の対向ローラ52aと、を有する。   The second heating unit 52 includes a planar heating guide 52b made of a metal material such as aluminum and fixed, a planar heating heater 52c made of a silicon rubber heater or the like in close contact with the back surface of the heating guide 52b, A plurality of opposing rollers 52a made of silicon rubber or the like, which is arranged to maintain a gap narrower than the film thickness so that the film can be pressed against the fixed guide surface 52d of the guide 52b, and whose surface is more thermally insulating than metal or the like; Have

保温部53は、アルミニウム等の金属材料からなり所定の曲率で構成され固定された加熱ガイド53bと、曲面状の加熱ガイド53bの裏面に密着されたシリコンラバーヒータ等からなる曲面状の加熱ヒータ53cと、加熱ガイド53bの表面の固定ガイド面53dに対し所定の隙間(スリット)dを有するように対向して配置され所定の曲率で構成された断熱材等からなる曲面ガイド53aと、を有する。   The heat retaining section 53 is made of a metal material such as aluminum and has a heating guide 53b configured and fixed with a predetermined curvature, and a curved heater 53c made of a silicon rubber heater or the like that is in close contact with the back surface of the curved heating guide 53b. And a curved surface guide 53a made of a heat insulating material or the like, which is arranged to face the fixed guide surface 53d on the surface of the heating guide 53b so as to have a predetermined gap (slit) d and is configured with a predetermined curvature.

昇温部50の第1の加熱部51では、昇温部50の上流側から搬送ローラ対49a,49bにより搬送されてきたフィルムFが回転駆動された各対向ローラ51aにより固定ガイド面51dに押圧されることでBC面が固定ガイド面51dに密に接触して加熱されながら搬送されるようになっている。   In the first heating unit 51 of the temperature raising unit 50, the film F conveyed by the conveying roller pairs 49a and 49b from the upstream side of the temperature raising unit 50 is pressed against the fixed guide surface 51d by the respective opposed rollers 51a that are rotationally driven. As a result, the BC surface comes into close contact with the fixed guide surface 51d and is conveyed while being heated.

第2の加熱部52でも同様に、第1の加熱部51から搬送されてきたフィルムFが回転駆動された各対向ローラ52aにより固定ガイド面52dに押圧されることでBC面が固定ガイド面51dに密に接触して加熱されながら搬送されるようになっている。   Similarly, in the second heating unit 52, the BC surface is fixed to the fixed guide surface 51d by pressing the film F conveyed from the first heating unit 51 against the fixed guide surface 52d by each counter roller 52a that is rotationally driven. It is conveyed while being in close contact with and heated.

フィルムFは昇温部50において第1、第2の加熱部51,52の平面状の固定ガイド面51d、52dにより直線的に搬送されるが、これに対応して、フィルムFが第1の加熱部51に向け搬送ローラ対49a,49bにより直線的に搬送されるので、フィルムFの先端が第1の加熱部51の最上流の対向ローラ51aに突入するときの衝撃が低下する。   The film F is linearly conveyed by the flat fixed guide surfaces 51d and 52d of the first and second heating units 51 and 52 in the temperature raising unit 50. Correspondingly, the film F is the first one. Since it is linearly conveyed by the conveyance roller pair 49a, 49b toward the heating unit 51, the impact when the leading edge of the film F enters the uppermost counter roller 51a of the first heating unit 51 is reduced.

保温部53のフィルム進入口53eは所定曲率の加熱ガイド53bの曲率中心Pを通る水平線gよりも下方位置にあり、フィルム排出口53fも曲率中心Pを通る水平線gよりも下方位置にあり、保温部53がフィルムをフィルム排出口53fから冷却部54へ向けて案内するようになっている。   The film entrance 53e of the heat retaining section 53 is located below the horizontal line g passing through the center of curvature P of the heating guide 53b having a predetermined curvature, and the film outlet 53f is located below the horizontal line g passing through the center of curvature P. The part 53 guides the film from the film discharge port 53f toward the cooling part 54.

図1では、保温部53のフィルム進入口53eと、フィルム排出口53fとがなす角度が90度以下であるように構成される。即ち、保温部53においてフィルムは、保温部53のフィルム進入口53eに対し昇温部50の第2の加熱部52から対向ローラ52aによりほぼ水平方向に搬送され、また、フィルム排出口53fから鉛直方向に若干傾いた方向に排出され、冷却部54に向かうようになっている。   In FIG. 1, the angle formed by the film entrance 53 e of the heat retaining unit 53 and the film discharge port 53 f is configured to be 90 degrees or less. That is, in the heat retaining portion 53, the film is conveyed in a substantially horizontal direction from the second heating portion 52 of the temperature raising portion 50 to the film entrance 53e of the heat retaining portion 53 by the opposing roller 52a, and vertically from the film discharge port 53f. It is discharged in a direction slightly inclined to the direction and is directed to the cooling unit 54.

このように、保温部54では、上流側の第2の加熱部52の対向ローラ52aによるフィルム搬送方向を曲率ガイドの中心Pから離間方向とするとともに、対向ローラ52a、51aによる搬送力により保温部54の隙間dで徐々にその搬送方向を変えることで、保温部54を介して反重力方向にフィルムを案内する。   As described above, in the heat retaining section 54, the film transport direction by the facing roller 52a of the second heating section 52 on the upstream side is set to the separation direction from the center P of the curvature guide, and the heat retaining section is driven by the transport force by the facing rollers 52a and 51a. The film is guided in the antigravity direction via the heat retaining portion 54 by gradually changing the transport direction in the gap d of 54.

冷却部54では、保温部53からほぼ垂直方向に搬送されてきたフィルムFを金属材料等からなる冷却プレート54bの冷却ガイド面54cに対向ローラ54aにより接触させて冷却しながら、垂直方向から次第に斜め方向にフィルムFの向きをフィルム載置部58に変えて搬送するようになっている。なお、冷却プレート54bをフィン付きのヒートシンク構造とすることで冷却効果を増すことができる。冷却プレート54bの一部をフィン付きのヒートシンク構造にしてもよい。   In the cooling unit 54, the film F conveyed in the substantially vertical direction from the heat retaining unit 53 is cooled by being brought into contact with the cooling guide surface 54c of the cooling plate 54b made of a metal material or the like by the opposing roller 54a and cooling from the vertical direction. The direction of the film F is changed to the film mounting part 58 in the direction and conveyed. The cooling effect can be increased by making the cooling plate 54b a finned heat sink structure. A part of the cooling plate 54b may have a heat sink structure with fins.

冷却部54から出た冷却されたフィルムFは濃度計56で濃度測定され、搬送ローラ対57により搬送されてフィルム載置部58へと排出される。フィルム載置部58は複数枚のフィルムFを一時的に載置しておくことができる。   The cooled film F coming out of the cooling unit 54 is subjected to density measurement by a densitometer 56, conveyed by a conveying roller pair 57, and discharged to a film placement unit 58. The film placing unit 58 can temporarily place a plurality of films F.

上述のように、図1の熱現像装置40では、フィルムFは、昇温部50及び保温部53においてBC面が加熱状態の固定ガイド面51d、52d、53dに向いており、熱現像感光材料の塗布されたEC面が開放された状態で搬送される。また、冷却部54では、フィルムFは、BC面が冷却ガイド面54cに接触し冷却され、熱現像材料が塗布されたEC面が開放された状態で搬送される。   As described above, in the heat development apparatus 40 of FIG. 1, the film F has the BC surface facing the fixed guide surfaces 51d, 52d, 53d in the heated state in the temperature raising portion 50 and the heat retaining portion 53, and the photothermographic material. The coated EC surface is conveyed in an open state. In the cooling unit 54, the film F is conveyed with the BC surface contacting the cooling guide surface 54c and cooled, and the EC surface coated with the heat developing material is opened.

また、フィルムFは、昇温部50及び保温部53において対向ローラ51a、52aによりフィルムFの加熱時間が10秒以下となるように搬送される。   The film F is transported by the opposing rollers 51a and 52a in the temperature raising unit 50 and the heat retaining unit 53 so that the heating time of the film F is 10 seconds or less.

以上のように、図1の熱現像装置40によれば、均一熱伝達が必要な昇温部50において、加熱ガイド51b、52bと、フィルムFを加熱ガイド51b、52bに押圧する複数の対向ローラ51a,52aとによりフィルムFを固定ガイド面51d、52dに密着させることで接触伝熱を確保しながらフィルムFを搬送するので、濃度むらの発生を抑えた高品質の画質を得ることができる。   As described above, according to the heat development apparatus 40 of FIG. 1, in the temperature raising unit 50 that requires uniform heat transfer, the heating guides 51b and 52b and the plurality of opposed rollers that press the film F against the heating guides 51b and 52b. Since the film F is transported while ensuring contact heat transfer by bringing the film F into close contact with the fixed guide surfaces 51d and 52d by means of 51a and 52a, it is possible to obtain a high-quality image with reduced density unevenness.

また、熱現像温度への昇温後は、保温部53で加熱ガイド53bの固定ガイド面53dと曲面ガイド53aとの間の隙間dにフィルムを搬送し、特に固定ガイド面53dに密着させずに隙間dにおいて加熱(固定ガイド面53dに直接接触し伝熱加熱する、及び/又は、周囲の高温空気との接触による伝熱)しても、フィルム温度は現像温度(例えば123℃)に対し所定の範囲内(例えば0.5℃)に収まる。このように、フィルムが隙間dにおいて加熱ガイド53bの壁面または曲面ガイド53aの壁面のどちらに沿って搬送されても、フィルム温度差は0.5℃未満であり、均一な保温状態を維持できるので、仕上がりフィルムにおける濃度むら発生の虞はほとんど生じない。このため、保温部53にローラ等の駆動部品を設ける必要がないので、点数削減を達成できる。   Further, after the temperature is raised to the heat development temperature, the film is transported to the gap d between the fixed guide surface 53d of the heating guide 53b and the curved surface guide 53a by the heat retaining section 53, and in particular without being in close contact with the fixed guide surface 53d. Even if heating is performed in the gap d (direct heat contact with the fixed guide surface 53d and / or heat transfer by contact with the surrounding high-temperature air), the film temperature is predetermined with respect to the developing temperature (for example, 123 ° C.). Within the range (for example, 0.5 ° C.). Thus, regardless of whether the film is conveyed along the wall surface of the heating guide 53b or the curved surface guide 53a in the gap d, the film temperature difference is less than 0.5 ° C., and a uniform heat-retaining state can be maintained. There is almost no risk of density unevenness in the finished film. For this reason, since it is not necessary to provide drive parts, such as a roller, in the heat retention part 53, a score reduction can be achieved.

また、保温部53を介して反重力方向にフィルムを案内し、保温部53の曲率ガイドが曲率中心Pよりも下方位置で冷却部54へ向けフィルムを案内するので、鉛直方向に搬送されるフィルムに比べて搬送されるフィルムの姿勢を安定化できるとともに、隙間dにおいて保温部53内で発生した揮発物質が上昇気流となり保温部53から排出し易くなり好ましい。   Further, the film is guided in the antigravity direction via the heat retaining portion 53, and the curvature guide of the heat retaining portion 53 guides the film toward the cooling portion 54 at a position below the center of curvature P, so the film conveyed in the vertical direction. Compared to the above, it is possible to stabilize the posture of the film being transported, and the volatile matter generated in the heat retaining portion 53 in the gap d becomes a rising airflow and is easily discharged from the heat retaining portion 53, which is preferable.

更に、フィルムFの加熱時間が10秒以下で済むので、迅速な熱現像プロセスを実現でき、また、保温部53が曲面状になって垂直方向に向くよう構成され、フィルムFは冷却部54でフィルムFの向きをほぼ反転させてフィルム載置部58へと排出されるので、装置レイアウトに応じて冷却部54を所定の曲率とすることで、設置面積の小型化・装置全体の小型化に対応可能となる。   Further, since the heating time of the film F is 10 seconds or less, a rapid heat development process can be realized, and the heat retaining portion 53 is configured to be curved and face in the vertical direction. Since the direction of the film F is almost reversed and discharged to the film placement unit 58, the cooling unit 54 has a predetermined curvature according to the apparatus layout, thereby reducing the installation area and the entire apparatus. It becomes possible to respond.

従来の大型機ではフィルムを現像温度に昇温以降の保温機能で充分な部分にも、昇温部と同一な加熱搬送機構としていたため、結果的に不必要な部材を使用してしまっており、部品点数の増加やコストアップを招いており、また、従来の小型機では昇温時の熱伝達を保障し難いため濃度むら発生の問題があり高画質の保障が困難であったのに対し、本実施の形態によれば、熱現像プロセスを昇温部50と保温部53とで別々に実行することで、かかる問題をいずれも解消することができる。   In conventional large machines, the film was heated to the developing temperature and the heat-retaining function after the temperature was raised had the same heating and transport mechanism as the temperature-raising part. As a result, unnecessary parts were used. However, the increase in the number of parts and the cost increase, and in the conventional small machine, it is difficult to guarantee heat transfer at the time of temperature rise, so there is a problem of uneven density, and it is difficult to guarantee high image quality. According to the present embodiment, the thermal development process is separately performed by the temperature raising unit 50 and the heat retaining unit 53, so that all of these problems can be solved.

また、フィルムFを昇温部50及び保温部53で熱現像感光材料の塗布されたEC面が開放された状態でBC面側から加熱することで、10秒以下の迅速処理で熱現像プロセスを実行する際に、EC面側の開放により、加熱され揮発(蒸発)しようとするフィルムFに含まれる溶媒(水分、有機溶剤等)が最短距離で離散するので、加熱時間(揮発時間)が短くなっても時間短縮の影響を受け難くなるとともに、部分的にフィルムFと固定ガイド面51d、52dとの接触性が悪い部分があっても、BC面のPETベースによる熱拡散効果により、接触性の良い部分との温度差が緩和され、結果として濃度差が起こりにくいので、濃度を安定化でき、画質が安定する。なお、一般的に加熱効率を考慮すると、EC面側加熱の方が良いと考えられていたが、フィルムFの支持基体のPETの熱伝導率0.17W/m℃、PETベースの厚さ170μm前後であることを考慮すると、時間遅れはわずかであり、ヒータ容量アップ等で容易に相殺可能であり、上記の接触むらを緩和する効果の方が期待できる方が好ましい。   In addition, the film F is heated from the BC side with the temperature raising unit 50 and the heat retaining unit 53 with the EC surface coated with the photothermographic material open, so that the thermal development process can be performed in a rapid process of 10 seconds or less. When performing, since the solvent (moisture, organic solvent, etc.) contained in the film F to be heated and volatilized (evaporated) is dispersed at the shortest distance by opening the EC surface side, the heating time (volatilization time) is short. However, even if there is a part where the contact between the film F and the fixed guide surfaces 51d and 52d is partially poor, the thermal diffusion effect by the PET base on the BC surface causes a contact property. The temperature difference from the good portion is relaxed, and as a result, the density difference hardly occurs, so that the density can be stabilized and the image quality is stabilized. In general, considering the heating efficiency, the EC surface side heating was considered to be better. However, the thermal conductivity of PET of the support base of the film F was 0.17 W / m ° C., and the PET base thickness was 170 μm. Considering the fact that it is before and after, it is preferable that the time delay is slight and can be easily offset by increasing the heater capacity, etc., and the effect of reducing the contact unevenness can be expected.

更に、保温部53を出て、冷却部54に至る間にもフィルムF中の溶媒(水分、有機溶剤等)は高温であるため揮発(蒸発)しようとしているが、冷却部54でもフィルムFのEC面が開放状態であるので、溶媒(水分、有機溶剤等)がトラップされず、より長い時間、揮発させることになるので、より画質(濃度)が安定する。このように、迅速処理時には冷却時間も無視できず、加熱時間10秒以下の迅速処理には特に有効となる。   Further, the solvent (water, organic solvent, etc.) in the film F is going to volatilize (evaporate) while leaving the heat retaining part 53 and reaching the cooling part 54, but the cooling part 54 also has the film F Since the EC surface is in an open state, the solvent (water, organic solvent, etc.) is not trapped and is volatilized for a longer time, so the image quality (density) is more stable. Thus, the cooling time cannot be ignored during the rapid processing, and is particularly effective for the rapid processing with a heating time of 10 seconds or less.

次に、本実施の形態における熱現像プロセスの迅速処理について図2を参照して説明する。図2(a)は図1の熱現像装置40における熱現像プロセスの第1の迅速処理方法における温度プロファイルを示すグラフであり、図2(b)は第2の迅速処理方法における温度プロファイルを示すグラフである。   Next, rapid processing of the thermal development process in the present embodiment will be described with reference to FIG. FIG. 2A is a graph showing a temperature profile in the first rapid processing method of the thermal development process in the thermal development apparatus 40 of FIG. 1, and FIG. 2B shows a temperature profile in the second rapid processing method. It is a graph.

第1の迅速処理方法は、図2(a)に示すように、図1の熱現像装置40におけるフィルムの全処理時間Aを短縮するために加熱時間Bをより短くするものである。このために、現像最適温度Eまでの昇温時間Cをより短くするべく、昇温部50においてフィルムFを対向ローラ51a,52aで付勢し固定ガイド面51d、52dに密に接触させている。   In the first rapid processing method, as shown in FIG. 2A, the heating time B is shortened in order to shorten the total film processing time A in the heat developing apparatus 40 of FIG. Therefore, in order to shorten the temperature rising time C to the optimum developing temperature E, the film F is urged by the opposing rollers 51a and 52a in the temperature increasing portion 50 so as to be in close contact with the fixed guide surfaces 51d and 52d. .

そして、フィルムFが現像最適温度Eに達した後、保温部53においてフィルムFを保温時間Dに熱現像温度で保温する。保温部53では、上述の通り、隙間(スリット)d内を対向ローラ等の付勢手段は無しで固定ガイド面53dに密着させないで搬送する。なお、図2(a)の冷却部における急冷は、冷却部54にヒートシンクや冷却ファン等を配置することで実現できる。   Then, after the film F reaches the optimum development temperature E, the heat retaining portion 53 keeps the film F at the heat development temperature during the heat retention time D. As described above, the heat retaining unit 53 conveys the gap (slit) d without contacting the fixed guide surface 53d without any biasing means such as a counter roller. The rapid cooling in the cooling unit of FIG. 2A can be realized by arranging a heat sink, a cooling fan, or the like in the cooling unit 54.

上述のようにして、加熱時間B(昇温時間C+保温時間D)を従来の14秒前後から10秒以下に短縮でき、全処理時間Aを短縮することができる。   As described above, the heating time B (temperature increase time C + heat retention time D) can be shortened from about 14 seconds to 10 seconds or less, and the total processing time A can be shortened.

また、第2の迅速処理方法は、図2(b)に示すように、図1の熱現像装置40におけるフィルムの全処理時間Aを短縮するために、フィルムで現像反応が起こる100℃以上の温度域で加熱する時間Bをより短くするものである。このために、現像最適温度Eまでの昇温時間Cをより短くするべく、昇温部50の第2の加熱部52においてフィルムFを対向ローラ52aで付勢し固定ガイド面51dに密に接触させている。   In addition, as shown in FIG. 2B, the second rapid processing method has a temperature of 100 ° C. or more at which the development reaction occurs in the film in order to shorten the total processing time A of the film in the thermal development apparatus 40 of FIG. The time B for heating in the temperature range is further shortened. For this purpose, the film F is urged by the opposing roller 52a in the second heating part 52 of the temperature raising part 50 to make the temperature raising time C to the optimum developing temperature E shorter, and is in close contact with the fixed guide surface 51d. I am letting.

そして、フィルムFが現像最適温度Eに達した後、保温部53においてフィルムFを保温時間Dに熱現像温度で保温する。保温部53では、上述の通り、隙間(スリット)d内を対向ローラ等の付勢手段は無しで固定ガイド面53dに密着させないで搬送する。なお、図2(b)の冷却部における急冷は、冷却部54でヒートシンクや冷却ファン等を配置することで実現できる。   Then, after the film F reaches the optimum development temperature E, the heat retaining portion 53 keeps the film F at the heat development temperature during the heat retention time D. As described above, the heat retaining unit 53 conveys the gap (slit) d without contacting the fixed guide surface 53d without any biasing means such as a counter roller. The rapid cooling in the cooling unit in FIG. 2B can be realized by arranging a heat sink, a cooling fan, or the like in the cooling unit 54.

上述のようにして、加熱時間B(昇温時間C+保温時間D)を従来の14秒前後から10秒以下に短縮でき、全処理時間Aを短縮することができる。   As described above, the heating time B (temperature increase time C + heat retention time D) can be shortened from about 14 seconds to 10 seconds or less, and the total processing time A can be shortened.

また、昇温部50では、図2(b)のように、フィルムFを上流側の第1の加熱部51で熱現像開始温度(例えば、100℃)以下まで予備的に加熱し、下流側の第2の加熱部52で熱現像温度まで加熱するように各加熱部51,52の加熱ヒータ51c、52cの温度制御を独立して行い、上流側で室温から熱現像開始温度以下まで加熱することで、室温から熱現像温度まで温度上昇させるよりも特に加熱ヒータ52cにおける負荷変動が少なくなるため、下流側の加熱ヒータ52cで熱現像温度まで上昇させる際の温度制御性を向上でき、現像促進温度域での第2の加熱部52での温度変動を抑制でき、また、急激な熱膨張によるフィルムの皺状変形を抑制できる。   Further, in the temperature raising unit 50, as shown in FIG. 2 (b), the film F is preliminarily heated to the heat development start temperature (for example, 100 ° C.) or lower by the first heating unit 51 on the upstream side, and the downstream side The heaters 51c and 52c of the heating units 51 and 52 are independently controlled so as to be heated to the heat development temperature by the second heating unit 52, and heated from room temperature to the heat development start temperature or lower on the upstream side. As a result, the load fluctuation in the heater 52c is particularly less than when the temperature is increased from room temperature to the thermal development temperature. Therefore, the temperature controllability when the temperature is raised to the thermal development temperature by the downstream heater 52c can be improved, and development is accelerated. Temperature fluctuations in the second heating unit 52 in the temperature range can be suppressed, and wrinkle-like deformation of the film due to rapid thermal expansion can be suppressed.

上述のように、本実施の形態の熱現像装置によれば、特に設置面積的な占有を抑制しかつ画質を維持できる効果を発揮し、特に、小型装置の場合、装置内では加熱部からの上昇気流が発生し温度上昇し易くなるので、フィルムの収納部45は本体の底部に設けることが好ましく、この底部に設けた収納部45を用いたとき、占有面積を増大することがなく、好ましい。なお、フィルム収納部45において、フィルムFはEC面が下向きに配置されているため、EC面からの溶媒揮発が最上位のフィルムでも最下位のフィルムでも一定になり易くかつ異物の堆積がないので、微小白点が生じ難い。   As described above, according to the thermal development apparatus of the present embodiment, the effect of suppressing the occupation of the installation area and maintaining the image quality can be exhibited, particularly in the case of a small apparatus, from the heating unit in the apparatus. Since the rising airflow is generated and the temperature rises easily, the film storage portion 45 is preferably provided at the bottom portion of the main body, and when the storage portion 45 provided at the bottom portion is used, the occupied area is not increased, which is preferable. . In the film storage unit 45, since the EC surface of the film F is arranged downward, the solvent volatilization from the EC surface tends to be constant in both the uppermost film and the lowermost film, and no foreign matter is deposited. , It is difficult to produce minute white spots.

以上のように本発明を実施するための最良の形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、図1の保温部53は図3のように構成してもよい。即ち、図3の保温部63は、アルミニウム等の金属材料からなり所定の曲率で構成され固定された加熱ガイド63bと、曲面状の加熱ガイド63bの裏面に密着されたシリコンラバーヒータ等からなる曲面状の加熱ヒータ63cと、加熱ガイド63bの表面の固定ガイド面63dに対し所定の隙間(スリット)dを有するように対向して配置され所定の曲率で構成された断熱材等からなる曲面ガイド63aと、を有する。   As described above, the best mode for carrying out the present invention has been described. However, the present invention is not limited to these, and various modifications are possible within the scope of the technical idea of the present invention. For example, the heat retaining unit 53 of FIG. 1 may be configured as shown in FIG. That is, the heat retaining portion 63 in FIG. 3 is a curved surface composed of a heating guide 63b made of a metal material such as aluminum and having a predetermined curvature and fixed, and a silicon rubber heater closely attached to the back surface of the curved heating guide 63b. Curved heater 63c, and curved guide 63a made of a heat insulating material or the like arranged with a predetermined curvature so as to have a predetermined gap (slit) d with respect to fixed guide surface 63d on the surface of heating guide 63b And having.

図3の保温部63のフィルム進入口63eに対しフィルムが図1の昇温部50とほぼ同様に構成された昇温部60から斜め下方に搬送される。保温部63のフィルム進入口63e及びフィルム排出口63fは所定曲率の加熱ガイド63bの曲率中心P’を通る水平線よりも下方位置にあり、曲率中心P’を基準としてフィルム進入口63eとフィルム排出口63fとがなす角度が90度以上180度未満となっている。保温部53で加熱(保温)されたフィルムが保温部63のフィルム排出口63fから図1の冷却部54とほぼ同様の構成の冷却部64へ向けて案内される。このように、保温部64では、上流側の昇温部60の対向ローラ62aによるフィルム搬送方向を曲率ガイドの中心P’から離間方向とするとともに、対向ローラ62a等による搬送力により保温部64の隙間dで徐々にその搬送方向を下向きから上向きへと変えることで、保温部64を介して反重力方向にフィルムを案内する。   The film is conveyed obliquely downward from the temperature raising unit 60 configured substantially the same as the temperature raising unit 50 of FIG. 1 with respect to the film entrance 63e of the heat retaining unit 63 of FIG. The film entrance 63e and the film discharge port 63f of the heat retaining section 63 are located below the horizontal line passing through the center of curvature P ′ of the heating guide 63b having a predetermined curvature, and the film entrance 63e and the film discharge port are based on the center of curvature P ′. The angle formed by 63f is 90 degrees or more and less than 180 degrees. The film heated (insulated) by the heat retaining unit 53 is guided from the film discharge port 63f of the heat retaining unit 63 toward the cooling unit 64 having substantially the same configuration as the cooling unit 54 of FIG. As described above, in the heat retaining section 64, the film transport direction by the opposing roller 62a of the upstream temperature raising section 60 is set to the separation direction from the center P ′ of the curvature guide, and the heat retaining section 64 The film is guided in the antigravity direction via the heat retaining unit 64 by gradually changing the transport direction from downward to upward in the gap d.

以上のように、図3の保温部63には、図1の保温部53と同様にローラ等の駆動部品を設ける必要がないので、点数削減を達成できるとともに、保温部63を介して反重力方向にフィルムを案内し、保温部63の曲率ガイドが曲率中心P’よりも下方位置で冷却部64へ向けフィルムを案内するので、鉛直方向に搬送されるフィルムに比べて搬送されるフィルムの姿勢を安定化できるとともに、隙間dにおいて保温部63内で発生した揮発物質が上昇気流となり保温部63から排出し易くなり好ましい。   As described above, since it is not necessary to provide driving parts such as rollers in the heat retaining unit 63 in FIG. 3 as in the heat retaining unit 53 in FIG. 1, the number of points can be reduced, and the antigravity can be achieved via the heat retaining unit 63. Since the film is guided in the direction and the curvature guide of the heat retaining unit 63 guides the film toward the cooling unit 64 at a position below the curvature center P ′, the posture of the film conveyed compared to the film conveyed in the vertical direction Can be stabilized, and the volatile matter generated in the heat retaining portion 63 in the gap d becomes a rising airflow and is easily discharged from the heat retaining portion 63, which is preferable.

本実施の形態による熱現像装置の要部を概略的に示す側面図である。It is a side view which shows roughly the principal part of the heat development apparatus by this Embodiment. 図2(a)は図1の熱現像装置40における熱現像プロセスの第1の迅速処理方法における温度プロファイルを示すグラフであり、図2(b)は第2の迅速処理方法における温度プロファイルを示すグラフである。FIG. 2A is a graph showing a temperature profile in the first rapid processing method of the thermal development process in the thermal development apparatus 40 of FIG. 1, and FIG. 2B shows a temperature profile in the second rapid processing method. It is a graph. 図1の熱現像装置の保温部の変形例を概略的に示す要部側面図である。It is a principal part side view which shows schematically the modification of the heat retention part of the heat development apparatus of FIG.

符号の説明Explanation of symbols

40 熱現像装置
40a 装置筐体
45 フィルム収納部
48 曲面ガイド
49a,49b 搬送ローラ対
50 昇温部(第1ゾーン)
51 第1の加熱部
51a 対向ローラ
51b 加熱ガイド
51c 加熱ヒータ
51d 固定ガイド面
52 第2の加熱部
52a 対向ローラ
52b 加熱ガイド
52c 加熱ヒータ
52d 固定ガイド面
53 保温部(第2ゾーン)
53a 曲面ガイド
53b 加熱ガイド
53c 加熱ヒータ
53d 固定ガイド面
53e フィルム進入口
53f フィルム排出口
54 冷却部
54a 対向ローラ
54b 冷却プレート
54c 冷却ガイド面
55 光走査露光部
63 保温部(第2ゾーン)
63a 曲面ガイド
63b 加熱ガイド
63c 加熱ヒータ
63e フィルム進入口
63f フィルム排出口
F フィルム、シートフィルム
d 隙間
P、P’ 曲率ガイドの曲率中心

40 Heat Development Device 40a Device Housing 45 Film Storage Unit 48 Curved Surface Guide 49a, 49b Conveying Roller Pair 50 Temperature Raising Unit (First Zone)
51 1st heating part 51a Opposing roller 51b Heating guide 51c Heater 51d Fixed guide surface 52 Second heating part 52a Opposing roller 52b Heating guide 52c Heating heater 52d Fixed guide surface 53 Insulating part (second zone)
53a Curved surface guide 53b Heating guide 53c Heating heater 53d Fixed guide surface 53e Film entrance 53f Film discharge port 54 Cooling unit 54a Opposing roller 54b Cooling plate 54c Cooling guide surface 55 Optical scanning exposure unit 63 Heat retaining unit (second zone)
63a Curved surface guide 63b Heating guide 63c Heater 63e Film entrance
63f Film discharge port F Film, sheet film d Gap P, P 'Curvature center of curvature guide

Claims (3)

支持基体の片面上に熱現像感光材料が塗布されたシートフィルムを加熱しながら搬送し前記シートフィルム上に形成された潜像を可視化する熱現像装置であって、
ヒータを有する固定ガイドと前記シートフィルムを前記固定ガイドに向けて押圧する回転駆動可能な対向ローラとで構成され搬送方向上流側に配置された第1ゾーンと、ヒータを有する曲率ガイドと別の曲率ガイドとで構成されそれら曲率ガイド間に所定の間隙が形成され搬送方向下流側に配置された第2ゾーンと、を有する加熱手段と、
前記加熱手段で加熱された前記シートフィルムを冷却する冷却手段と、を備え、
前記第2ゾーンの曲率ガイドのフィルム進入位置がその曲率中心よりも下方位置であり、
前記対向ローラによる前記第2ゾーンへの搬送方向を前記曲率ガイドの中心から離間方向とするとともに、前記対向ローラによる搬送力により前記第2ゾーンを介して反重力方向に前記シートフィルムを案内するよう構成され、
前記第2ゾーンの曲率ガイドは、その曲率中心よりも下方位置で前記冷却手段へ向け前記シートフィルムを案内することを特徴とする熱現像装置。
A heat development apparatus for visualizing a latent image formed on the sheet film by conveying a sheet film coated with a photothermographic material on one side of a supporting substrate while heating the sheet film;
A first zone that is composed of a fixed guide having a heater and a counter-rotatable counter roller that presses the sheet film toward the fixed guide, and is arranged on the upstream side in the conveyance direction; a curvature guide that is different from the curvature guide that has a heater A heating zone having a second zone formed by a guide and having a predetermined gap formed between the curvature guides and disposed downstream in the transport direction;
Cooling means for cooling the sheet film heated by the heating means,
The film entrance position of the curvature guide of the second zone is a position below the center of curvature,
The conveyance direction to the second zone by the counter roller is set to the separation direction from the center of the curvature guide, and the sheet film is guided in the antigravity direction through the second zone by the conveyance force by the counter roller. Configured,
The heat developing apparatus according to claim 2, wherein the curvature guide of the second zone guides the sheet film toward the cooling means at a position below the center of curvature.
前記第2ゾーンへのフィルム進入部と、前記第2ゾーンからのフィルム排出部とがなす角度が90度以下であることを特徴とする請求項1に記載の熱現像装置。   2. The heat developing apparatus according to claim 1, wherein an angle formed by the film entrance portion to the second zone and the film discharge portion from the second zone is 90 degrees or less. 前記第1ゾーンは、ヒータをそれぞれ有する少なくとも2つの固定ガイドが前記搬送方向に並設されており、前記固定ガイドの内の上流側が熱現像開始温度以下まで加熱し、下流側が熱現像温度まで加熱することを特徴とする請求項1または2に記載の熱現像装置。

In the first zone, at least two fixed guides each having a heater are juxtaposed in the transport direction, the upstream side of the fixed guides is heated to the heat development start temperature or lower, and the downstream side is heated to the heat development temperature. The thermal development apparatus according to claim 1, wherein the thermal development apparatus is a thermal development apparatus.

JP2004322117A 2004-11-05 2004-11-05 Heat developing apparatus Pending JP2006133490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004322117A JP2006133490A (en) 2004-11-05 2004-11-05 Heat developing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004322117A JP2006133490A (en) 2004-11-05 2004-11-05 Heat developing apparatus

Publications (1)

Publication Number Publication Date
JP2006133490A true JP2006133490A (en) 2006-05-25

Family

ID=36727100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004322117A Pending JP2006133490A (en) 2004-11-05 2004-11-05 Heat developing apparatus

Country Status (1)

Country Link
JP (1) JP2006133490A (en)

Similar Documents

Publication Publication Date Title
EP1591843A2 (en) Image forming apparatus
JP3296482B2 (en) Thermal development device
US7255500B2 (en) Heat developing method and heat developing apparatus
JP2006133490A (en) Heat developing apparatus
JP2006133491A (en) Heat developing apparatus
US6813846B2 (en) Drying device
JP4363445B2 (en) Thermal development device
EP0864944A1 (en) Thermal processing system
JP2006133492A (en) Heat developing apparatus
JP2006163326A (en) Heat developing method and heat developing apparatus
JP2007233145A (en) Drying processing apparatus
WO2005106584A1 (en) Thermal development device and thermal development method
JP2007199262A (en) Heat developing and recording device
JP2006154690A (en) Heat developing method and heat developing apparatus
JP2006154688A (en) Heat developing apparatus
JP2006154689A (en) Heat developing method and heat developing apparatus
US7317468B2 (en) Thermal processor employing drum and flatbed technologies
US10705446B2 (en) Image forming apparatus
US20060170756A1 (en) Heat-development recording apparatus and heat-development recording method
JP2007206514A (en) Drying device
JP2007057947A (en) Heat developing apparatus and heat developing method
JP2000250192A (en) Thermal processing device and thermal developing device using the same
JP2000296970A5 (en)
JP2006162970A (en) Heat developing device
JP2005202247A (en) Image forming apparatus