JP2006133100A - Apparatus for measuring anisotropy of semiconductor film - Google Patents

Apparatus for measuring anisotropy of semiconductor film Download PDF

Info

Publication number
JP2006133100A
JP2006133100A JP2004323200A JP2004323200A JP2006133100A JP 2006133100 A JP2006133100 A JP 2006133100A JP 2004323200 A JP2004323200 A JP 2004323200A JP 2004323200 A JP2004323200 A JP 2004323200A JP 2006133100 A JP2006133100 A JP 2006133100A
Authority
JP
Japan
Prior art keywords
voltage
measurement
signal
probes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004323200A
Other languages
Japanese (ja)
Other versions
JP4565627B2 (en
Inventor
Tamotsu Takahashi
高橋  保
Koichi Kurihara
耕一 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BUNKOH KEIKI CO Ltd
BUNKOH-KEIKI CO Ltd
Hokkaido University NUC
Original Assignee
BUNKOH KEIKI CO Ltd
BUNKOH-KEIKI CO Ltd
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BUNKOH KEIKI CO Ltd, BUNKOH-KEIKI CO Ltd, Hokkaido University NUC filed Critical BUNKOH KEIKI CO Ltd
Priority to JP2004323200A priority Critical patent/JP4565627B2/en
Publication of JP2006133100A publication Critical patent/JP2006133100A/en
Application granted granted Critical
Publication of JP4565627B2 publication Critical patent/JP4565627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring anisotropy of a semiconductor film, which can measure carrier mobility values in two directions, i.e., vertical and horizontal directions of an organic thin film. <P>SOLUTION: The apparatus 10 for measuring the anisotropy of the semiconductor film is equipped with a measurement object setting means 12 which has a probe contactable with an electrode disposed at an object to be measured; a light irradiation means 14 which irradiates the object to be measured with light; a voltage applying means 16 which applies a voltage to the electrode through the probe; a signal detecting means 18 which detects a current signal flowing in the object to be measured; and a signal processing means 20 for processing a detected signal. The measurement object setting means 12 includes three probes which can be positioned independently, and the voltage applying means 16 is made up such that the class of the voltage applied to each probe can be varied, and the measurement can be carried out in two kinds of measurement modes, i.e., a TOF method measurement mode and an FET method measurement mode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体薄膜の分子構造に基づく異方性をキャリヤ移動度から測定する半導体膜異方性測定装置に関する。   The present invention relates to a semiconductor film anisotropy measuring apparatus for measuring anisotropy based on a molecular structure of a semiconductor thin film from carrier mobility.

有機薄膜は次世代の半導体材料などへの応用が注目されている。半導体の性能は基本物性であるキャリヤ移動度に大きく依存しており、いくつかのキャリヤ移動度の測定方法が知られているが、TOF法、FET法と略称される次の2つの方法が良く用いられている。
TOF法とは、ドリフト電圧を印加した測定対象物にパルス光を照射してキャリヤを発生させ、ドリフト電圧によるキャリヤ流を測定することで移動度を求めるものである(例えば、特許文献1を参照)。つまり、図1に示すように測定対象物の一方を透明電極、他方を金属電極で挟み、この両電極間にドリフト電圧をパルス状に印加し、同時に透明電極側からパルス光を照射して、測定対象物表面近傍にキャリヤ塊を発生させる。そして、試料に流れる電流信号を検出することで、パルス光により生成したキャリヤ塊が発生側から対極までドリフト電圧によりドリフトする時間、すなわちキャリヤ移動時間を測定し、キャリヤ移動時間と測定対象物の厚さからキャリヤ移動度を求める。
一方、FET法は、測定対象物を半導体材料として用いたFETトランジスター素子を作製し、トランジスター特性を測定することにより、キャリヤ移動度を求めるものである。図2に示すように、測定対象物を用いてチャンネルを構成するFETトランジスター素子を作製し、一定のゲート電圧下、ソース・ドレイン間電圧を変化させながらドレイン電流を測定し、ゲート電圧を変えて測定を繰返し行い、測定されたゲート電圧とドレイン電流の関係を求める。この関係から測定対象物のキャリヤ移動度を求めることができる。
特開平6−186280号公報
Organic thin films are attracting attention for application to next-generation semiconductor materials. Semiconductor performance largely depends on carrier mobility, which is a basic physical property, and several methods for measuring carrier mobility are known, but the following two methods, abbreviated as TOF method and FET method, are better. It is used.
In the TOF method, a measurement object to which a drift voltage is applied is irradiated with pulsed light to generate carriers, and the carrier flow due to the drift voltage is measured to determine mobility (see, for example, Patent Document 1). ). That is, as shown in FIG. 1, one of the objects to be measured is sandwiched between a transparent electrode and the other is sandwiched between metal electrodes, a drift voltage is applied between these electrodes in a pulse shape, and at the same time, pulsed light is irradiated from the transparent electrode side, A carrier mass is generated near the surface of the object to be measured. Then, by detecting the current signal flowing through the sample, the time during which the carrier mass generated by the pulsed light drifts from the generation side to the counter electrode due to the drift voltage, that is, the carrier movement time, is measured. Then, the carrier mobility is obtained.
On the other hand, in the FET method, an FET transistor element using a measurement object as a semiconductor material is produced, and the carrier mobility is obtained by measuring transistor characteristics. As shown in FIG. 2, an FET transistor element that constitutes a channel is manufactured using a measurement object, a drain current is measured while changing a source-drain voltage under a constant gate voltage, and a gate voltage is changed. Repeat the measurement to determine the relationship between the measured gate voltage and drain current. From this relationship, the carrier mobility of the measurement object can be obtained.
JP-A-6-186280

有機分子の結晶はその結晶軸方向で移動度が大きく異なることが知られており、軸方向により半導体の性能は大きく変化する。有機薄膜は完全なるアモルファスではなく有る程度結晶性をもった薄膜となることが多く、この場合、この結晶の並び方、すなわち分子の配列によって薄膜の平行方向と垂直方向でその電子素子としての性能が異なってくる。しかしながらこれまで、有機薄膜の移動度を測定する場合、2つの異なる方向での移動度を測定することはなかった。それは一つの有機薄膜のサンプルについて、その軸方向の違いによるキャリヤ移動度の測定を行う装置が開発されていなかったからである。したがって基板上の有機薄膜の異方性に基づくキャリヤ移動度の違い、電子素子としての異なる方向における性能を測定する方法の開発が求められていた。
本発明は上記課題に鑑みなされたものであり、本発明の目的は、有機薄膜の薄膜に対して垂直方向のキャリヤ移動度と水平方向のキャリヤ移動度を測定可能な、半導体膜異方性測定装置を提供することにある。
It is known that the mobility of organic molecular crystals varies greatly in the direction of the crystal axis, and the performance of the semiconductor varies greatly depending on the direction of the axis. The organic thin film is not completely amorphous but often has a certain degree of crystallinity. In this case, depending on the arrangement of the crystals, that is, the arrangement of the molecules, the performance as an electronic device in the direction parallel to and perpendicular to the thin film Come different. However, until now, when measuring the mobility of an organic thin film, the mobility in two different directions has not been measured. This is because an apparatus for measuring the carrier mobility of one organic thin film sample due to the difference in the axial direction has not been developed. Therefore, development of a method for measuring the difference in carrier mobility based on the anisotropy of the organic thin film on the substrate and the performance in different directions as an electronic device has been demanded.
The present invention has been made in view of the above problems, and an object of the present invention is to measure the semiconductor film anisotropy capable of measuring the carrier mobility in the vertical direction and the carrier mobility in the horizontal direction with respect to the organic thin film. To provide an apparatus.

これまで、有機薄膜のキャリヤ移動度を2つの異なる方向で測定することはなかった。それは一つの有機薄膜のサンプルについて、キャリヤ移動度の測定を行う装置が開発されていなかったからである。本発明では、TOF法は薄膜の垂直方向の移動度を求めるのに対し、FET法は薄膜の水平方向の移動度が測定可能である点に注目し、これら2つの方法を組み合わせて、異方性をもつ有機薄膜の垂直方向の移動度と水平方向の移動度が測定可能な装置の開発に至った。
上記目的を達成するために本発明の半導体膜異方性測定装置は、測定対象物に設けられた電極に接触可能なプローブを有する測定対象物設置手段と、測定対象物にパルス光を照射する光照射手段と、前記プローブを介して前記電極に電圧を印加する電圧印加手段と、前記プローブを介して、測定対象物を流れる電流信号を検出する信号検出手段と、該信号検出手段にて検出した信号を処理するための信号処理手段と、を備え、前記測定対象物設置手段は独立して位置決め可能な3本のプローブを含み、前記電圧印加手段は前記各プローブへ印加する電圧の種類を変更可能に構成され、TOF法測定モードと、FET法測定モードとの2種類の測定モードでの測定が可能であることを特徴とする。
Until now, the carrier mobility of organic thin films has not been measured in two different directions. This is because an apparatus for measuring carrier mobility for one organic thin film sample has not been developed. In the present invention, the TOF method obtains the vertical mobility of the thin film, while the FET method can measure the horizontal mobility of the thin film. We have developed a device that can measure the vertical and horizontal mobility of organic thin films.
In order to achieve the above object, a semiconductor film anisotropy measuring apparatus according to the present invention irradiates a measuring object with pulsed light, and a measuring object setting means having a probe capable of contacting an electrode provided on the measuring object. Light irradiation means, voltage application means for applying a voltage to the electrode via the probe, signal detection means for detecting a current signal flowing through the measurement object via the probe, and detection by the signal detection means Signal processing means for processing the processed signal, the measurement object installation means includes three probes that can be positioned independently, and the voltage application means determines the type of voltage applied to each probe. It is configured to be changeable, and can be measured in two types of measurement modes: a TOF method measurement mode and an FET method measurement mode.

ここで、TOF法測定モードでは、前記測定対象物設置手段の3本のプローブうち2本のプローブを測定試料に設けられた2つの対向した電極にそれぞれ接触するよう位置決めし、該接触したプローブ間に前記電圧印加手段によりパルス電圧を印加し、それに同期して前記光照射手段から測定対象物にパルス光を照射し、発生したキャリヤによる電流信号を信号検出手段により検出する。一方、FET法測定モードでは、前記3本のプローブがそれぞれ測定対象物のソース電極、ドレイン電極、ゲート電極に接触するよう位置決めし、前記電圧印加手段により、ゲート電極に接触するプローブに一定の電圧を加え、ソース電極及びドレイン電極に接触するプローブ間の電圧を変化させながらソースとドレイン間に流れる電流を信号検出手段にて測定し、ゲート電極に加える電圧を変えて測定を繰返し行う。
上記の半導体膜異方性測定装置において、前記光照射手段、電圧印加手段の動作を制御する制御手段を備え、該制御手段により、前記TOF法測定モード時と、FET法測定モード時とで光照射手段、電圧印加手段の動作を変更できることが好適である。
Here, in the TOF method measurement mode, two of the three probes of the measurement object placing means are positioned so as to contact two opposed electrodes provided on the measurement sample, respectively, and between the contacting probes A pulse voltage is applied by the voltage applying means, and pulsed light is emitted from the light irradiating means to the measurement object in synchronism therewith, and a current signal generated by the generated carrier is detected by the signal detecting means. On the other hand, in the FET method measurement mode, the three probes are positioned so as to be in contact with the source electrode, the drain electrode, and the gate electrode of the measurement object, respectively, and a constant voltage is applied to the probe in contact with the gate electrode by the voltage application means. The current flowing between the source and drain is measured by the signal detection means while changing the voltage between the probes in contact with the source electrode and the drain electrode, and the measurement is repeated by changing the voltage applied to the gate electrode.
The semiconductor film anisotropy measurement apparatus includes a control unit that controls operations of the light irradiation unit and the voltage application unit. The control unit allows light to be emitted in the TOF method measurement mode and in the FET method measurement mode. It is preferable that the operation of the irradiation means and the voltage application means can be changed.

本発明の半導体膜異方性測定装置によれば、測定対象物を設置する設置手段が、測定対象物に設けられた電極に接触可能な3本のプローブを含み、電圧印加手段は前記各プローブへ印加する電圧の種類を変更可能に構成されているため、同一の測定対象物に対してTOF法とFET法の2つの異なる測定法で測定を行うことが可能となった。そのため、2つの測定法による測定結果を比較することで測定対象物の構造についてより深い知見が得られる。   According to the semiconductor film anisotropy measuring apparatus of the present invention, the installation means for installing the measurement object includes three probes that can come into contact with the electrodes provided on the measurement object, and the voltage application means includes each of the probes. Since the type of the voltage to be applied to can be changed, it is possible to perform measurement on the same measurement object by two different measurement methods, the TOF method and the FET method. Therefore, deeper knowledge about the structure of the measurement object can be obtained by comparing the measurement results obtained by the two measurement methods.

次に図面を参照して本発明の好適な実施形態について説明を行う。
図3は、本発明の実施形態にかかる半導体膜異方性測定装置の概略構成図である。本実施形態の半導体膜異方性測定装置10は、測定対象物を設置する測定対象物設置手段12と、測定対象物にパルス光を照射する光照射手段14と、測定対象物に電圧を印加する電圧印加手段16と、測定対象物を流れる電流信号を検出する信号検出手段18と、検出信号を処理する信号処理手段20と、を備える。
測定対象物設置手段12は3本のプローブを有しており(図4、5参照)、該プローブを介して、電圧印加手段16による測定対象物への電圧の印加、信号検出手段18による測定対象物を流れる電流の検出、を行う。TOF法測定時には3本のプローブのうち2本を用いて、測定対象物に設置された対向する電極間にパルス電圧を印加する。一方FET法測定時には3本のプローブをそれぞれ、測定対象物のソース電極、ドレイン電極、ベース電極に接触させ、測定対象物のトランジスタ特性を測定する。さらに、電圧印加手段16は上記2種類の測定法に対応できるように、印加する電圧の種類を変更可能に構成されている。
Next, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 3 is a schematic configuration diagram of a semiconductor film anisotropy measuring apparatus according to an embodiment of the present invention. The semiconductor film anisotropy measuring apparatus 10 of the present embodiment includes a measurement object installation unit 12 that installs a measurement object, a light irradiation unit 14 that irradiates the measurement object with pulsed light, and a voltage applied to the measurement object. Voltage applying means 16, a signal detecting means 18 for detecting a current signal flowing through the measurement object, and a signal processing means 20 for processing the detection signal.
The measurement object installation means 12 has three probes (see FIGS. 4 and 5), and through this probe, voltage is applied to the measurement object by the voltage application means 16 and measurement is performed by the signal detection means 18. Detection of current flowing through the object. At the time of TOF measurement, two of the three probes are used to apply a pulse voltage between the opposing electrodes installed on the measurement object. On the other hand, at the time of FET method measurement, the three probes are brought into contact with the source electrode, drain electrode, and base electrode of the measurement object, respectively, and the transistor characteristics of the measurement object are measured. Furthermore, the voltage application means 16 is configured to be able to change the type of voltage to be applied so as to be compatible with the above two types of measurement methods.

図4、5は本実施形態における測定対象物設置手段12を上からみた図、および側面から見た図である。図4に示すように3本のプローブ22a〜22cは、可動なアーム部A〜Cにそれぞれ保持され、それぞれのアーム部は、図の点線で示したように移動可能に構成されている。そのため測定対象物の所定の電極部位にプローブ22a〜22cの先端部位を接触させることができる。本実施形態では3本のプローブ22a、22bは電圧印加手段16、プローブ22cは信号検出手段18に接続されており、プローブ22a〜22cを介して、測定対象物の電極への電圧の印加や、電流の計測が行われる。また、図5に示すように本実施形態では測定対象物の設置場所の下部には孔が設けられ、TOF法測定時にはここからパルス光を測定対象物に照射する。   4 and 5 are a top view and a side view, respectively, of the measurement object setting means 12 in the present embodiment. As shown in FIG. 4, the three probes 22 a to 22 c are respectively held by movable arm portions A to C, and each arm portion is configured to be movable as indicated by a dotted line in the drawing. Therefore, the tip portions of the probes 22a to 22c can be brought into contact with predetermined electrode portions of the measurement object. In the present embodiment, the three probes 22a and 22b are connected to the voltage applying means 16, and the probe 22c is connected to the signal detecting means 18, and the application of voltage to the electrodes of the measurement object via the probes 22a to 22c, Current measurement is performed. Further, as shown in FIG. 5, in the present embodiment, a hole is provided in the lower part of the installation location of the measurement object, and pulsed light is irradiated from here to the measurement object during the TOF method measurement.

電圧印加手段16は前記各プローブへ印加する電圧の種類を変更可能に構成されている。例えば、TOF法測定時モード時にはプローブ22a、22c間にパルス電圧を印加し、FET法測定モード時にはプローブ22bにゲート電圧を、プローブ22a,22c間にソース・ドレイン電圧を印加する。具体的には、例えば2チャンネルの電源装置を用意してそれぞれを独立に制御するような構成とすればよい。ただし、少なくとも一方のチャンネルはFET測定モードのために使用するため、電圧を掃引できる必要がある。
TOF法測定モード時には3本のプローブ22a〜22cのうち2本のプローブ22a,22cを測定試料に設けられた2つの対向した電極にそれぞれ接触するよう位置決めし、残りのプローブ22bは測定試料から離しておく。そして、プローブ22a、22cを通して電極間に電圧印加手段16からのパルス電圧を印加し、それに同期して光照射手段14からのパルス光を測定試料に照射する。発生したキャリヤによる電流信号は、プローブ22cを通して信号検出手段18により検出される。
The voltage application means 16 is configured to be able to change the type of voltage applied to each probe. For example, a pulse voltage is applied between the probes 22a and 22c in the TOF method measurement mode, a gate voltage is applied to the probe 22b, and a source / drain voltage is applied between the probes 22a and 22c in the FET method measurement mode. Specifically, for example, a two-channel power supply device may be prepared and controlled independently. However, since at least one of the channels is used for the FET measurement mode, it is necessary to sweep the voltage.
In the TOF method measurement mode, of the three probes 22a to 22c, two probes 22a and 22c are positioned so as to be in contact with two opposing electrodes provided on the measurement sample, and the remaining probes 22b are separated from the measurement sample. Keep it. Then, a pulse voltage from the voltage application unit 16 is applied between the electrodes through the probes 22a and 22c, and the measurement sample is irradiated with the pulsed light from the light irradiation unit 14 in synchronization therewith. The generated current signal by the carrier is detected by the signal detection means 18 through the probe 22c.

一方、FET法測定モード時には、3本のプローブ22a,22b,22cがそれぞれ測定対象物のソース電極、ゲート電極、ドレイン電極に接触するよう位置決めする。そして、電圧印加手段16により、ゲート電極に接触するプローブ22bに一定の電圧を加え、ソース電極、ドレイン電極に接触するプローブ22a、22cに印加する電圧を変化させながら、ソースとドレイン間に流れる電流をプローブ22cを通して信号検出手段18にて測定する。さらにゲート電極に加える電圧を変えて測定を繰返し行うことによって、測定対象物のトランジスタ特性を測定する。ここで、測定対象物で作成されたFETトランジスタ素子のゲート電極、ソース電極、ドレイン電極のうちの一つ(好ましくはゲート電極)を透明電極とすることが好適である。   On the other hand, in the FET method measurement mode, the three probes 22a, 22b, and 22c are positioned so as to be in contact with the source electrode, the gate electrode, and the drain electrode of the measurement object, respectively. The voltage application means 16 applies a constant voltage to the probe 22b in contact with the gate electrode, and changes the voltage applied to the probes 22a and 22c in contact with the source electrode and the drain electrode while changing the voltage applied between the source and drain. Is measured by the signal detection means 18 through the probe 22c. Further, the transistor characteristics of the measurement object are measured by repeating the measurement while changing the voltage applied to the gate electrode. Here, it is preferable that one (preferably the gate electrode) of the gate electrode, the source electrode, and the drain electrode of the FET transistor element made of the measurement object is a transparent electrode.

信号検出手段18にて検出した検出信号は、信号処理手段20へと送られ、そこでデータ処理がなされる。また、制御手段24は電圧印加手段16、光照射手段14の動作の制御を行い、前記TOF法測定モード時と、FET法測定モード時とで光照射手段14、電圧印加手段16の動作を変更する。制御手段24、信号処理手段20はコンピュータ等により構成され、構成要素の動作の制御、測定時の各構成要素間のタイミングのコントロール、および信号の記録・処理等を行う。制御手段24への設定、データの表示等は、コンピュータに接続された入力部38、表示部36を介して行われる。このように、本実施形態の半導体特性装置では一つの装置で、TOF法、FET法の2種類の測定モードでの測定が可能となる。
以上のように、本実施形態の半導体膜異方性測定装置によれば、測定対象物を設置する設置手段が、測定対象物に設けられた電極に接触可能な3本のプローブを含み、電圧印加手段は前記各プローブへ印加する電圧の種類を変更可能に構成されているため、同一の有機薄膜に対して垂直方向と水平方向の2つの異なる方向の移動度を測定することが可能となった。この2つの異なる方向の移動度の測定結果を比較することにより、薄膜の異方性に関して知見が得られる。
The detection signal detected by the signal detection means 18 is sent to the signal processing means 20, where data processing is performed. The control unit 24 controls the operation of the voltage application unit 16 and the light irradiation unit 14, and changes the operation of the light irradiation unit 14 and the voltage application unit 16 between the TOF method measurement mode and the FET method measurement mode. To do. The control means 24 and the signal processing means 20 are configured by a computer or the like, and control the operation of the constituent elements, control the timing between the constituent elements at the time of measurement, and record / process signals. Setting to the control means 24, display of data, and the like are performed via an input unit 38 and a display unit 36 connected to a computer. As described above, in the semiconductor characteristic device of this embodiment, measurement can be performed in two types of measurement modes of the TOF method and the FET method with a single device.
As described above, according to the semiconductor film anisotropy measurement apparatus of the present embodiment, the installation means for installing the measurement object includes three probes that can contact the electrode provided on the measurement object, and the voltage Since the application means is configured to be able to change the type of voltage applied to each probe, it becomes possible to measure the mobility in two different directions, the vertical direction and the horizontal direction, with respect to the same organic thin film. It was. By comparing the measurement results of the mobility in the two different directions, knowledge about the anisotropy of the thin film can be obtained.

以上が本実施形態にかかる半導体膜異方性測定装置の概略構成であり、以下に図3を参照して各構成要素の詳細な説明を行う。
本実施形態の装置において、TOF法測定時におけるノイズの低減機構を設けることが好適である。従来、TOF法による測定では、測定対象物厚が薄い場合、あるいは測定対象物が高移動度の場合には、キャリヤ移動度情報を含む信号の継続時間が非常に短く、この領域に存在する雑音に信号が隠されてしまい解析が不可能となることがあった。このため本発明者らは別の出願において、TOF法でも高移動度の有機薄膜のキャリヤ移動度を測定可能な方法を提案しており、そのノイズ低減機構について説明する。
The above is the schematic configuration of the semiconductor film anisotropy measuring apparatus according to the present embodiment, and each component will be described in detail below with reference to FIG.
In the apparatus of the present embodiment, it is preferable to provide a noise reduction mechanism during the TOF measurement. Conventionally, in the measurement by the TOF method, when the measurement object is thin or the measurement object has a high mobility, the duration of the signal including the carrier mobility information is very short, and noise existing in this region In some cases, the signal is hidden and analysis becomes impossible. Therefore, in another application, the present inventors have proposed a method capable of measuring the carrier mobility of an organic thin film having a high mobility even by the TOF method, and the noise reduction mechanism will be described.

TOF法測定時におけるノイズの低減機構として、本実施形態にかかる装置は光照射手段14と前記他の手段とを電気的に絶縁することで該光照射手段14で発生するノイズの混入を低減する雑音低減手段と、TOF法測定の検出信号に混入する前記光照射手段14からのノイズを除去する雑音除去手段と、を備えている。
つまり、雑音除去手段として、信号処理手段20はデジタルフィルタ(雑音除去手段)を備えており、該デジタルフィルタによって検出信号に含まれる光照射手段14に起因するノイズを除去する。このノイズは18〜22MHzの周波数成分及びその高周波成分を持つため、デジタルフィルタ、より好適にはFFTフィルタ、によって好適に除去することができる。
また、雑音低減手段として、光照射手段14と他の構成要素を電気的に分離絶縁している。本実施形態の雑音低減手段は、光照射手段14と電圧印加手段16との間、及び光照射手段14と信号検出手段18との間の制御信号線を電気的接続ではなく光接続にすることで構成されている。
As a noise reduction mechanism at the time of TOF measurement, the apparatus according to the present embodiment electrically insulates the light irradiation means 14 from the other means, thereby reducing the mixing of noise generated in the light irradiation means 14. Noise reduction means, and noise removal means for removing noise from the light irradiation means 14 mixed in the detection signal of the TOF method measurement.
That is, the signal processing unit 20 includes a digital filter (noise removal unit) as a noise removal unit, and the digital filter removes noise caused by the light irradiation unit 14 included in the detection signal. Since this noise has a frequency component of 18 to 22 MHz and its high frequency component, it can be suitably removed by a digital filter, more preferably an FFT filter.
Further, as the noise reduction means, the light irradiation means 14 and other components are electrically separated and insulated. The noise reduction means of the present embodiment is such that the control signal lines between the light irradiation means 14 and the voltage application means 16 and between the light irradiation means 14 and the signal detection means 18 are not electrically connected but optically connected. It consists of

具体的には、図3に示すように、電圧印加手段16と光照射手段14とを同期させるための信号線26は、フォトカプラ28を介して接続されており、光照射手段14と信号検出手段18との同期は光信号を利用して行っている。
また、信号検出手段18と光照射手段14との間のタイミング制御は、図3の実施形態において示されるように、測定対象物設置手段12の前段に、ビームスプリッタ30を設置し、光照射手段14からの光を2つの光束に分割し、一方を測定対象物へ照射する光束、他方を同期信号のための光束として利用することで行っている。つまり、PINダイオード等で構成される光検出手段32が、同期信号のための光束を検出した時点で信号検出手段18にトリガ信号を送り、光照射手段14と信号検出手段18との同期をとっている。このように、光照射手段14と信号検出手段18との間、光照射手段14と電圧印加手段16との間を結ぶ経路の少なくとも一部分が光接続となっていればよい。
Specifically, as shown in FIG. 3, the signal line 26 for synchronizing the voltage applying means 16 and the light irradiation means 14 is connected via a photocoupler 28, and the light irradiation means 14 and the signal detection are detected. Synchronization with the means 18 is performed using an optical signal.
Further, as shown in the embodiment of FIG. 3, the timing control between the signal detection means 18 and the light irradiation means 14 is performed by installing a beam splitter 30 in the preceding stage of the measurement object setting means 12, and by applying the light irradiation means. The light from 14 is divided into two light beams, one is used as a light beam for irradiating the measurement object, and the other is used as a light beam for a synchronization signal. That is, when the light detection means 32 composed of a PIN diode or the like detects a light beam for a synchronization signal, it sends a trigger signal to the signal detection means 18 to synchronize the light irradiation means 14 and the signal detection means 18. ing. Thus, it is only necessary that at least a part of the path connecting the light irradiation means 14 and the signal detection means 18 and the light irradiation means 14 and the voltage application means 16 is optically connected.

TOF法測定時には、まずコンピュータから電圧印加手段16にトリガ信号がかけられ、電圧印加手段16は測定対象物にバイアス電圧を印加する。そして、フォトカプラ28を介して接続された信号線26を通して光照射手段14にトリガ信号を送る。トリガ信号を検出した光照射手段14は、パルスレーザー光を測定対象物及び光検出手段32へ照射する。レーザー光を受光した光検出手段32は信号検出手段18にトリガ信号を送る。トリガ信号を受けた信号検出手段18は、測定対象物からの電流信号を電圧信号に変換して検出し、検出信号をコンピュータ内の信号処理手段20へと送る。信号処理手段20へと送られた検出信号は、信号処理手段20においてノイズ除去処理等が行われる。
以上の構成の結果、本実施形態の半導体膜異方性測定装置では、TOF法での移動度の測定範囲を大幅に広げることができる。特に、従来のTOF法では測定困難な移動時間の短い場合、つまり高キャリヤ移動度領域や測定対象膜厚が薄い場合にも測定可能となる。具体的にはキャリヤ移動度情報を含む信号の継続時間が800nsec以下の試料に対しても好適にTOF法測定を行うことができる。また、SN比が向上するため、雑音に隠れてしまうようなキャリヤ発生量の少ない測定対象物においても測定が可能となる。
At the time of the TOF method measurement, a trigger signal is first applied from the computer to the voltage application unit 16, and the voltage application unit 16 applies a bias voltage to the measurement object. Then, a trigger signal is sent to the light irradiation means 14 through the signal line 26 connected via the photocoupler 28. The light irradiation means 14 that has detected the trigger signal irradiates the measurement object and the light detection means 32 with a pulse laser beam. The light detection means 32 that has received the laser light sends a trigger signal to the signal detection means 18. Upon receiving the trigger signal, the signal detection means 18 converts the current signal from the measurement object into a voltage signal and detects it, and sends the detection signal to the signal processing means 20 in the computer. The detection signal sent to the signal processing means 20 is subjected to noise removal processing or the like in the signal processing means 20.
As a result of the above configuration, in the semiconductor film anisotropy measuring apparatus of this embodiment, the measurement range of mobility by the TOF method can be greatly expanded. In particular, measurement is possible even when the movement time, which is difficult to measure by the conventional TOF method, is short, that is, when the high carrier mobility region or the film thickness to be measured is thin. Specifically, the TOF measurement can be suitably performed even on a sample whose duration of a signal including carrier mobility information is 800 nsec or less. Further, since the S / N ratio is improved, measurement is possible even on a measurement object with a small amount of carrier generation that is hidden by noise.

光照射手段14は、電圧印加手段16と同期して、測定対象物内にキャリヤ魁を発生させる必要があり、例えば、パルスレーザーが用いられる。パルスレーザー光は、測定対象物の表面層で吸収され、測定対象物の光電変換機能によりキャリヤ魁に変換される。該キャリア魁の幅はパルスレーザーの幅に依存するため、パルスレーザーの幅は短い程よく、好ましくは1nsec以下、より好ましくは0.3nsec以下である。該キャリヤ魁の強度は、パルスレーザーの強度と、測定対象物またはキャリヤ発生層の光吸収率や光電変換機能に依存するため、パルスレーザー光の強度は10−9〜10−12ジュール/パルスが好ましく、強すぎると測定対象物が損傷を受け、また発生したキャリヤ魁が測定対象物内の電界を修飾し、正確な移動度が求まらない。一方、弱すぎると十分な該キャリヤ魁が発生しない。パルスレーザーの波長は測定対象物の最大光吸収波長に合わせられるように可変であることが好ましい。パルスレーザーの好ましい例としては、窒素レーザー及びそれに色素溶液を備えた色素レーザーが挙げられる。 The light irradiation means 14 needs to generate carrier soot in the object to be measured in synchronization with the voltage application means 16, and for example, a pulse laser is used. The pulse laser beam is absorbed by the surface layer of the measurement object, and is converted into a carrier by the photoelectric conversion function of the measurement object. Since the width of the carrier ridge depends on the width of the pulse laser, the width of the pulse laser is preferably as short as possible, preferably 1 nsec or less, more preferably 0.3 nsec or less. Since the intensity of the carrier light depends on the intensity of the pulse laser and the light absorption rate or photoelectric conversion function of the measurement object or the carrier generation layer, the intensity of the pulse laser light is 10 −9 to 10 −12 joule / pulse. Preferably, if it is too strong, the object to be measured is damaged, and the generated carrier soot modifies the electric field in the object to be measured, so that an accurate mobility cannot be obtained. On the other hand, if it is too weak, sufficient carrier soot will not be generated. The wavelength of the pulse laser is preferably variable so as to be matched with the maximum light absorption wavelength of the measurement object. Preferable examples of the pulse laser include a nitrogen laser and a dye laser equipped with a dye solution.

電圧印加手段16は、測定対象物にバイアス電圧を印加するために用意され、TOF法測定時において暗電流による測定対象物の分極を避けるために、ドリフト移動時間より少し長い継続時間のパルス状電圧を発生できる必要がある。本実施形態で用いる電圧印加手段16は、バイポーラ電源で、好ましくは−500〜+500V、より好ましくは−1000〜+1000Vの電圧が印加でき、パルス幅は1sec程度を中心に可変可能なものが好ましい。
また、電圧印加手段16としての電源装置は、電圧の印加と同時に、信号検出手段として電流の測定が可能であるものを用いてもよい。これにより、該電源装置をTOF法測定時のドリフト電圧印加手段としても、FET法測定時のソースドレイン間電圧掃引手段(電圧印加手段)及び電流測定手段(信号検出手段)としても、使用可能となる。
信号検出手段18は、測定対象物より発生した信号を検出するためにデジタルオッシロスコープ等により構成される。TOF法では電流を電圧に変換して測定する必要があり、キャリヤ移動による電流を負荷抵抗にて電圧に変換して検出される。尚、FET法でソース・ドレイン電流を測定する場合には、抵抗が装入されていると電流測定時にオフセットとして測定誤差を生じるため、短絡する必要がある。
The voltage application means 16 is prepared for applying a bias voltage to the measurement object, and in order to avoid polarization of the measurement object due to dark current at the time of TOF measurement, a pulse voltage having a duration slightly longer than the drift movement time is provided. Must be able to generate The voltage application means 16 used in the present embodiment is a bipolar power supply, preferably a voltage of −500 to +500 V, more preferably −1000 to +1000 V, and a pulse width that is variable about 1 sec.
Further, as the power supply device as the voltage applying unit 16, a device capable of measuring a current as the signal detecting unit at the same time as the voltage application may be used. As a result, the power supply device can be used as a drift voltage applying means at the time of TOF measurement, or as a source-drain voltage sweeping means (voltage applying means) and a current measuring means (signal detection means) at the time of FET method measurement. Become.
The signal detection means 18 is constituted by a digital oscilloscope or the like in order to detect a signal generated from the measurement object. In the TOF method, the current needs to be converted into a voltage for measurement, and the current due to carrier movement is detected by converting it into a voltage with a load resistance. When the source / drain current is measured by the FET method, if a resistor is inserted, a measurement error occurs as an offset at the time of current measurement. Therefore, it is necessary to short-circuit.

TOF法によるキャリヤ移動度測定の説明図Illustration of carrier mobility measurement by TOF method FET法によるキャリヤ移動度測定の説明図Illustration of carrier mobility measurement by FET method 本発明の実施形態にかかる半導体膜異方性測定装置の概略構成図1 is a schematic configuration diagram of a semiconductor film anisotropy measuring apparatus according to an embodiment of the present invention. 本発明の実施形態にかかる測定対象物設置手段を上から見た図The figure which looked at the measuring object installation means concerning the embodiment of the present invention from the top 本発明の実施形態にかかる測定対象物設置手段を側面から見た図The figure which looked at the measuring object installation means concerning the embodiment of the present invention from the side

符号の説明Explanation of symbols

10 半導体膜異方性測定装置
12 測定対象物設置手段
14 光照射手段
16 電圧印加手段
18 信号検出手段
20 信号処理手段
DESCRIPTION OF SYMBOLS 10 Semiconductor film anisotropy measuring apparatus 12 Measuring object installation means 14 Light irradiation means 16 Voltage application means 18 Signal detection means 20 Signal processing means

Claims (2)

測定対象物に設けられた電極に接触可能なプローブを有する測定対象物設置手段と、
測定対象物にパルス光を照射する光照射手段と、
前記プローブを介して前記電極に電圧を印加する電圧印加手段と、
前記プローブを介して、測定対象物を流れる電流信号を検出する信号検出手段と、
該信号検出手段にて検出した信号を処理するための信号処理手段と、を備え、
前記測定対象物設置手段は独立して位置決め可能な、少なくとも3本のプローブを含み、
前記電圧印加手段は前記各プローブへ印加する電圧の種類を変更可能に構成され、
前記測定対象物設置手段の3本のプローブうち2本のプローブを測定試料に設けられた2つの対向した電極にそれぞれ接触するよう位置決めし、該接触したプローブ間に前記電圧印加手段によりパルス電圧を印加し、それに同期して前記光照射手段から測定対象物にパルス光を照射し、発生したキャリアによる電流信号を信号検出手段により検出するTOF法測定モードと、
前記3本のプローブがそれぞれ測定対象物のソース電極、ドレイン電極、ゲート電極に接触するよう位置決めし、前記電圧印加手段により、ゲート電極に接触するプローブに一定の電圧を加え、ソース電極及びドレイン電極に接触するプローブ間の電圧を変化させながらソースとドレイン間に流れる電流を信号検出手段にて測定し、ゲート電極に加える電圧を変えて測定を繰返し行うFET法測定モードと、の2種類の測定モードでの測定が可能であることを特徴とする半導体膜異方性測定装置。
A measuring object installation means having a probe capable of contacting an electrode provided on the measuring object;
A light irradiation means for irradiating the measurement object with pulsed light;
Voltage applying means for applying a voltage to the electrode via the probe;
Signal detection means for detecting a current signal flowing through the measurement object via the probe;
Signal processing means for processing the signal detected by the signal detection means,
The measurement object placing means includes at least three probes that can be independently positioned;
The voltage application means is configured to be able to change the type of voltage applied to each probe,
Two of the three probes of the measurement object placing means are positioned so as to contact two opposing electrodes provided on the measurement sample, and a pulse voltage is applied between the contacting probes by the voltage applying means. A TOF method measurement mode in which a pulsed light is irradiated from the light irradiation means to the object to be measured in synchronization therewith, and a current signal from the generated carrier is detected by the signal detection means;
The three probes are positioned so as to be in contact with the source electrode, the drain electrode, and the gate electrode of the measurement object, respectively, and a constant voltage is applied to the probes that are in contact with the gate electrode by the voltage applying unit. The FET method measurement mode in which the current flowing between the source and drain is measured by the signal detection means while changing the voltage between the probes in contact with the electrode and the measurement is repeated by changing the voltage applied to the gate electrode. A semiconductor film anisotropy measuring apparatus capable of measuring in a mode.
請求項1記載の半導体膜異方性測定装置において、
前記光照射手段、電圧印加手段の動作を制御する制御手段を備え、該制御手段により、前記TOF法測定モード時と、FET法測定モード時とで光照射手段、電圧印加手段の動作を変更できることを特徴とする半導体膜異方性測定装置。
The semiconductor film anisotropy measuring apparatus according to claim 1,
Control means for controlling the operation of the light irradiation means and voltage application means, and the control means can change the operation of the light irradiation means and voltage application means between the TOF method measurement mode and the FET method measurement mode. A semiconductor film anisotropy measuring apparatus characterized by the above.
JP2004323200A 2004-11-08 2004-11-08 Semiconductor film anisotropy measuring device Expired - Fee Related JP4565627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004323200A JP4565627B2 (en) 2004-11-08 2004-11-08 Semiconductor film anisotropy measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004323200A JP4565627B2 (en) 2004-11-08 2004-11-08 Semiconductor film anisotropy measuring device

Publications (2)

Publication Number Publication Date
JP2006133100A true JP2006133100A (en) 2006-05-25
JP4565627B2 JP4565627B2 (en) 2010-10-20

Family

ID=36726767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004323200A Expired - Fee Related JP4565627B2 (en) 2004-11-08 2004-11-08 Semiconductor film anisotropy measuring device

Country Status (1)

Country Link
JP (1) JP4565627B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109432A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Inspection method of semiconductor device, and inspection device of semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124229A (en) * 1987-11-09 1989-05-17 Fujitsu Ltd Method for measuring drift mobility
JPH04123455A (en) * 1990-09-14 1992-04-23 Fujitsu Ltd Electron mobility measurement and transistor for measurement
JPH06186280A (en) * 1992-12-17 1994-07-08 Mitsui Toatsu Chem Inc Transient photoelectric current measuring apparatus
JPH09135028A (en) * 1995-11-09 1997-05-20 Sony Corp Calculating method for mosfet mobility
JPH11312718A (en) * 1998-04-28 1999-11-09 Advantest Corp Method and device for measuring semiconductor parameter
JP2000091573A (en) * 1998-09-14 2000-03-31 Oki Electric Ind Co Ltd Simulation of mosfet and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124229A (en) * 1987-11-09 1989-05-17 Fujitsu Ltd Method for measuring drift mobility
JPH04123455A (en) * 1990-09-14 1992-04-23 Fujitsu Ltd Electron mobility measurement and transistor for measurement
JPH06186280A (en) * 1992-12-17 1994-07-08 Mitsui Toatsu Chem Inc Transient photoelectric current measuring apparatus
JPH09135028A (en) * 1995-11-09 1997-05-20 Sony Corp Calculating method for mosfet mobility
JPH11312718A (en) * 1998-04-28 1999-11-09 Advantest Corp Method and device for measuring semiconductor parameter
JP2000091573A (en) * 1998-09-14 2000-03-31 Oki Electric Ind Co Ltd Simulation of mosfet and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109432A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Inspection method of semiconductor device, and inspection device of semiconductor device

Also Published As

Publication number Publication date
JP4565627B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
US4758786A (en) Method of analyzing semiconductor systems
US9201096B2 (en) Laser-assisted device alteration using synchronized laser pulses
US8941824B2 (en) Semiconductor inspection method and semiconductor inspection apparatus
CN102401632B (en) Laser assistance transformation using two-photon absorption
WO2013188046A1 (en) Laser-assisted device alteration using synchronized laser pulses
US7903238B2 (en) Combination of ellipsometry and optical stress generation and detection
US7212288B2 (en) Position modulated optical reflectance measurement system for semiconductor metrology
JP4565627B2 (en) Semiconductor film anisotropy measuring device
US7499168B2 (en) Combined modulated optical reflectance and electrical system for ultra-shallow junctions applications
CN110763434B (en) Homogeneity detection device of polycrystalline silicon thin layer
WO1994024575A1 (en) Electrooptic instrument
JP2006135125A (en) High-mobility measuring device
JP5093795B2 (en) Fluorescence lifetime measuring apparatus, film forming apparatus, and fluorescence lifetime measuring method
US7573271B2 (en) Apparatus for measuring electric characteristics of semiconductor
JP2001004719A (en) Current variation measuring instrument
JP2001144155A (en) Semiconductor analysis device and analysis method
CN117849517B (en) High-time-resolution electrotransport characterization method based on tunneling effect single-molecule device
US8773140B2 (en) System and method for inspection of electrical circuits
JPH11118887A (en) Constant current type beam irradiation heating resistance change measuring device
Stewart et al. Spatial characterization of piezoelectric materials using the scanning laser intensity modulation method (LIMM)
KR102062701B1 (en) measuring device of the carrier lifetime of semiconductor using quasi-optical millimeter and terahertz and method thereof
CN106370994A (en) High-frequency photoconductivity decay method charge carrier life tester
CN104198340B (en) Rock behavio(u)r parameter measurement system and its application method
CN117740760A (en) Terahertz waveform detection system for generating residual current through air ionization
Liu et al. Time standards and calibrating methods of ultrashort laser pulse detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees