JP5093795B2 - Fluorescence lifetime measuring apparatus, film forming apparatus, and fluorescence lifetime measuring method - Google Patents

Fluorescence lifetime measuring apparatus, film forming apparatus, and fluorescence lifetime measuring method Download PDF

Info

Publication number
JP5093795B2
JP5093795B2 JP2007003333A JP2007003333A JP5093795B2 JP 5093795 B2 JP5093795 B2 JP 5093795B2 JP 2007003333 A JP2007003333 A JP 2007003333A JP 2007003333 A JP2007003333 A JP 2007003333A JP 5093795 B2 JP5093795 B2 JP 5093795B2
Authority
JP
Japan
Prior art keywords
fluorescence lifetime
fluorescence
excitation light
measurement object
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007003333A
Other languages
Japanese (ja)
Other versions
JP2008170257A (en
Inventor
武司 福田
彬雄 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Shinshu University NUC
Original Assignee
Fujikura Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Shinshu University NUC filed Critical Fujikura Ltd
Priority to JP2007003333A priority Critical patent/JP5093795B2/en
Publication of JP2008170257A publication Critical patent/JP2008170257A/en
Application granted granted Critical
Publication of JP5093795B2 publication Critical patent/JP5093795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、簡易かつ高精度な蛍光寿命の測定装置、該測定装置を付設した成膜装置、蛍光寿命測定方法に関する。 The present invention relates to a simple and highly accurate fluorescence lifetime measurement apparatus, a film forming apparatus provided with the measurement apparatus, and a fluorescence lifetime measurement method .

蛍光寿命の測定方法として、これまでに「パルスサンプリング法」、「時間相関単一光子計数法」、「位相変調法」、「励起プローブ法」、「ストリークカメラ」、「時間相単一光子計数法」が提案されている(例えば、特許文献1〜4参照。)。   The fluorescence lifetime measurement method has so far been "pulse sampling method", "time correlated single photon counting method", "phase modulation method", "excitation probe method", "streak camera", "time phase single photon counting" Law "has been proposed (see, for example, Patent Documents 1 to 4).

「パルスサンプリング法」は、蛍光物質にパルス励起光を照射し、発生した蛍光を分光した後に光電子増倍管で検出し、その光電子増倍管の出力信号を高速オシロスコープ等で観測するものであり、構成が簡単であるという利点がある。装置の構成としては、光源、光電子増倍管、オシロスコープである。   The “pulse sampling method” is a method in which a fluorescent substance is irradiated with pulsed excitation light, the generated fluorescence is dispersed, detected by a photomultiplier tube, and the output signal of the photomultiplier tube is observed with a high-speed oscilloscope or the like. There is an advantage that the configuration is simple. The configuration of the apparatus is a light source, a photomultiplier tube, and an oscilloscope.

「時間相関単一光子計数法」は、多数のパルス励起光照射について測定し、その時間に関するヒストグラムを作成し、これに基づいて蛍光寿命を求める方法である。装置構成は、短パルスレーザ、高速PMT、コンスタントフラクションディスクリミネータ、TAC(Time to amplitude converter)、PHA(pulse height analyzer)である。   The “time-correlated single photon counting method” is a method of measuring a number of pulsed excitation light irradiations, creating a histogram regarding the time, and obtaining a fluorescence lifetime based on the histogram. The apparatus configuration is a short pulse laser, a high-speed PMT, a constant fraction discriminator, a TAC (Time to amplitude converter), and a PHA (pulse height analyzer).

「位相変調法」は、例えば10ないし50MHzの正弦波に変調した励起光を蛍光物質に照射し、観測される蛍光と励起光との間の位相差及び変調周波数から蛍光寿命を求める方法である。「位相変調法」は光の利用効率が高く、波形がある程度特定されている減衰定数を高速で求める場合に適した方式であり、蛍光減衰時間が温度により大きく変化するルビー又はアレキサンドライト結晶等をプローブとして用い、高電磁界等の外乱ノイズの大きな環境で用いることのできる光ファイバ温度計のような、励起光と蛍光間の位相差をPLL(Phase Locked Loop)により、周波数に置き換えて寿命時間を測定する方式や装置が提案されている(例えば、特許文献5〜7、非特許文献1〜4参照。)。また、波形が特定されない場合、又はマルチコンポーネントの減衰特性の場合は、変調周波数を変化させるか(励起光が正弦波変調の場合)、又は着目する周波数(励起光がインパルスの場合、繰り返し周期の整数倍)を変化させて、その都度、位相差と強度のデータを取得し、フィッティング等の処理を施せば、減衰特性が求められる。   The “phase modulation method” is a method of irradiating a fluorescent material with excitation light modulated to a sine wave of 10 to 50 MHz, for example, and obtaining a fluorescence lifetime from the phase difference between the observed fluorescence and the excitation light and the modulation frequency. . The “phase modulation method” is a method suitable for obtaining an attenuation constant whose light utilization efficiency is high and the waveform is specified to some extent at high speed, and is used to probe a ruby or alexandrite crystal whose fluorescence decay time varies greatly with temperature. As an optical fiber thermometer that can be used in environments with high disturbance noise such as high electromagnetic fields, the phase difference between excitation light and fluorescence is replaced with a frequency by PLL (Phase Locked Loop) to shorten the lifetime. Methods and devices for measurement have been proposed (see, for example, Patent Documents 5 to 7 and Non-Patent Documents 1 to 4). If the waveform is not specified, or if the multi-component attenuation characteristic, the modulation frequency is changed (when the excitation light is sinusoidal modulation), or the frequency of interest (if the excitation light is an impulse, the repetition period is If the phase difference and the intensity data are acquired each time and the process such as fitting is performed, the attenuation characteristic is obtained.

「励起プローブ法」は、例えばカーセル等の光シャッタを使用するものであり、パルス励起光照射後に光シャッタを開く時刻を変化させながら、光シャッタを通過した蛍光の光量を測定することにより、蛍光寿命を求める方法である。   The “excitation probe method” uses an optical shutter such as a car cell, for example, and measures the amount of fluorescence passing through the optical shutter while changing the time at which the optical shutter is opened after irradiation with pulsed excitation light. This is a method for obtaining a lifetime.

「ストリークカメラ」は、蛍光を入力し、光電変換により生成された光電子ビームをパルス励起光発生に同期した掃引信号が印加された偏向電極によって偏向させ、これによって蛍光強度の時間変化を空間変化に変換し、この空間変化から蛍光寿命を求めるものである。この方式では、高感度で高時間分解能であるという特徴を有する。
特開平9−218155号公報 特開平9−229859号公報 特開平9−329548号公報 特開平10−78398号公報 特開昭63−308596号公報 特開平8−86735号公報 特許第3364333号公報 Zhiyi Zhang et al., Rev. Sci. Instrum. 64(9), pp.2531-2540 (1993) T. Bosselman et al., Proc. 2nd Optical Fiber Sensor Conf., 1984 Stuttgart, pp.151-154 Zhiyi Zhang et al., Rev. Sci. Instrum. 62, pp. 40 J. R. Lakowicz et al., SPIE Vol. 1204 Time-Resolved Laser Spectroscopy in Biochemistry II, pp. 13-20 (1990)
The “streak camera” receives fluorescence and deflects the photoelectron beam generated by photoelectric conversion with a deflection electrode to which a sweep signal synchronized with the generation of pulsed excitation light is applied, thereby changing the temporal change in fluorescence intensity into a spatial change. The fluorescence lifetime is obtained from this spatial change after conversion. This method is characterized by high sensitivity and high time resolution.
JP-A-9-218155 Japanese Patent Laid-Open No. 9-229859 Japanese Patent Laid-Open No. 9-329548 JP-A-10-78398 Japanese Unexamined Patent Publication No. 63-308596 JP-A-8-86735 Japanese Patent No. 3364333 Zhiyi Zhang et al., Rev. Sci. Instrum. 64 (9), pp.2531-2540 (1993) T. Bosselman et al., Proc. 2nd Optical Fiber Sensor Conf., 1984 Stuttgart, pp.151-154 Zhiyi Zhang et al., Rev. Sci. Instrum. 62, pp. 40 JR Lakowicz et al., SPIE Vol. 1204 Time-Resolved Laser Spectroscopy in Biochemistry II, pp. 13-20 (1990)

しかしながら、従来の蛍光寿命測定方法には、それぞれ以下のような問題がある。
「パルスサンプリング法」は、感度が悪く、電気信号の歪(リンギングやオーバーシュトなど)やディテクタ自身の歪(走行時間広がりなど)が問題となってくる10ns以下の高速領域で使用されることは少ない。
「時間相関単一光子計数法」は、1パルス励起当たり単一光子の蛍光しか検出できないので、ヒストグラム作成すなわち蛍光寿命測定に膨大な時間を要する。
「位相変調法」は、蛍光が多成分である場合にその解析が困難であり、また、時間分析能が低いため蛍光寿命の測定精度が悪い。
「励起プローブ法」は、光シャッタを開く時刻を変化させながら蛍光光量を測定するので、蛍光寿命測定に時間を要する。
「ストリークカメラ」は、高価である。
However, the conventional fluorescence lifetime measurement methods have the following problems.
The “pulse sampling method” has low sensitivity and is used in a high-speed region of 10 ns or less where distortion of the electrical signal (ringing, overshoot, etc.) and distortion of the detector itself (running time spread, etc.) are problematic. Few.
The “time-correlated single-photon counting method” can detect only single-photon fluorescence per one-pulse excitation, and therefore it takes an enormous amount of time for creating a histogram, that is, measuring fluorescence lifetime.
The “phase modulation method” is difficult to analyze when the fluorescence is multi-component, and the measurement accuracy of the fluorescence lifetime is poor because the time analysis ability is low.
In the “excitation probe method”, the amount of fluorescent light is measured while changing the time at which the optical shutter is opened.
The “streak camera” is expensive.

本発明に近い技術である「位相変調法」を中心に、従来技術の問題点を示す。従来の 「位相変調法」を採用した装置では、いずれも、電子回路のミキサーを用いて位相差を検出し、周波数に変換しているので、100MHzを超えるような高周波で寿命時間を求めようとすると、ミキサーの入力振幅特性(入力信号振幅により出力の位相が変化する)が問題となり、電子回路的な補正、あるいはAGC増幅等によりミキサーへの入力振幅を一定に保つなど、精度の高い測定器とするためには複雑な回路構成を余儀なくされることになってしまう。蛍光寿命時間をパラメータとした光ファイバ温度計は、マイクロ秒からミリ秒の蛍光寿命を計測に用いており、扱う周波数範囲は数100Hzから数MHzの定周波数の範囲に限定されている。また、位相検波を用いた場合、本質的に信号成分以外の外乱光入射に対してS/Nの優れた出力を得ることができるが、受光器は通常の使用方法(DCバイアス印加)によるため、初段増幅器の許容入力範囲を超えるような強力な背景光が入射したとき、初段増幅器の飽和により信号成分を増幅することができなくなってしまう。   The problems of the prior art will be described focusing on the “phase modulation method” which is a technique close to the present invention. In all devices employing the conventional “phase modulation method”, the phase difference is detected and converted into a frequency using a mixer of an electronic circuit, so an attempt is made to obtain the lifetime at a high frequency exceeding 100 MHz. Then, the input amplitude characteristics of the mixer (the output phase changes depending on the input signal amplitude) becomes a problem, and the measuring instrument with high accuracy such as maintaining the input amplitude to the mixer constant by electronic circuit correction or AGC amplification, etc. Therefore, a complicated circuit configuration is required. An optical fiber thermometer using the fluorescence lifetime as a parameter uses a fluorescence lifetime of microseconds to milliseconds, and the frequency range to be handled is limited to a constant frequency range of several hundred Hz to several MHz. In addition, when phase detection is used, an output with an excellent S / N can be obtained with respect to disturbance light incidents other than signal components. However, since the light receiver is based on a normal usage method (DC bias application). When strong background light exceeding the allowable input range of the first stage amplifier is incident, the signal component cannot be amplified due to saturation of the first stage amplifier.

本発明は、前記事情に鑑みてなされ、簡易な装置構成で高精度な蛍光寿命の測定が可能な蛍光寿命測定装置及びこれを付設した成膜装置、蛍光寿命測定方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a fluorescence lifetime measuring apparatus capable of measuring fluorescence lifetime with high accuracy with a simple apparatus configuration, a film forming apparatus provided with the fluorescence lifetime measuring apparatus, and a fluorescence lifetime measuring method .

前記目的を達成するため、本発明は、測定対象物に複数の周波数で正弦波駆動させた励起光を照射する励起光源と、励起光を照射した測定対象物から生じた蛍光を入射可能に設けられた受光素子と、該受光素子で受光した蛍光強度を測定するオシロスコープと、ストリークカメラとを有し、複数の周波数で正弦波駆動させた励起光を測定対象物に照射して、発生した蛍光強度の周波数依存性を評価することにより、蛍光強度が50%の値になる遮断周波数を求め、遮断周波数と、予めストリークカメラによって評価した測定対象物の蛍光寿命とを対応させることにより、遮断周波数における蛍光寿命を見積もることを特徴とする蛍光寿命測定装置を提供する。 In order to achieve the above object, the present invention provides an excitation light source that irradiates excitation light that is sine-wave driven to a measurement object at a plurality of frequencies, and fluorescence that is generated from the measurement object that is irradiated with the excitation light. A light receiving element, an oscilloscope for measuring the intensity of fluorescence received by the light receiving element, and a streak camera. By evaluating the frequency dependence of the intensity, the cutoff frequency at which the fluorescence intensity is 50% is obtained, and the cutoff frequency is made to correspond to the fluorescence lifetime of the measurement object evaluated in advance by the streak camera. The fluorescence lifetime measuring apparatus characterized by estimating the fluorescence lifetime in is provided.

本発明の蛍光寿命測定装置において、測定対象物と受光素子との間に、特定の波長の光を遮断するフィルタを挿入して、特定の波長成分ごとに蛍光寿命を測定するように構成したことが好ましい。   In the fluorescence lifetime measuring apparatus of the present invention, a filter that blocks light of a specific wavelength is inserted between the measurement object and the light receiving element, and the fluorescence lifetime is measured for each specific wavelength component. Is preferred.

本発明の蛍光寿命測定装置において、フィルタの透過波長を経時的に変化させて蛍光寿命の波長依存性を測定するように構成したことが好ましい。   The fluorescence lifetime measuring apparatus of the present invention is preferably configured to measure the wavelength dependence of fluorescence lifetime by changing the transmission wavelength of the filter over time.

本発明の蛍光寿命測定装置において、励起光源が直接変調型の半導体レーザであることが好ましい。   In the fluorescence lifetime measuring apparatus of the present invention, the excitation light source is preferably a direct modulation type semiconductor laser.

本発明の蛍光寿命測定装置において、励起光源が外部変調型のレーザであることが好ましい。   In the fluorescence lifetime measuring apparatus of the present invention, the excitation light source is preferably an external modulation type laser.

また本発明は、成膜装置に、前述した本発明に係る蛍光寿命測定装置を付設し、成膜中に蛍光寿命を測定可能な構成としたことを特徴とする成膜装置を提供する。
また、本発明は、測定対象物に複数の周波数で正弦波駆動させた励起光を照射する励起光源と、励起光を照射した測定対象物から生じた蛍光を入射可能に設けられた受光素子と、該受光素子で受光した蛍光強度を測定するオシロスコープと、ストリークカメラとを用い、複数の周波数で正弦波駆動させた励起光を測定対象物に照射して、発生した蛍光強度の周波数依存性を評価することにより、蛍光強度が50%の値になる遮断周波数を求め、遮断周波数と、予めストリークカメラによって評価した測定対象物の蛍光寿命とを対応させることにより、遮断周波数における蛍光寿命を見積もることを特徴とする蛍光寿命測定方法を提供する。
The present invention also provides a film forming apparatus characterized in that the above-described fluorescence lifetime measuring apparatus according to the present invention is attached to the film forming apparatus so that the fluorescence lifetime can be measured during the film formation.
The present invention also provides an excitation light source for irradiating a measurement object with excitation light that is sinusoidally driven at a plurality of frequencies, and a light receiving element provided so that fluorescence generated from the measurement object irradiated with the excitation light can enter. Using an oscilloscope that measures the fluorescence intensity received by the light receiving element and a streak camera, the measurement object is irradiated with excitation light that is sinusoidally driven at a plurality of frequencies, and the frequency dependence of the generated fluorescence intensity is measured. By evaluating, the cutoff frequency at which the fluorescence intensity is 50% is obtained, and the fluorescence lifetime at the cutoff frequency is estimated by associating the cutoff frequency with the fluorescence lifetime of the measurement object previously evaluated by the streak camera. A fluorescence lifetime measuring method characterized by the above.

本発明の蛍光寿命測定装置は、正弦波駆動させた励起光を測定対象物に照射して、発生した蛍光強度の周波数依存性を測定することで蛍光寿命を見積もることができるので、簡易な装置構成で高精度な蛍光寿命の測定が可能な測定装置を提供できる。
また、測定対象物と受光素子との間に波長フィルタを挿入することで、特定の波長成分における蛍光寿命を測定することが可能となる。
本発明の成膜装置は、前記蛍光寿命測定装置を成膜装置に付設したことにより、成膜装置で成膜した測定対象物の蛍光寿命を測定しながら成膜を進めることができ、目的に応じた蛍光寿命を持った有機薄膜等の薄膜を製造することができる。
The fluorescence lifetime measuring device of the present invention is a simple device because the fluorescence lifetime can be estimated by irradiating a measurement object with excitation light driven by a sine wave and measuring the frequency dependence of the generated fluorescence intensity. It is possible to provide a measuring apparatus capable of measuring the fluorescence lifetime with high accuracy by the configuration.
Further, it is possible to measure the fluorescence lifetime at a specific wavelength component by inserting a wavelength filter between the measurement object and the light receiving element.
In the film forming apparatus of the present invention, since the fluorescence lifetime measuring apparatus is attached to the film forming apparatus, the film formation can proceed while measuring the fluorescence lifetime of the measurement object formed by the film forming apparatus. A thin film such as an organic thin film having a corresponding fluorescence lifetime can be produced.

本発明の蛍光寿命測定装置は、測定対象物に複数の周波数で正弦波駆動させた励起光を照射する励起光源と、励起光を照射した測定対象物から生じた蛍光を入射可能に設けられた受光素子と、該受光素子で受光した蛍光強度を測定するオシロスコープとを有し、複数の周波数で正弦波駆動させた励起光を測定対象物に照射して、発生した蛍光強度の周波数依存性を評価することで測定対象物の蛍光寿命を測定することを特徴とする。   The fluorescence lifetime measuring apparatus of the present invention is provided such that an excitation light source that irradiates excitation light that is sinusoidally driven at a plurality of frequencies to a measurement object, and fluorescence that is generated from the measurement object that is irradiated with the excitation light can be incident. It has a light receiving element and an oscilloscope for measuring the fluorescence intensity received by the light receiving element, and irradiates the measurement object with excitation light driven by a sine wave at a plurality of frequencies, and the frequency dependence of the generated fluorescence intensity is measured. It is characterized by measuring the fluorescence lifetime of an object to be measured.

測定対象物に正弦波に変調した励起光を照射したときに発生する蛍光をフォトダイオードなどの受光素子で強度を測定する。ここで、励起光の変調周波数を変化させて蛍光強度の周波数依存性を測定することで、蛍光寿命を求めることができる。   The intensity of the fluorescence generated when the object to be measured is irradiated with excitation light modulated into a sine wave is measured by a light receiving element such as a photodiode. Here, the fluorescence lifetime can be obtained by changing the modulation frequency of the excitation light and measuring the frequency dependence of the fluorescence intensity.

正弦波変調した励起光としては、半導体レーザを直接変調させたものやNd:YAGレーザのTHGなどの固体レーザを外部変調させたものが考えられるが、いずれにしてもストリークカメラで用いられているフェムト秒レーザよりも価格、メンテナンス性、装置サイズの面で大きなメリットがある。以下、本発明に係る実施例を基に説明するが、以下の実施例は本発明の例示に過ぎず、本発明は以下の実施例の記載にのみ限定されるものではない。   As the sine wave-modulated excitation light, it is possible to use a direct modulation of a semiconductor laser or an external modulation of a solid-state laser such as a Nd: YAG laser THG, but in any case, it is used in a streak camera. Compared to femtosecond lasers, there are significant advantages in terms of price, maintainability, and equipment size. Hereinafter, the present invention will be described based on examples, but the following examples are merely illustrative of the present invention, and the present invention is not limited only to the description of the following examples.

[実施例1]
具体的に有機薄膜の蛍光寿命を本発明で測定した結果を示す。ガラス基板上に1,4−ビス[2−[4−[N,N−ジ(p−トリル)アミノ]フェニル]ビニル]ベンゼン(DSB)、トリス(8−ヒドロキシキノリン)アルミニウム(Alq)、4−(ジシアノメチレン)2−メチル−6−(ユロリジン−4−イル−ビニル)−4H−ピル(DCM2)ドープのAlq、5,6,11,12−テトラフェニル−テトラセン(rubrene)を0.5質量%ドープしたAlqの4種類の有機薄膜をそれぞれ100nmの膜厚で蒸着した。
[Example 1]
The result of having measured specifically the fluorescence lifetime of the organic thin film by this invention is shown. 1,4-bis [2- [4- [N, N-di (p-tolyl) amino] phenyl] vinyl] benzene (DSB), tris (8-hydroxyquinoline) aluminum (Alq 3 ) on a glass substrate, 4- (dicyanomethylene) 2-methyl-6- (urolidine-4-yl-vinyl) -4H-pyr (DCM2) doped Alq 3 , 5,6,11,12-tetraphenyl-tetracene 0 Four kinds of organic thin films of Alq 3 doped with 0.5 mass% were each deposited with a film thickness of 100 nm.

蛍光寿命測定装置の構成図を図1に示す。図1中、符号1は有機薄膜、2はガラス基板、3は半導体レーザ、4はレーザ光、5は蛍光、6はフォトダイオード、7はオシロスコープ、8はシグナルゼネレータである。中心波長405nmの半導体レーザにシグナルゼネレータ(KENWOOD社製の商品名SG−7200)を用いて正弦波電圧を印加した。そのため強度が時間的に変調された光が発生した。その強度変調された光を有機薄膜に照射して蛍光を発生させた。発生した蛍光をフォトディテクタ(浜松フォトニクス社製の商品名S−5343)で電気信号とし、オシロスコープ(横川電気社製の商品名DL1740)で強度を測定した。ここで、シグナルジェネレータで発生させる正弦波電圧の周波数を変化させて、それぞれの周波数に対する蛍光強度を計測した。   A block diagram of the fluorescence lifetime measuring apparatus is shown in FIG. In FIG. 1, reference numeral 1 is an organic thin film, 2 is a glass substrate, 3 is a semiconductor laser, 4 is laser light, 5 is fluorescent light, 6 is a photodiode, 7 is an oscilloscope, and 8 is a signal generator. A sine wave voltage was applied to a semiconductor laser having a central wavelength of 405 nm using a signal generator (trade name SG-7200 manufactured by KENWOOD). Therefore, light whose intensity was temporally modulated was generated. The organic thin film was irradiated with the intensity-modulated light to generate fluorescence. The generated fluorescence was converted into an electrical signal with a photodetector (trade name S-5343, manufactured by Hamamatsu Photonics), and the intensity was measured with an oscilloscope (trade name, DL1740, manufactured by Yokogawa Electric). Here, the frequency of the sinusoidal voltage generated by the signal generator was changed, and the fluorescence intensity for each frequency was measured.

図2に、DSB薄膜の蛍光強度の周波数依存性を示す。ここでは変調周波数を1MHzから200MHzの範囲で変化させた。ここで、縦軸(蛍光強度)と横軸(周波数)は、それぞれ対数で表示している。また、蛍光強度が50%の値になる周波数を遮断周波数として求めた。DSB薄膜の場合、遮断周波数は160MHzとなった。さらに同じ測定対象物を、ストリークカメラ(浜松フォトニクス社製の商品名FESCA−200)で蛍光寿命を測定したところ、2nsという結果になった。つまり、遮断周波数160MHzは、蛍光寿命2nsに対応することが分かる。   FIG. 2 shows the frequency dependence of the fluorescence intensity of the DSB thin film. Here, the modulation frequency was changed in the range of 1 MHz to 200 MHz. Here, the vertical axis (fluorescence intensity) and the horizontal axis (frequency) are each expressed in logarithm. Further, the frequency at which the fluorescence intensity was 50% was determined as the cutoff frequency. In the case of the DSB thin film, the cutoff frequency was 160 MHz. Furthermore, when the same measurement object was measured for the fluorescence lifetime with a streak camera (trade name FESCA-200 manufactured by Hamamatsu Photonics), the result was 2 ns. That is, it can be seen that the cutoff frequency of 160 MHz corresponds to the fluorescence lifetime of 2 ns.

また、図3に前記4種類の薄膜の遮断周波数と蛍光寿命の関係を示す。ここで、蛍光寿命の値は、ストリークカメラ(浜松フォトニクス社製の商品名FESCA−200)を用いて測定した結果である。蛍光寿命と遮断周波数の間には、明確な関係があり、この図3の結果を元に遮断周波数から蛍光寿命を見積もることができる。   FIG. 3 shows the relationship between the cutoff frequency and the fluorescence lifetime of the four types of thin films. Here, the value of the fluorescence lifetime is a result of measurement using a streak camera (trade name FESCA-200 manufactured by Hamamatsu Photonics). There is a clear relationship between the fluorescence lifetime and the cutoff frequency, and the fluorescence lifetime can be estimated from the cutoff frequency based on the result of FIG.

位相変調法と比較して、本発明の方法では、多くの周波数成分を測定しているので、一つの波長成分ごとにおける誤差の影響が小さくなり、その結果として測定精度が向上する。測定精度については、下記実施例2に具体的な例を示す。   Compared with the phase modulation method, in the method of the present invention, since many frequency components are measured, the influence of errors for each wavelength component is reduced, and as a result, the measurement accuracy is improved. A specific example of measurement accuracy is shown in Example 2 below.

[実施例2:位相変調法との比較]
位相変調法で測定した場合と本発明に係る装置を用いて測定した場合(実施例2)の比較を示す。測定対象物は、DSBドープのCBPとした。位相変調法では、100MHzに変調した励起光で同一サンプルを10回測定した。励起光としては、波長405nmの半導体レーザを用いた。結果を下記表1に示す。
[Example 2: Comparison with phase modulation method]
A comparison between the case of measurement by the phase modulation method and the case of measurement using the apparatus according to the present invention (Example 2) is shown. The object to be measured was DSB-doped CBP. In the phase modulation method, the same sample was measured 10 times with excitation light modulated to 100 MHz. As the excitation light, a semiconductor laser with a wavelength of 405 nm was used. The results are shown in Table 1 below.

Figure 0005093795
Figure 0005093795

表1の結果から、位相変調法では標準偏差が0.014nsであるのに対し、本発明に係る実施例2では0.006nsであり、測定の再現性が大きく向上していることが分かる。   From the results of Table 1, it can be seen that the standard deviation is 0.014 ns in the phase modulation method, and 0.006 ns in Example 2 according to the present invention, and the reproducibility of the measurement is greatly improved.

[実施例3]
測定対象物とフォトダイオードの間に特定の波長を遮断するフィルタを挿入することで、ある特定の波長成分ごとの蛍光寿命を測定できる。また、フィルタの通過波長を経時変化させることで、蛍光寿命の波長依存性も評価できる。
[Example 3]
By inserting a filter that cuts off a specific wavelength between the measurement object and the photodiode, the fluorescence lifetime for each specific wavelength component can be measured. Moreover, the wavelength dependence of the fluorescence lifetime can also be evaluated by changing the passing wavelength of the filter over time.

[実施例4]
本発明の蛍光寿命測定装置を蒸着装置やMOCVD装置内に組み込んで、成膜と同時に蛍光寿命をモニタすることで、安定した成膜が可能になる。また、測定した蛍光寿命の値を成膜条件にフィードバックさせることで、例えばドープ濃度を経時的に変化させて、形成している薄膜の厚さ方向で蛍光寿命を均一にすることができる。
[Example 4]
By incorporating the fluorescence lifetime measuring apparatus of the present invention into a vapor deposition apparatus or MOCVD apparatus and monitoring the fluorescence lifetime simultaneously with film formation, stable film formation becomes possible. Further, by feeding back the measured fluorescence lifetime value to the film formation conditions, for example, the dope concentration can be changed over time, and the fluorescence lifetime can be made uniform in the thickness direction of the thin film formed.

実施例1で用いた蛍光寿命測定装置の構成図である。1 is a configuration diagram of a fluorescence lifetime measuring apparatus used in Example 1. FIG. 実施例1の結果のうち、DSB薄膜の蛍光強度の周波数依存性を示すグラフである。It is a graph which shows the frequency dependence of the fluorescence intensity of a DSB thin film among the results of Example 1. 実施例1の結果のうち、4種類の薄膜の遮断周波数と蛍光寿命の関係を示すグラフである。It is a graph which shows the relationship between the cutoff frequency and fluorescence lifetime of four types of thin films among the results of Example 1.

符号の説明Explanation of symbols

1…有機薄膜、2…ガラス基板、3…半導体レーザ、4…レーザ光、5…蛍光、6…フォトダイオード、7…オシロスコープ、8…シグナルゼネレータ。   DESCRIPTION OF SYMBOLS 1 ... Organic thin film, 2 ... Glass substrate, 3 ... Semiconductor laser, 4 ... Laser beam, 5 ... Fluorescence, 6 ... Photodiode, 7 ... Oscilloscope, 8 ... Signal generator.

Claims (7)

測定対象物に複数の周波数で正弦波駆動させた励起光を照射する励起光源と、励起光を照射した測定対象物から生じた蛍光を入射可能に設けられた受光素子と、該受光素子で受光した蛍光強度を測定するオシロスコープと、ストリークカメラとを有し、
複数の周波数で正弦波駆動させた励起光を測定対象物に照射して、発生した蛍光強度の周波数依存性を評価することにより、蛍光強度が50%の値になる遮断周波数を求め、
遮断周波数と、予めストリークカメラによって評価した測定対象物の蛍光寿命とを対応させることにより、遮断周波数における蛍光寿命を見積もることを特徴とする蛍光寿命測定装置。
An excitation light source that irradiates excitation light that is sinusoidally driven at a plurality of frequencies to a measurement object, a light receiving element that is capable of entering fluorescence generated from the measurement object irradiated with the excitation light, and a light receiving element that receives light. An oscilloscope for measuring the fluorescence intensity and a streak camera,
And irradiated with an excitation light of driving sine wave at a plurality of frequencies to the measurement object, by evaluating the frequency dependency of the generated fluorescence intensity determines the cutoff frequency fluorescence intensity is a value of 50%,
And cut-off frequency, by associating the fluorescence lifetime of the object to be measured and evaluated by the previously streak camera, fluorescence lifetime measurement apparatus, characterized in that to estimate the fluorescence lifetime at the cutoff frequency.
測定対象物と受光素子との間に、特定の波長の光を遮断するフィルタを挿入して、特定
の波長成分ごとに蛍光寿命を測定するように構成したことを特徴とする請求項1に記載の
蛍光寿命測定装置。
2. The fluorescence lifetime is measured for each specific wavelength component by inserting a filter that blocks light of a specific wavelength between the measurement object and the light receiving element. Fluorescence lifetime measuring device.
フィルタの透過波長を経時的に変化させて蛍光寿命の波長依存性を測定するように構成
したことを特徴とする請求項2に記載の蛍光寿命測定装置。
The fluorescence lifetime measuring apparatus according to claim 2, wherein the wavelength dependence of fluorescence lifetime is measured by changing the transmission wavelength of the filter over time.
励起光源が直接変調型の半導体レーザであることを特徴とする請求項1に記載の蛍光寿
命測定装置。
2. The fluorescence lifetime measuring apparatus according to claim 1, wherein the excitation light source is a direct modulation type semiconductor laser.
励起光源が外部変調型のレーザであることを特徴とする請求項1に記載の蛍光寿命測定
装置。
2. The fluorescence lifetime measuring apparatus according to claim 1, wherein the excitation light source is an external modulation type laser.
成膜装置に、請求項1〜5のいずれか一項に記載の蛍光寿命測定装置を付設し、成膜中に蛍光寿命を測定可能な構成としたことを特徴とする成膜装置。 The film-forming apparatus, and attaching a fluorescence lifetime measurement apparatus according to any one of claims 1 to 5, the film forming apparatus, wherein a fluorescence lifetime was measured configurable during film formation. 測定対象物に複数の周波数で正弦波駆動させた励起光を照射する励起光源と、励起光を照射した測定対象物から生じた蛍光を入射可能に設けられた受光素子と、該受光素子で受光した蛍光強度を測定するオシロスコープと、ストリークカメラとを用い、複数の周波数で正弦波駆動させた励起光を測定対象物に照射して、発生した蛍光強度の周波数依存性を評価することにより、蛍光強度が50%の値になる遮断周波数を求め、遮断周波数と、予めストリークカメラによって評価した測定対象物の蛍光寿命とを対応させることにより、遮断周波数における蛍光寿命を見積もることを特徴とする蛍光寿命測定方法。 An excitation light source that irradiates excitation light that is sinusoidally driven at a plurality of frequencies to a measurement object, a light receiving element that is capable of entering fluorescence generated from the measurement object irradiated with the excitation light, and a light receiving element that receives light. and an oscilloscope for measuring the fluorescence intensity, using a streak camera, by which irradiation with excitation light of driving sine wave at a plurality of frequencies in the measurement object, to evaluate the frequency dependence of the generated fluorescence intensity, Fluorescence lifetime characterized by estimating the fluorescence lifetime at the cutoff frequency by determining the cutoff frequency at which the intensity is 50% and making the cutoff frequency correspond to the fluorescence lifetime of the measurement object evaluated in advance by a streak camera Measuring method.
JP2007003333A 2007-01-11 2007-01-11 Fluorescence lifetime measuring apparatus, film forming apparatus, and fluorescence lifetime measuring method Expired - Fee Related JP5093795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003333A JP5093795B2 (en) 2007-01-11 2007-01-11 Fluorescence lifetime measuring apparatus, film forming apparatus, and fluorescence lifetime measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003333A JP5093795B2 (en) 2007-01-11 2007-01-11 Fluorescence lifetime measuring apparatus, film forming apparatus, and fluorescence lifetime measuring method

Publications (2)

Publication Number Publication Date
JP2008170257A JP2008170257A (en) 2008-07-24
JP5093795B2 true JP5093795B2 (en) 2012-12-12

Family

ID=39698495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003333A Expired - Fee Related JP5093795B2 (en) 2007-01-11 2007-01-11 Fluorescence lifetime measuring apparatus, film forming apparatus, and fluorescence lifetime measuring method

Country Status (1)

Country Link
JP (1) JP5093795B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2673661B1 (en) * 2011-02-07 2022-08-03 ION Geophysical Corporation Method and apparatus for sensing underwater signals
CA2805718C (en) 2011-02-15 2016-04-12 Ysystems Ltd. Apparatus and method for measuring a luminescent decay
CN106383102B (en) * 2016-09-05 2019-04-09 广东工业大学 A kind of fluorescence life measuring method and system
CN108254708B (en) * 2017-12-19 2024-08-02 中国科学技术大学 Optical fiber fluorescence all-optical magnetic field sensor and system
WO2024162162A1 (en) * 2023-01-30 2024-08-08 株式会社村田製作所 Optical sensor measurement module, optical sensor measurement set, and detection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212386A (en) * 1991-12-13 1993-05-18 I.S.S. (U.S.A.) Inc. High speed cross-correlation frequency domain fluorometry-phosphorimetry
JP3364333B2 (en) * 1994-09-19 2003-01-08 浜松ホトニクス株式会社 Attenuation characteristic measuring device
EP1372483A2 (en) * 2001-03-01 2004-01-02 Trustees of Dartmouth College Fluorescence lifetime spectrometer (fls) and methods of detecting diseased tissues
US6965431B2 (en) * 2003-02-28 2005-11-15 Ut-Battelle, Llc Integrated tunable optical sensor (ITOS) system
JP2006016660A (en) * 2004-07-01 2006-01-19 Showa Shinku:Kk Apparatus for forming organic thin film, and method therefor

Also Published As

Publication number Publication date
JP2008170257A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
CN109061295B (en) Near-field microwave resonator resonant frequency measurement system and method
KR100885927B1 (en) Apparatus and method for measuring fluorescence lifetime
CN106645096B (en) Portable laser-induced breakdown spectroscopy analysis system
JP5093795B2 (en) Fluorescence lifetime measuring apparatus, film forming apparatus, and fluorescence lifetime measuring method
CN101551324B (en) Semiconductor material characteristic measuring device and method based on double detection beams
JPWO2019131410A1 (en) Sample inspection apparatus and sample inspection method
CN108463714B (en) Emission lifetime measurement method and apparatus for measuring average lifetime of excited electronic states
CN103543130B (en) Method for eliminating system frequency response influence of semiconductor material characteristic measuring device in photocarrier radiation technology
JPS6224737B2 (en)
KR101859172B1 (en) Measuring apparatus to obtain multiple fluorescence lifetimes by calculating least square errors using imaginay fluorescence distribution model using the signal from the analong mean delay method and measuring method thereof
JP3830461B2 (en) Defect measuring method and defect measuring apparatus in solid
CN111239090A (en) Method and system for measuring single-pulse laser-induced transient molecular fluorescence spectrum
CN111579491A (en) Planar laser-induced breakdown spectroscopy scanner
JP3918054B2 (en) Method and apparatus for measuring the photoresponse of a substance
Zhang et al. Simple near-infrared time-correlated single photon counting instrument with a pulsed diode laser and avalanche photodiode for time-resolved measurements in scanning applications
JP2007027288A (en) Equipment and method for measuring lifetime of semiconductor carrier
Otosu et al. Note: Simple calibration of the counting-rate dependence of the timing shift of single photon avalanche diodes by photon interval analysis
JP2010287712A (en) Method of measuring characteristic of semiconductor
CN212321415U (en) Planar laser-induced breakdown spectroscopy scanner
US5071249A (en) Light waveform measuring apparatus
KR102386516B1 (en) Device and method for measuring fluorescence lifetime
Trabesinger et al. Continuous real-time measurement of fluorescence lifetimes
Sergeev et al. Measuring Complex for the Diagnostics of the Quality of Light–Emitting Heterostructures According to Photoelectric and Optical Responses Under Local Photoexcitation
DiBenedetto et al. Time-resolved hyperspectral fluorescence spectroscopy using frequency-modulated excitation
JP5751563B2 (en) Frequency domain fluorescence measurement system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees