JP2006133063A - Device for manufacturing coated fuel particle for high-temperature gas-cooled reactor - Google Patents

Device for manufacturing coated fuel particle for high-temperature gas-cooled reactor Download PDF

Info

Publication number
JP2006133063A
JP2006133063A JP2004321968A JP2004321968A JP2006133063A JP 2006133063 A JP2006133063 A JP 2006133063A JP 2004321968 A JP2004321968 A JP 2004321968A JP 2004321968 A JP2004321968 A JP 2004321968A JP 2006133063 A JP2006133063 A JP 2006133063A
Authority
JP
Japan
Prior art keywords
front door
chamber
insulating material
heat insulating
chamber body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004321968A
Other languages
Japanese (ja)
Other versions
JP4234665B2 (en
Inventor
Tomoo Takayama
智生 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004321968A priority Critical patent/JP4234665B2/en
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to EP05734488A priority patent/EP1752991B1/en
Priority to CN2005800203077A priority patent/CN1969342B/en
Priority to PCT/JP2005/007533 priority patent/WO2005104139A1/en
Priority to US11/587,178 priority patent/US20080035056A1/en
Priority to EP12156003.1A priority patent/EP2455944B1/en
Priority to EP12156006.4A priority patent/EP2455945B1/en
Publication of JP2006133063A publication Critical patent/JP2006133063A/en
Priority to ZA2006/09633A priority patent/ZA200609633B/en
Application granted granted Critical
Publication of JP4234665B2 publication Critical patent/JP4234665B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve maintainability of a fluidized bed by facilitating access in the fluidized bed. <P>SOLUTION: This device is equipped with a chamber 18 having a heater 16 and a heat insulating material 16 enclosing the periphery of a reaction tube 12 wherein pyrolysis gas is reacted with a fuel kernel. The chamber 18 comprises a chamber body 20 having an opening on a part of the peripheral wall, and a front door 22 formed so as to close the opening 21 of the chamber body 20 and fitted openably/closably to the chamber body 20. The chamber 18 has a configuration wherein the heater 14 and the heat insulating material 16 are fitted dividedly in the chamber body 20 and the front door 22, and a heat insulating material 16A on the chamber body 20 side and a heat insulating material 16B on the front door 22 side are brought into close contact with each other while the front door 22 is closed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、高温ガス炉に用いられる被覆燃料粒子を製造する装置に関し、特に流動床の取り扱いを改善することができる高温ガス炉用被覆燃料粒子の製造装置に関するものである。   The present invention relates to an apparatus for producing coated fuel particles used in, for example, a high-temperature gas furnace, and more particularly to an apparatus for producing coated fuel particles for a high-temperature gas furnace that can improve the handling of a fluidized bed.

高温ガス炉は、燃料を含む炉心構造を熱容量が大きく高温で健全性を維持する黒鉛で構成しており、炉心を冷却するために、高温下でも化学反応が起こることがないヘリウムガスを冷却ガスとして用いているので、固有の安全性が高く、約900℃の高い出口温度のヘリウムガスを回収して、この高温熱を発電、水素製造、化学プラント等の広い分野で利用することができる。   The HTGR is composed of graphite that has a large heat capacity and maintains its soundness at high temperatures, and the helium gas that does not cause a chemical reaction even at high temperatures is used as a cooling gas to cool the core. Therefore, helium gas having a high exit temperature of about 900 ° C. is recovered, and this high-temperature heat can be used in a wide range of fields such as power generation, hydrogen production, and chemical plants.

高温ガス炉の燃料は、二酸化ウランをセラミック状に焼結した直径が約350−650ミクロンの燃料核の周囲に4層の被覆を施して形成されている。第一層は、密度が約1g/cmの低密度熱分解炭素の被覆であり、これは、ガス状の核分裂生成物(FP)のガス溜めとしての機能と燃料核のスウェリングを吸収するバッファとしての機能とを併せ持っている。第二層は、密度が約1.8g/cmの高密度熱分解炭素の被覆であり、これは、ガス状FPの保持機能を有する。第三層は、密度が約3.2g/cm3の炭化珪素(SiC)の被覆であり、これは、固体FPの保持機能を有すると共に、被覆の主要な補強部材としての機能を有する。最後に、第四層は、第二層と同様に、密度が約1.8g/cmの高密度熱分解炭素の被覆であり、これは、ガス状FPの保持機能と第三層の保護層としての機能を有する。 The fuel in the HTGR is formed by applying four layers of coating around a fuel core having a diameter of about 350-650 microns obtained by sintering uranium dioxide into a ceramic form. The first layer is a coating of low density pyrolytic carbon with a density of about 1 g / cm 3 , which absorbs the function of the gaseous fission product (FP) as a reservoir and fuel nuclear swelling. It also has a function as a buffer. The second layer is a coating of high density pyrolytic carbon having a density of about 1.8 g / cm 3 , which has a retention function for gaseous FP. The third layer is a silicon carbide (SiC) coating having a density of about 3.2 g / cm 3, which has a function of holding the solid FP and a function as a main reinforcing member of the coating. Finally, the fourth layer, like the second layer, is a high-density pyrolytic carbon coating with a density of about 1.8 g / cm 3 , which is a gaseous FP retention function and third layer protection. It functions as a layer.

一般的な被覆燃料粒子は、約500−1000ミクロンの直径を有する。この被覆燃料粒子は、黒鉛マトリックス中に分散させた後、一定の形状の燃料コンパクトの形態に成型加工され、この燃料コンパクトの一定数量を黒鉛筒に入れ、上下を栓で密封して燃料棒とされる。この燃料棒は、六角柱型黒鉛ブロックの複数の挿入口に差し込まれて高温ガス炉の燃料となる。多数個の六角柱型黒鉛ブロックをハニカム配列に多段に重ねて炉心を構成している。   Typical coated fuel particles have a diameter of about 500-1000 microns. The coated fuel particles are dispersed in a graphite matrix, and then molded into a fuel compact shape having a fixed shape. A fixed amount of the fuel compact is placed in a graphite tube, and the top and bottom are sealed with stoppers to form fuel rods. Is done. This fuel rod is inserted into a plurality of insertion ports of the hexagonal column type graphite block and becomes fuel for the high temperature gas furnace. A large number of hexagonal columnar graphite blocks are stacked in multiple stages on a honeycomb array to constitute a core.

高温ガス炉の燃料は、一般的には、次のようにして製造される。まず、酸化ウラン粉末を硝酸に溶かして硝酸ウラニル原液とし、この硝酸ウラニル原液に純水、増粘剤を添加し攪拌して滴下原液を作る。増粘剤は、滴下された硝酸ウラニル原液の滴液が落下中にそれ自体の表面張力で真球状になるように作用する。このような増粘剤としては、アルカリ条件下で凝固する性質を有する樹脂、例えば、ポリビニールアルコール樹脂、ポリエチレングリコール、メトローズ等を使用することができる。このように調製された滴下原液は、所定の温度に冷却されて粘度が調整された後、細径の滴下ノズルを振動させる等の方法を用いてアンモニア水中に滴下される。   Generally, the fuel for the HTGR is manufactured as follows. First, uranium oxide powder is dissolved in nitric acid to form a uranyl nitrate stock solution, and pure water and a thickener are added to the uranyl nitrate stock solution and stirred to prepare a dropping stock solution. The thickener acts so that the dropped solution of the uranyl nitrate stock solution dropped into a spherical shape with its own surface tension during dropping. As such a thickener, a resin having a property of solidifying under an alkaline condition, for example, a polyvinyl alcohol resin, polyethylene glycol, or metroise can be used. The dripping stock solution prepared in this manner is cooled to a predetermined temperature and the viscosity is adjusted, and then dropped into ammonia water using a method of vibrating a small-diameter dropping nozzle.

滴液は、アンモニア水溶液表面に着水するまでの空間でアンモニアガスを吹き付けて表面をゲル化させることによって着水時の変形が防止される。硝酸ウラニルは、アンモニア水中でアンモニアと充分に反応させ、重ウラン酸アンモニウムの粒子となる。この粒子は、大気中で焙焼され三酸化ウラン粒子となり、更に還元焼結されて高密度のセラミック二酸化ウランの燃料核となる。   The droplet liquid is prevented from being deformed at the time of landing by spraying ammonia gas in a space until it reaches the surface of the aqueous ammonia solution to gel the surface. Uranyl nitrate is sufficiently reacted with ammonia in ammonia water to form particles of ammonium biuranate. These particles are roasted in the atmosphere to become uranium trioxide particles, and further reduced and sintered to become fuel nuclei of high-density ceramic uranium dioxide.

この燃料核は、流動床に装荷され、この流動床内で反応ガス(被覆ガス)が供給されて熱分解されて被覆が施される。第一層の低密度熱分解炭素は、約1400℃でアセチレン(C)を熱分解して被覆される。第二層及び第四層の高密度熱分解炭素は、約1400℃でプロピレン(C)を熱分解して被覆される。第三層のSiCは、約1600℃でメチルトリクロロシラン(CHSiCl)を熱分解して被覆される。一般的な燃料コンパクトは、被覆燃料粒子を黒鉛粉末、粘結剤等から成る黒鉛マトリックス材と共に中空円筒形又は円筒形にプレス成型又はモールド成型した後、焼結して得られる。 The fuel nuclei are loaded into a fluidized bed, and a reaction gas (coating gas) is supplied in the fluidized bed and thermally decomposed to be coated. The first layer of low density pyrolytic carbon is coated by pyrolyzing acetylene (C 2 H 2 ) at about 1400 ° C. The high density pyrolytic carbon of the second and fourth layers is coated by pyrolyzing propylene (C 3 H 6 ) at about 1400 ° C. The third layer of SiC is coated by pyrolyzing methyltrichlorosilane (CH 3 SiCl 3 ) at about 1600 ° C. A general fuel compact is obtained by press-molding or molding coated fuel particles into a hollow cylindrical shape or a cylindrical shape together with a graphite matrix material made of graphite powder, a binder or the like, and then sintering.

従来技術の被覆燃料粒子の製造装置は、チャンバーの天井で開閉自在となっており(特許文献1参照)、従って、流動床内部にはチャンバーの天井からアクセスすることができるだけである。このため、反応管の取付け、取り外しや流動床内のクリーニングは、このチャンバーの天井で行っており、このため、流動床の取り扱いが面倒であり、そのメインテナンス性が非常に低かった。   The conventional apparatus for producing coated fuel particles can be opened and closed at the ceiling of the chamber (see Patent Document 1), and therefore, the inside of the fluidized bed can only be accessed from the ceiling of the chamber. For this reason, the attachment and detachment of the reaction tube and the cleaning of the fluidized bed are performed on the ceiling of the chamber. Therefore, the handling of the fluidized bed is troublesome and its maintenance is very low.

特開平5−287285号公報Japanese Patent Application Laid-Open No. 5-287285

本発明が解決しようとする課題は、流動床内のアクセスを容易に行うことができ、従って流動床のメインテナンス性を改善することができる高温ガス炉用被覆燃料粒子の製造装置を提供することにある。   The problem to be solved by the present invention is to provide an apparatus for producing coated fuel particles for a HTGR that can easily access in the fluidized bed and thus can improve the maintainability of the fluidized bed. is there.

本発明の課題解決手段は、燃料核を高温状態で流動化しながら熱分解ガスを反応させる反応管を収納し、この反応管の周りを囲むヒータと断熱材とを有するチャンバーを備えた高温ガス炉用被覆燃料粒子の製造装置において、チャンバーは、周壁の一部が開口しているチャンバー本体とこのチャンバー本体の開口を閉じるように形成されてチャンバー本体に開閉自在に取付けられた前扉とから成り、ヒータと断熱材とは、チャンバー本体と前扉とに分割して取付けられ、前扉が閉じられた状態でチャンバー本体側の断熱材と前扉側の断熱材とが密着するように構成されていることを特徴とする高温ガス炉用被覆燃料粒子の製造装置を提供することにある。   The problem-solving means of the present invention includes a reaction tube for reacting a pyrolysis gas while fluidizing fuel nuclei in a high-temperature state, and a high-temperature gas furnace having a chamber having a heater and a heat insulating material surrounding the reaction tube In the coated fuel particle manufacturing apparatus, the chamber is composed of a chamber main body having a part of the peripheral wall opened and a front door formed to close the opening of the chamber main body and attached to the chamber main body so as to be opened and closed. The heater and the heat insulating material are divided and attached to the chamber main body and the front door, and the heat insulating material on the chamber main body side and the heat insulating material on the front door side are in close contact with the front door closed. An object of the present invention is to provide an apparatus for producing coated fuel particles for a HTGR characterized by the above.

本発明の課題解決手段において、前扉は、チャンバー本体にヒンジ止めされていてもよいし、チャンバー本体に対して上側又は下側に摺動自在に取付けられていてもよく、後者の場合には、装置は、前扉を開閉操作する摺動開閉操作手段を備えている。   In the problem-solving means of the present invention, the front door may be hinged to the chamber main body, or may be slidably attached to the upper or lower side of the chamber main body. The apparatus includes sliding opening / closing operation means for opening / closing the front door.

本発明によれば、流動床は、前扉を開閉することによって容易にアクセスすることができ、従って反応管の取付け、取り外し、流動床のクリーニングを容易に行うことができる。   According to the present invention, the fluidized bed can be easily accessed by opening and closing the front door, and therefore, the reaction tube can be easily attached and detached, and the fluidized bed can be easily cleaned.

本発明の実施の形態を図面を参照して詳細に述べると、図1乃至図3は、本発明に係わる高温ガス炉用被覆燃料粒子の製造装置10の1つの形態を示し、この製造装置10は、燃料核に反応ガスを反応させてその表面に被覆を施す反応管12を収納し、この反応管12の周りを囲むように取り付けられたヒータ14と断熱材16とを有するチャンバー(外壁)18を備えている。   An embodiment of the present invention will be described in detail with reference to the drawings. FIGS. 1 to 3 show one embodiment of a manufacturing apparatus 10 for coated fuel particles for a high temperature gas reactor according to the present invention. Accommodates a reaction tube 12 that reacts a reaction gas with a fuel nucleus and coats the surface thereof, and a chamber (outer wall) having a heater 14 and a heat insulating material 16 attached so as to surround the reaction tube 12. 18 is provided.

チャンバー18は、その周壁の一部が切り欠かれて開口しているチャンバー本体20と、このチャンバー本体20の開口を閉じるように形成されてチャンバー本体20に開閉自在に取付けられた前扉22とから成り(図3参照)、ヒータ14と断熱材16とは、チャンバー本体20と前扉22とに符号14A、16A(本体側)、符号14B、16B(前扉側)に示すように、分割して取付けられている。前扉22が閉じられた状態では、チャンバー本体20側の断熱材16Aと前扉22側の断熱材16Bとが密着するように成っており、従ってチャンバー本体20と前扉22との間で反応管12の流動床内の断熱性を悪化することがない。   The chamber 18 includes a chamber main body 20 that is opened by cutting a part of its peripheral wall, and a front door 22 that is formed to close the opening of the chamber main body 20 and is attached to the chamber main body 20 so as to be openable and closable. (See FIG. 3), the heater 14 and the heat insulating material 16 are divided into the chamber body 20 and the front door 22 as shown by reference numerals 14A and 16A (main body side) and reference numerals 14B and 16B (front door side). Installed. In the state where the front door 22 is closed, the heat insulating material 16A on the chamber body 20 side and the heat insulating material 16B on the front door 22 side are in close contact with each other, so that a reaction occurs between the chamber main body 20 and the front door 22. The heat insulation in the fluidized bed of the pipe 12 is not deteriorated.

図1及び図2の形態では、前扉22は、チャンバー本体20の開口21の縁にヒンジ24によって開閉自在に取付けられており、その開度は、図2に示すように、180°とすることができるが、作業スペースや作業性を考慮して適宜に設定することができる。   1 and 2, the front door 22 is attached to the edge of the opening 21 of the chamber body 20 by a hinge 24 so as to be freely opened and closed, and the opening degree is 180 ° as shown in FIG. However, it can be set appropriately in consideration of the work space and workability.

また、前扉22は、チャンバー本体20の開口21を閉じた状態に維持する複数の締め付け金具26から成る前扉固定手段28を備えている。この締め付け金具26は、チャンバー本体20の縁と前扉22の縁とに跨ってこれらを相互に密着するように固定する適宜の形態とすることができる。なお、図3から解るように、これらの締め付け金具26は、チャンバー本体20の周縁リブ20rと前扉22の周縁リブ22rとの間で締め付けられている。   Further, the front door 22 includes a front door fixing means 28 including a plurality of fastening fittings 26 that keep the opening 21 of the chamber body 20 closed. This fastening metal fitting 26 can be in an appropriate form for fixing them so as to be in close contact with each other across the edge of the chamber body 20 and the edge of the front door 22. As can be seen from FIG. 3, these fastening fittings 26 are fastened between the peripheral rib 20 r of the chamber body 20 and the peripheral rib 22 r of the front door 22.

チャンバー18は、基台30に脚部材32を介して支持され、反応管12は、基台30とチャンバー本体20との間に設けられて図示しない反応ガス供給源に接続されるガス供給管34を有し、このガス供給管34は、反応管12に連通している。   The chamber 18 is supported on the base 30 via the leg member 32, and the reaction tube 12 is provided between the base 30 and the chamber body 20 and connected to a reaction gas supply source (not shown). The gas supply pipe 34 communicates with the reaction pipe 12.

本発明の他の形態による高温ガス炉用被覆燃料粒子の製造装置10が図4及び図5に示されており、この形態の製造装置10は、前扉22が前開きではなく、チャンバー本体20に対して上下に摺動して開閉するように取付けられている点を除いて図1乃至図3の形態と同じである。図1乃至図3の形態と同じ部分には同じ符号が付されている。   4 and 5 show an apparatus 10 for producing coated fuel particles for a HTGR according to another embodiment of the present invention. In the apparatus 10 of this embodiment, the front door 22 is not a front opening, and the chamber body 20 3 is the same as that shown in FIGS. 1 to 3 except that it is attached so as to open and close by sliding up and down. The same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals.

図4及び図5の形態では、前扉22を開閉操作する摺動開閉操作手段36を備え、この摺動開閉操作手段36は、前扉22に噛み合ってこの前扉22を上下に案内する1対のボールねじ38、38’と、これらのボールねじ38、38’を回転するステップモータの如き回転駆動源40とから成っており、回転駆動源40を駆動してボールねじ38、38’を回転することによって前扉22を図4の閉じた上昇位置と図5の開いた下降位置との間を移動することができる。   4 and 5, the sliding opening / closing operation means 36 for opening / closing the front door 22 is provided. The sliding opening / closing operation means 36 is engaged with the front door 22 to guide the front door 22 up and down. A pair of ball screws 38, 38 ′ and a rotation drive source 40 such as a step motor for rotating these ball screws 38, 38 ′ are driven. The rotation drive source 40 is driven to turn the ball screws 38, 38 ′ By rotating, the front door 22 can be moved between the closed raised position shown in FIG. 4 and the opened lowered position shown in FIG.

本発明の高温ガス炉用被覆燃料粒子の製造装置10は、前扉22を開いて反応管12を取り出して反応管12のクリーニング等を行うことができ、この反応管12は、その後チャンバー本体20内に収納され、前扉22を閉じて再び元の状態に維持される。このようにすると、チャンバー本体20側の断熱材16Aと前扉22側の断熱材16Bとが密着し、恰もチャンバー本体20と前扉22とが一体化したような状態となる。   The coated fuel particle manufacturing apparatus 10 of the present invention can open the front door 22 and take out the reaction tube 12 to clean the reaction tube 12. The reaction tube 12 is then connected to the chamber body 20. The front door 22 is closed and the original state is maintained again. If it does in this way, the heat insulating material 16A by the side of the chamber main body 20 and the heat insulating material 16B by the side of the front door 22 will closely_contact | adhere, and it will be in the state where the chamber main body 20 and the front door 22 were integrated.

この状態で、装置の天井から反応管12内に燃料核を投入した後、ガス供給管34を介して反応管12内に順次種々の反応ガスを供給しながら反応管12の流動床内で燃料核に反応ガスを反応させて第一層乃至第四層の被覆を順次施すことができる。図6は、このようにして製造され回収された被覆燃料粒子を示す。   In this state, after fuel nuclei are introduced into the reaction tube 12 from the ceiling of the apparatus, various fuel gases are sequentially supplied into the reaction tube 12 through the gas supply tube 34, and the fuel is generated in the fluidized bed of the reaction tube 12. It is possible to sequentially coat the first layer to the fourth layer by reacting the reaction gas with the nucleus. FIG. 6 shows the coated fuel particles produced and recovered in this manner.

図1乃至図3の形態の高温ガス炉用被覆燃料粒子の製造装置10において、チャンバー18は、約700mmの外径と約2200mmの高さを有し、また黒鉛製の反応管12は、約200mmの内径と約1000mmの高さを有していた。反応管12内に平均直径が0.6mmの二酸化ウランの燃料核約3.8kgを投入し、ガス供給管34から約1400℃の温度でアセチレンガスC(第一層被覆用の反応ガス)を流入して第一層の低密度炭素の被覆を形成し、次いで約1400℃の温度でプロピレンガスC(第二層被覆用の反応ガス)を流入して第二層の高密度炭素の被覆を形成し、約1600℃の温度でメチルトリクロロシランCHSiCl(第三層被覆用の反応ガス)を流入して第三層の炭化珪素の被覆を形成し、最後に、約1400℃の温度でプロピレンガスC(第四層被覆用の反応ガス)を流入して第四層の高密度炭素の被覆を形成した。このようにして得られた被覆燃料粒子の平均直径は、0.93mmであったが、各層の厚みは、第一層で0.06mm、第二層で0.03mm、第三層で0.03mm、第四層で0.045mmであった。 1 to 3, the chamber 18 has an outer diameter of about 700 mm and a height of about 2200 mm, and the reaction tube 12 made of graphite has an outer diameter of about 700 mm. It had an inner diameter of 200 mm and a height of about 1000 mm. About 3.8 kg of uranium dioxide fuel core having an average diameter of 0.6 mm is introduced into the reaction tube 12, and acetylene gas C 2 H 2 (reaction for coating the first layer) at a temperature of about 1400 ° C. from the gas supply tube 34. Gas) to form a first layer of low density carbon coating, and then at a temperature of about 1400 ° C., propylene gas C 2 H 6 (reactive gas for second layer coating) is flowed to A high density carbon coating is formed and methyltrichlorosilane CH 2 SiCl 2 (reactive gas for third layer coating) is introduced at a temperature of about 1600 ° C. to form a third layer silicon carbide coating, and finally Then, propylene gas C 2 H 6 (reaction gas for coating the fourth layer) was introduced at a temperature of about 1400 ° C. to form a fourth layer of high-density carbon coating. The average diameter of the coated fuel particles thus obtained was 0.93 mm. The thickness of each layer was 0.06 mm for the first layer, 0.03 mm for the second layer, and 0.03 mm for the third layer. 03 mm and 0.045 mm for the fourth layer.

前扉22を開くと、反応管12の取付け、取り外しを行うことができるので、その着脱作業が容易であり、また流動床内に付着した黒鉛粉や煤等の異物を掃除機等で容易に排除することができる。   When the front door 22 is opened, the reaction tube 12 can be attached and detached, so that the attachment / detachment work is easy, and foreign matter such as graphite powder and soot adhering to the fluidized bed can be easily removed with a vacuum cleaner or the like. Can be eliminated.

本発明によれば、前扉を開閉することによって流動床に容易にアクセスすることができるので、反応管の取付け、取り外し、流動床のクリーニングを容易に行うことができるので産業上の利用性が向上する。   According to the present invention, since the fluidized bed can be easily accessed by opening and closing the front door, the reaction tube can be easily attached and detached, and the fluidized bed can be easily cleaned. improves.

本発明の1つの形態による高温ガス炉用被覆燃料粒子の製造装置の正面図である。It is a front view of the manufacturing apparatus of the covering fuel particle for high temperature gas reactors by one form of this invention. 図1の製造装置で前扉を開いた状態の正面図である。It is a front view of the state which opened the front door with the manufacturing apparatus of FIG. 図1及び図2の装置の水平断面図である。FIG. 3 is a horizontal sectional view of the apparatus of FIGS. 1 and 2. 本発明の他の形態による高温ガス炉用被覆燃料粒子の製造装置の正面図である。It is a front view of the manufacturing apparatus of the coating fuel particle for high temperature gas reactors by the other form of this invention. 図4の製造装置で前扉を開いた状態の正面図である。It is a front view of the state which opened the front door with the manufacturing apparatus of FIG. 本発明の製造装置によって得られた被覆燃料粒子の堆積状態の上面図である。It is a top view of the deposition state of the covering fuel particle obtained by the manufacturing apparatus of this invention.

符号の説明Explanation of symbols

10 被覆燃料粒子の製造装置
12 反応管
14、14A、14B ヒータ
16、16A、16B 断熱材
18 チャンバー
20 チャンバー本体
20r 周縁リブ
21 開口
22 前扉
22r 周縁リブ
24 ヒンジ
26 締め付け金具
28 前扉固定手段
30 基台
32 脚部材
34 ガス供給管
36 前扉開閉操作手段
38 ボールねじ
40 回転駆動源










































DESCRIPTION OF SYMBOLS 10 Coated fuel particle manufacturing apparatus 12 Reaction tube 14, 14A, 14B Heater 16, 16A, 16B Heat insulating material 18 Chamber 20 Chamber main body 20r Peripheral rib 21 Opening 22 Front door 22r Peripheral rib 24 Hinge 26 Fastening fitting 28 Front door fixing means 30 Base 32 Leg member 34 Gas supply pipe 36 Front door opening / closing operation means 38 Ball screw 40 Rotation drive source










































Claims (3)

燃料核を高温状態で流動化しながら熱分解ガスを反応させる反応管を収納し前記反応管の周りを囲むヒータと断熱材とを有するチャンバーを備えた高温ガス炉用被覆燃料粒子の製造装置において、前記チャンバーは、周壁の一部が開口しているチャンバー本体と前記チャンバー本体の開口を閉じるように形成されて前記チャンバー本体に開閉自在に取付けられた前扉とから成り、前記ヒータと断熱材とは、前記チャンバー本体と前記前扉とに分割して取付けられ、前記前扉が閉じられた状態で前記チャンバー本体側の断熱材と前記前扉側の断熱材とが密着するように構成されていることを特徴とする高温ガス炉用被覆燃料粒子の製造装置。 In an apparatus for producing coated fuel particles for a high temperature gas furnace, comprising a chamber having a heater and a heat insulating material that encloses a reaction tube for reacting a pyrolysis gas while fluidizing a fuel nucleus at a high temperature, and surrounding the reaction tube, The chamber includes a chamber body having a part of a peripheral wall opened, and a front door that is formed to close the opening of the chamber body and is attached to the chamber body so as to be openable and closable. Is divided and attached to the chamber main body and the front door, and is configured such that the heat insulating material on the chamber main body side and the heat insulating material on the front door side are in close contact with the front door closed. An apparatus for producing coated fuel particles for a HTGR, 請求項1に記載の高温ガス炉用被覆燃料粒子の製造装置であって、前記前扉は、前記チャンバー本体にヒンジ止めされていることを特徴とする高温ガス炉用被覆燃料粒子の製造装置。 2. The apparatus for producing coated fuel particles for a high temperature gas reactor according to claim 1, wherein the front door is hinged to the chamber body. 請求項1に記載の高温ガス炉用被覆燃料粒子の製造装置であって、前記前扉は、前記チャンバー本体に対して上側又は下側に摺動自在に取付けられ、前記前扉を開閉する摺動開閉操作手段を備えていることを特徴とする高温ガス炉用被覆燃料粒子の製造装置。






























2. The apparatus for producing coated fuel particles for a HTGR according to claim 1, wherein the front door is slidably attached to the chamber body upward or downward, and opens and closes the front door. An apparatus for producing coated fuel particles for a HTGR characterized by comprising dynamic opening / closing operation means.






























JP2004321968A 2004-04-21 2004-11-05 Production equipment for coated fuel particles for HTGR Expired - Fee Related JP4234665B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004321968A JP4234665B2 (en) 2004-11-05 2004-11-05 Production equipment for coated fuel particles for HTGR
CN2005800203077A CN1969342B (en) 2004-04-21 2005-04-20 Apparatus for manufacturing coated fuel particle for high temperature gas-cooled reactor
PCT/JP2005/007533 WO2005104139A1 (en) 2004-04-21 2005-04-20 Apparatus for manufacturing coated fuel particle for high temperature gas-cooled reactor
US11/587,178 US20080035056A1 (en) 2004-04-21 2005-04-20 Apparatus For Manufacturing Coated Fuel Particles For High-Temperature Gas-Cooled Reactor
EP05734488A EP1752991B1 (en) 2004-04-21 2005-04-20 Apparatus for manufacturing coated fuel particle for high temperature gas-cooled reactor
EP12156003.1A EP2455944B1 (en) 2004-04-21 2005-04-20 Apparatus for manufacturing coated fuel particles for high-temperature gas-cooled reactor
EP12156006.4A EP2455945B1 (en) 2004-04-21 2005-04-20 Apparatus for manufacturing coated fuel particles for high-temperature gas-cooled reactor
ZA2006/09633A ZA200609633B (en) 2004-04-21 2006-11-20 Apparatus for manufacturing coated fuel particle for high temperature gas-cooled reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321968A JP4234665B2 (en) 2004-11-05 2004-11-05 Production equipment for coated fuel particles for HTGR

Publications (2)

Publication Number Publication Date
JP2006133063A true JP2006133063A (en) 2006-05-25
JP4234665B2 JP4234665B2 (en) 2009-03-04

Family

ID=36726731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321968A Expired - Fee Related JP4234665B2 (en) 2004-04-21 2004-11-05 Production equipment for coated fuel particles for HTGR

Country Status (1)

Country Link
JP (1) JP4234665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196854A (en) * 2013-03-29 2014-10-16 Dowaサーモテック株式会社 Heat treatment furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196854A (en) * 2013-03-29 2014-10-16 Dowaサーモテック株式会社 Heat treatment furnace

Also Published As

Publication number Publication date
JP4234665B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
EP2455944B1 (en) Apparatus for manufacturing coated fuel particles for high-temperature gas-cooled reactor
JP4234665B2 (en) Production equipment for coated fuel particles for HTGR
JP2005308522A (en) Device for manufacturing cladding fuel particle for high-temperature gas-cooled reactor
JP2006234405A (en) Clad fuel particle, overcoat particles and method of manufacturing same
JP4697938B2 (en) Method for producing coated fuel particles for HTGR
JP4521763B2 (en) Production equipment for coated fuel particles for HTGR
JP4357441B2 (en) Apparatus and method for producing coated fuel particles for HTGR
JP4472482B2 (en) Fuel particle overcoat equipment
JP4357437B2 (en) Production equipment for coated fuel particles for HTGR
JP4450814B2 (en) Coated fuel particle manufacturing equipment for HTGR
US4022660A (en) Coated particles
JP4409460B2 (en) Production equipment for coated fuel particles for HTGR
JP2006292583A (en) Fuel kernel feed/coated fuel particle recovery method and device for fluidized bed processor
JP2007147504A (en) Coated fuel particle for high-temperature gas-cooled reactor, and manufacturing method therefor
KR101446715B1 (en) Integrated fabrication apparatus in thermal treatment processes for gas reactor nuclear fuel and its fabrication method
JP4502397B2 (en) Apparatus and method for producing coated fuel particles for HTGR
JP4417867B2 (en) Production equipment for coated fuel particles for HTGR
JP2007120952A (en) Device for manufacturing coated fuel particle for high temperature gas-cooled reactor
JP2007003118A (en) Gas injection nozzle deposit-removing method for manufacturing device of coated fuel particle for high-temperature gas furnace and manufacturing method of coated fuel particle for high-temperature gas furnace
JP4636831B2 (en) Production equipment for ammonium deuterated uranate particles
JP2006145103A (en) Heat treating furnace for manufacturing fuel compact of high-temperature gas furnace
JP2007101425A (en) Method for manufacturing fuel compact for high-temperature gas-cooled reactor
KR101469169B1 (en) Integrated fabrication apparatus in thermal treatment processes for (Very)High Temperature Gas Reactor nuclear fuel and its fabrication method
JP4415272B2 (en) Equipment for producing fuel particles for HTGR
JP2006003092A (en) Method and device for recovering coated fuel substance for fluidized bed device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees