JP2006131946A - Non-oriented electrical steel sheet with low core loss - Google Patents

Non-oriented electrical steel sheet with low core loss Download PDF

Info

Publication number
JP2006131946A
JP2006131946A JP2004321425A JP2004321425A JP2006131946A JP 2006131946 A JP2006131946 A JP 2006131946A JP 2004321425 A JP2004321425 A JP 2004321425A JP 2004321425 A JP2004321425 A JP 2004321425A JP 2006131946 A JP2006131946 A JP 2006131946A
Authority
JP
Japan
Prior art keywords
iron loss
steel sheet
oriented electrical
electrical steel
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004321425A
Other languages
Japanese (ja)
Inventor
Ryutaro Kawamata
竜太郎 川又
Takeshi Kubota
猛 久保田
Yosuke Kurosaki
洋介 黒崎
Masafumi Miyazaki
雅文 宮嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004321425A priority Critical patent/JP2006131946A/en
Publication of JP2006131946A publication Critical patent/JP2006131946A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-oriented electrical steel sheet which has particularly low core loss and high magnetic flux density and has excellent magnetic properties which has not existed before and is used as an iron core material for electrical equipment and also to provide its manufacturing method. <P>SOLUTION: Proper amounts of REM are added to steel and also Sn is added to improve the texture of the steel sheet. By this method, the non-oriented electrical steel sheet with low core loss can be obtained while avoiding deterioration in magnetic flux density. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気機器の鉄心材料として用いられる、鉄損の低い無方向性電磁鋼板に関するものである。   The present invention relates to a non-oriented electrical steel sheet having a low iron loss, which is used as an iron core material for electrical equipment.

近年、電気機器、特に無方向性電磁鋼板がその鉄心材料として使用される回転機および中、小型変圧器等の分野においては、世界的なCO削減、電力、エネルギー節減、さらにはフロンガス規制等の地球環境保全の動きの中で、高効率化の動きが急速に広まりつつある。このため、無方向性電磁鋼板に対しても、その特性向上、すなわち、高磁束密度かつ低鉄損化への要請がますます強まってきている。 In recent years, in the fields of electrical machinery, especially rotating machines in which non-oriented electrical steel sheets are used as iron core materials and medium and small transformers, global CO 2 reduction, electric power, energy saving, and chlorofluorocarbon regulations, etc. In the movement of global environmental conservation, the movement of high efficiency is spreading rapidly. For this reason, there is an increasing demand for non-oriented electrical steel sheets to improve their characteristics, that is, to achieve high magnetic flux density and low iron loss.

無方向性電磁鋼板の低鉄損化は主としてSi、Al添加による電気抵抗率の増加により、使用時に鉄心を形成する各々の鋼板に流れる渦電流損によるジュール熱損失を低減することにより行われてきた。
このように、低鉄損無方向性電磁鋼板が実現することにより、鉄心及び回転機の動作時のエネルギー損失を低減できるのみならず、それを含めた装置全体の系への波及効果も計り知れないものがある。
The reduction of iron loss in non-oriented electrical steel sheets has been achieved mainly by reducing the Joule heat loss due to eddy current loss flowing in each steel sheet forming the iron core during use by increasing the electrical resistivity by adding Si and Al. It was.
In this way, by realizing a low iron loss non-oriented electrical steel sheet, not only can energy loss during operation of the iron core and rotating machine be reduced, but also the ripple effect on the entire system including that can be measured. There is nothing.

本発明は、従来技術における磁束密度向上と鉄損改善の両立という問題点を解決し、特に低鉄損の無方向性電磁鋼板を提供することを目的とするものである。
無方向性電磁鋼板の結晶粒成長を阻害する介在物としてはシリカやアルミナなどの酸化物、硫化マンガンなどの硫化物、窒化アルミや窒化チタンなどの窒化物が知られている。
酸化物に関しては、技術進歩により、強脱酸元素であるAlを十分添加し、酸化物の浮上除去時間を十分にとることにより、溶鋼段階で酸化物を除去し無害化することが可能となっている。
An object of the present invention is to solve the problem of improving magnetic flux density and iron loss in the prior art, and to provide a non-oriented electrical steel sheet having particularly low iron loss.
Known inclusions that inhibit the grain growth of non-oriented electrical steel sheets include oxides such as silica and alumina, sulfides such as manganese sulfide, and nitrides such as aluminum nitride and titanium nitride.
With regard to oxides, it is possible to remove the oxides at the molten steel stage and make them harmless by adding enough Al, which is a strong deoxidizing element, and taking sufficient time to remove the oxides by technological progress. ing.

硫化物については、次に述べるCa添加もしくはREM添加により脱硫を行う方法が知られている。
例えば特許文献1においてはCaとそれに適した上限をもつSに鋼組成を調整することにより、CaSを形成させ硫化物を減少させ低鉄損を得る方法が提案されている。
硫化物に関しては上述のように溶鋼段階で高純化を図るほか、特許文献2、特許文献3、特許文献4などに開示されているように脱硫元素としてREMなどの添加によりSを固定する方法が知られている。
For sulfides, a method of desulfurization by adding Ca or REM described below is known.
For example, Patent Document 1 proposes a method of obtaining low iron loss by forming CaS to reduce sulfide by adjusting the steel composition to Ca and S having an upper limit suitable for it.
In addition to purifying sulfides at the molten steel stage as described above, there is a method of fixing S by adding REM as a desulfurization element as disclosed in Patent Document 2, Patent Document 3, Patent Document 4, and the like. Are known.

また窒化物に対しても、特許文献5、あるいは特許文献6などに開示されるようにBの添加により粗大介在物としてNを固定する方法が知られている。
特に記すべきは、溶鋼段階での高純化は製鋼コストアップが避けられないので好ましくなく、上述のREMなどの脱硫元素、Nを固定するBの添加による方法も、粒成長の良好化ならびに鉄損の低減には不十分であった。
Also for nitride, a method of fixing N as coarse inclusions by adding B as disclosed in Patent Document 5 or Patent Document 6 is known.
It should be noted in particular that high purification at the molten steel stage is unavoidable due to the inevitable increase in steelmaking costs. The above-described method of adding desulfurization elements such as REM and B fixing N also improves grain growth and iron loss. It was insufficient for the reduction.

また、集合組織との関連で従来の低鉄損無方向性電磁鋼板について概観すると、特許文献7のごとくSn添加技術があるが、Sn単独での添加では磁束密度の向上は図れても、Snによる結晶粒成長の抑制効果により、鉄損の低減が不十分になる。特許文献8のごときSn、Cu添加、もしくは特許文献9のごときSb添加による集合組織の改善による磁気特性の優れた無方向性電磁鋼板の製造法も開示されている。
しかしながら、これら特許文献7乃至9ように集合組織を改善させるのみでは鉄損の低減が不十分であり、鉄損低減に対する需要家の強い要求を満たすことが出来なかった。
In addition, when an overview of conventional low iron loss non-oriented electrical steel sheets in relation to the texture is given, there is a Sn addition technique as in Patent Document 7, but even if the addition of Sn alone can improve the magnetic flux density, Sn is added. Due to the effect of suppressing the crystal grain growth due to, the reduction of iron loss becomes insufficient. Also disclosed is a method for producing a non-oriented electrical steel sheet having excellent magnetic properties by improving the texture by adding Sn and Cu as in Patent Document 8 or by adding Sb as in Patent Document 9.
However, as described in Patent Documents 7 to 9, the improvement of the texture is not sufficient to reduce the iron loss, and it has not been possible to satisfy the strong demands of customers for the reduction of iron loss.

本発明者らは、鋭意検討の結果、鉄損の低下のためにREMを添加し、集合組織改善元素としてSnを同時に添加することで、高磁束密度かつ低鉄損の磁気特性を有する無方向性電磁鋼板を製造できることを見出した。
特開2001−271147号公報 特開昭51−62115号公報 特開昭56−102550号公報 特許第3037878号公報 特許第1167896号公報 特許第1245901号公報 特開昭55−158252号公報 特開昭62−180014号公報 特開昭59−100217号公報
As a result of intensive studies, the inventors of the present invention have added non-directional magnetic properties with high magnetic flux density and low iron loss by adding REM to reduce iron loss and simultaneously adding Sn as a texture improving element. It has been found that an electrical steel sheet can be produced.
JP 2001-271147 A JP 51-62115 A JP 56-102550 A Japanese Patent No. 3037878 Japanese Patent No. 11678896 Japanese Patent No. 1245901 JP-A-55-158252 JP 62-180014 A Japanese Patent Laid-Open No. 59-100197

従来の技術では無方向性電磁鋼板の結晶粒成長を促進させた場合、粒成長の進展に伴い<111>系の方位粒が成長しやすいため、その結果として磁束密度が低下してしまうという問題があった。本発明は、磁束密度の低下を伴わずに結晶粒成長性を高め、低鉄損かつ高磁束密度の無方向性電磁鋼板を得ることを目的とするものである。   In the conventional technology, when the grain growth of the non-oriented electrical steel sheet is promoted, the <111> orientation grains tend to grow as the grain growth progresses, and as a result, the magnetic flux density decreases. was there. An object of the present invention is to obtain a non-oriented electrical steel sheet with high crystal grain growth without lowering magnetic flux density and having low iron loss and high magnetic flux density.

無方向性電磁鋼板の結晶粒成長を促進した場合、ヒステリシス損は低下する。しかしながら従来の方法では、結晶粒成長の進展に伴い、<111>系の方位が成長してしまうので、磁束密度が低下する問題があった。
そこで、本発明者らは検討を行った結果、Snを適正量添加することで、<110>集合組織を形成させ、磁束密度の低下を防止する方法を見出したのである。しかしながら、Snは粒界に析出するので、不必要に多く添加すると結晶粒成長を妨げてかえってヒステリシス損を増加させてしまう。そこで検討を重ねた結果、REM添加により微細析出物を低減すると同時に、適正量のSnを添加することで、磁束密度の低下を抑制できることを見出した。
When the crystal grain growth of the non-oriented electrical steel sheet is promoted, the hysteresis loss decreases. However, the conventional method has a problem that the <111> orientation grows with the progress of crystal grain growth, resulting in a decrease in magnetic flux density.
As a result of investigations, the present inventors have found a method of forming a <110> texture by adding an appropriate amount of Sn to prevent a decrease in magnetic flux density. However, since Sn precipitates at the grain boundaries, if it is added unnecessarily in large amounts, the growth of crystal grains is hindered and the hysteresis loss is increased. As a result of repeated studies, the inventors have found that the addition of REM can reduce fine precipitates, and at the same time, the addition of an appropriate amount of Sn can suppress a decrease in magnetic flux density.

本発明の要旨とするところは、以下のとおりである。
(1) 鋼中にSi、sol.Al、Mnを質量%で
2.0%≦Si≦3.5%
0.8%≦sol.Al≦2.5%
0.1%≦Mn≦1.5%
0.01%≦Sn≦0.3%
の範囲で含有し、さらに、
0.001%≦REM≦0.05%
の範囲で含有することを特徴とする低鉄損無方向性電磁鋼板。
(2) 請求項1の鋼において、さらに、質量%で、
C≦0.005%
S≦0.003%
Ti≦0.003%
N≦0.003%
である低鉄損無方向性電磁鋼板。
The gist of the present invention is as follows.
(1) Si, sol.Al, and Mn in steel in mass% 2.0% ≦ Si ≦ 3.5%
0.8% ≦ sol.Al ≦ 2.5%
0.1% ≦ Mn ≦ 1.5%
0.01% ≦ Sn ≦ 0.3%
In addition,
0.001% ≦ REM ≦ 0.05%
A low iron loss non-oriented electrical steel sheet, characterized by being contained in the range of.
(2) In the steel according to claim 1, further in mass%,
C ≦ 0.005%
S ≦ 0.003%
Ti ≦ 0.003%
N ≦ 0.003%
A low iron loss non-oriented electrical steel sheet.

本発明では、特定の範囲でREMを添加して、硫化物、酸化物、窒化物などを粗大析出させて粒成長性を確保し、同時にSnを適量添加することによって、再結晶集合組織を改善した結果、低鉄損化を磁束密度の低下を伴うことなく実現することが出来た。   In the present invention, by adding REM within a specific range, sulfides, oxides, nitrides and the like are coarsely precipitated to ensure grain growth, and at the same time, an appropriate amount of Sn is added to improve the recrystallization texture. As a result, a reduction in iron loss could be realized without a decrease in magnetic flux density.

まず、成分について説明すると、
Siは本発明においては電気抵抗率を確保するため、2.0%以上3.5%以下の範囲で添加される。2.0%未満ではその鉄損低減効果が不足し、3.5%超では熱延中に耳割れが生じやすくなるため、3.5%以下にする。
First, the ingredients are explained.
In the present invention, Si is added in the range of 2.0% to 3.5% in order to ensure electrical resistivity. If it is less than 2.0%, the effect of reducing iron loss is insufficient, and if it exceeds 3.5%, ear cracks are likely to occur during hot rolling, so it is made 3.5% or less.

Mnは本発明においては電気抵抗率と熱間脆性を改善するため、0.1%以上1.5%以下の範囲で添加する。0.1%未満ではその効果がなく、1.5%超ではその効果が飽和するので、0.1%以上1.5%以下に定める。   In the present invention, Mn is added in the range of 0.1% to 1.5% in order to improve electrical resistivity and hot brittleness. If the content is less than 0.1%, the effect is not obtained. If the content exceeds 1.5%, the effect is saturated.

sol.Alは電気抵抗を増大させ渦電流損を低下させるので、0.8%以上2.5%以下添加する。0.8%未満ではその効果が十分でなく、2.5%以上ではその効果が飽和するので0.8%以上2.5%以下と定める。   Since sol.Al increases electrical resistance and decreases eddy current loss, it is added in an amount of 0.8% to 2.5%. If it is less than 0.8%, the effect is not sufficient, and if it is 2.5% or more, the effect is saturated.

本発明ではSn添加と同時にREM添加が技術の重要なポイントである。本発明では、REMを添加することにより、鋼中の不純物をスカベンジし、Sn添加することにより磁束密度の向上を狙う。その作用は以下のとおりであると考えられる。   In the present invention, the addition of Sn and the addition of REM are important points in the technology. In the present invention, the impurity in the steel is scavenged by adding REM, and the magnetic flux density is improved by adding Sn. The action is considered as follows.

REMはS、酸素と結合して粗大なオキシサルファイド系介在物を形成する。REMは酸硫化物となった後、TiNなどの析出物の核となりスカベンジングを行い鋼中の微細析出物を低減し、鉄損低下に効果があるので、一種または2種以上を0.001%以上0.05%以下添加する。0.001未満ではその効果が十分でなく、0.05%超ではその効果が飽和するので0.001%以上0.05%以下とする。ここでREMとは原子番号が57のランタンから71のルテシウムの15元素に原子番号が21のスカンジウムと原子番号が39のイットリウムを加えた合計17元素の総称である。   REM combines with S and oxygen to form coarse oxysulfide inclusions. REM becomes an oxysulfide, then becomes the nucleus of precipitates such as TiN, and scavenging to reduce fine precipitates in the steel, which is effective in reducing iron loss. % Or more and 0.05% or less. If it is less than 0.001, the effect is not sufficient, and if it exceeds 0.05%, the effect is saturated, so 0.001% or more and 0.05% or less. Here, REM is a generic name for a total of 17 elements including 15 elements of lanthanum having an atomic number of 57 to 15 lutesium having an atomic number of 57 plus scandium having an atomic number of 21 and yttrium having an atomic number of 39.

このREM添加により、無方向性電磁鋼板の結晶粒成長は促進され、ヒステリシス損は低下する。しかしながら、この時結晶粒成長の進展に伴い、<111>系の方位が成長してしまうので、磁束密度が低下する問題があった。そこで、本発明者らは種々検討を行った結果、Snを適正量添加することで、再結晶集合組織における<110>集合組織を富化させ、磁束密度の低下を防止する方法を見出したのである。Snは0.01%未満では効果がなく、0.3%超では結晶粒成長を妨げかえって悪影響を及ぼすので、0.01%以上0.3%以下で添加する。   By this REM addition, the crystal grain growth of the non-oriented electrical steel sheet is promoted and the hysteresis loss is lowered. However, at this time, with the progress of crystal grain growth, the <111> orientation is grown, which causes a problem that the magnetic flux density is lowered. Therefore, as a result of various studies, the present inventors have found a method for preventing the decrease in magnetic flux density by enriching the <110> texture in the recrystallized texture by adding an appropriate amount of Sn. is there. If Sn is less than 0.01%, there is no effect, and if it exceeds 0.3%, the grain growth is adversely affected, so 0.01% to 0.3% is added.

また、鋼中の不可避不純物としてのC、S、Ti,Nは下記の範囲に低減させることにより低鉄損化の効果を享受することができる。
C含有量が増大すると使用中に磁気時効が生じるので、C≦0.005%以下に制限する。
S含有量が増大すると硫化物のB系介在物が増加して著しく粒成長を妨げるのでS≦0.003%に制限する。
Ti含有量が増大するとTiNなどの化合物が増大して鉄損が悪化するので、Ti≦0.003%に制限する。
N含有量が増大すると窒化物が増大して粒成長を妨げ鉄損が悪化するので、Ti≦0.003%に制限する。
Further, C, S, Ti, and N as inevitable impurities in the steel can be reduced to the following ranges, thereby obtaining the effect of reducing the iron loss.
When the C content increases, magnetic aging occurs during use, so C is limited to 0.005% or less.
When the S content is increased, the B-based inclusions of sulfides are increased and the grain growth is remarkably prevented. Therefore, S is limited to 0.003%.
When Ti content increases, compounds such as TiN increase and iron loss deteriorates, so Ti is limited to 0.003%.
When the N content increases, the nitride increases, which hinders grain growth and deteriorates the iron loss. Therefore, Ti is limited to 0.003%.

次にプロセス条件について説明する。
前記成分からなる鋼スラブは、転炉等の製鋼炉で溶製され連続鋳造あるいは造塊−分塊圧延により製造される。鋼スラブは公知の方法にて加熱される。このスラブに熱間圧延を施し所定の厚みとし、コイルに巻き取る。
より低鉄損、高磁束密度が求められる無方向性電磁鋼板の場合はその後熱延板焼鈍を施す。その後酸洗し、1回の冷間圧延工程に次いで仕上げ焼鈍を施して成品とする。
Next, process conditions will be described.
The steel slab composed of the above components is melted in a steel making furnace such as a converter and manufactured by continuous casting or ingot-bundling rolling. The steel slab is heated by a known method. The slab is hot-rolled to a predetermined thickness and wound around a coil.
In the case of a non-oriented electrical steel sheet that requires lower iron loss and higher magnetic flux density, hot-rolled sheet annealing is performed thereafter. Thereafter, pickling is performed, followed by a single cold rolling step, followed by finish annealing to obtain a finished product.

次に、本発明の実施例について述べる。
表1に示した組成の鋼を連続鋳造しスラブとし、スラブ加熱温度1150℃にて一時間加熱し、粗圧延により30mmの粗バーにした。これを熱間圧延機で板厚3.0mmに仕上げ、冷却してコイルに巻き取った。これを酸洗し、その後、冷間圧延し0.5mmに仕上げ、1050℃で30秒の焼鈍により成品に仕上げた。各試料の磁気特性を成分とともに表1示す。
Next, examples of the present invention will be described.
Steel having the composition shown in Table 1 was continuously cast into a slab, heated at a slab heating temperature of 1150 ° C. for 1 hour, and rough-rolled to a 30 mm coarse bar. This was finished to a plate thickness of 3.0 mm with a hot rolling mill, cooled and wound into a coil. This was pickled, then cold-rolled, finished to 0.5 mm, and finished to a product by annealing at 1050 ° C. for 30 seconds. Table 1 shows the magnetic properties of each sample together with the components.

Figure 2006131946
Figure 2006131946

表1の試料1から5までは本発明であり、磁束密度と鉄損のバランスが比較例に比べて優れている。
試料6はSi含有量が範囲外であり、電気抵抗が不足するため鉄損の値が高いので不適である。
試料7はSn含有量がtr.で集合組織改善効果がないので、低鉄損になってはいるが磁束密度の値が低い。
試料8はREM含有量がtr.であるので微細析出物の低減が不十分、鉄損の値が高く不適である。
試料9はSn含有量が適正範囲を超えているので、集合組織は改善するが、粒成長が妨げられるので、磁束密度は高いが、鉄損の値が高すぎて不適である。
Samples 1 to 5 in Table 1 are the present invention, and the balance between magnetic flux density and iron loss is superior to that of the comparative example.
Sample 6 is not suitable because the Si content is out of the range and the electric resistance is insufficient, and the value of iron loss is high.
Sample 7 has a Sn content of tr. Since there is no texture improvement effect, the magnetic flux density is low although the iron loss is low.
Sample 8 has a REM content of tr. Therefore, the reduction of fine precipitates is insufficient, and the value of iron loss is high and unsuitable.
Since the sample 9 has an Sn content exceeding the appropriate range, the texture is improved. However, since grain growth is hindered, the magnetic flux density is high, but the value of the iron loss is too high to be suitable.

表2に示した組成の鋼を連続鋳造しスラブとし、1150℃で1時間加熱した。これを粗圧延により30mmの粗バーにした。これを熱間圧延機で板厚2.3mmに仕上げ、冷却してコイルに巻き取った。これを酸洗し、1050℃で、30秒の熱延板焼鈍を施した。その後、0.50mmに冷間圧延し、1000℃で30秒の焼鈍により成品に仕上げた。各試料の磁気特性を成分とともに表2に示す。   Steel having the composition shown in Table 2 was continuously cast into a slab and heated at 1150 ° C. for 1 hour. This was roughly rolled into a 30 mm coarse bar. This was finished to a plate thickness of 2.3 mm with a hot rolling mill, cooled and wound into a coil. This was pickled and subjected to hot-rolled sheet annealing at 1050 ° C. for 30 seconds. Thereafter, it was cold-rolled to 0.50 mm and finished to a product by annealing at 1000 ° C. for 30 seconds. Table 2 shows the magnetic properties of each sample together with the components.

Figure 2006131946
Figure 2006131946

表2の試料12から15までは本発明であり、磁束密度と鉄損のバランスが比較例に比べて優れている。
試料10はS含有量が高く、硫化物生成量が多いため結晶粒成長が不足し鉄損の値が悪い。
試料11はSn含有量がtr.で集合組織の改善効果がないため、低鉄損になると同時に磁束密度の値が低下している。
試料16はsol.Al含有量が低く、電気抵抗率が不足するため渦電流損の値が高く、鉄損の値が悪い。
試料17はREM含有量がtr.で介在物、不純物のスカベンジングが不十分であるので、成品の粒成長性が悪く、鉄損の値が悪い。
試料18はSn含有量が多すぎるので、集合組織は改善するが、過剰のSnが粒成長を妨げるので、ヒステリシス損が悪化し、結果として鉄損の値が悪い。
Samples 12 to 15 in Table 2 are the present invention, and the balance between magnetic flux density and iron loss is superior to that of the comparative example.
Since sample 10 has a high S content and a large amount of sulfide, the crystal grain growth is insufficient and the iron loss value is poor.
Sample 11 has a Sn content of tr. Since there is no effect of improving the texture, the value of the magnetic flux density is reduced at the same time as the iron loss is reduced.
Sample 16 has a low sol.Al content and lacks electrical resistivity, so the value of eddy current loss is high and the value of iron loss is poor.
Sample 17 has a REM content of tr. In addition, since scavenging of inclusions and impurities is insufficient, the grain growth property of the product is poor, and the value of iron loss is poor.
Since the sample 18 has too much Sn content, the texture is improved, but excessive Sn hinders the grain growth, so that the hysteresis loss is deteriorated, resulting in a poor iron loss value.

表3に示した組成の鋼を連続鋳造しスラブとし、加熱温度1150で一時間加熱後、粗圧延により30mmの粗バーにした。これを熱間圧延機で板厚2.3mmに仕上げ、冷却してコイルに巻き取った。これを酸洗し、1050℃で、30秒の焼鈍により熱延板焼鈍を施した。その後、冷間圧延し0.35mmに仕上げた。その後1050℃で30秒の焼鈍により成品に仕上げた。各試料の磁気特性を成分とともに示す。
各材料の磁気特性を成分とともに示す。
Steel having the composition shown in Table 3 was continuously cast into a slab, heated at a heating temperature of 1150 for 1 hour, and then roughed into a 30 mm coarse bar. This was finished to a plate thickness of 2.3 mm with a hot rolling mill, cooled and wound into a coil. This was pickled and subjected to hot-rolled sheet annealing at 1050 ° C. by annealing for 30 seconds. Then, it cold-rolled and finished to 0.35 mm. Thereafter, the product was finished by annealing at 1050 ° C. for 30 seconds. The magnetic properties of each sample are shown together with the components.
The magnetic properties of each material are shown together with the components.

Figure 2006131946
Figure 2006131946

試料20〜24が発明例であり、比較例が試料19、試料25〜27である。
試料19はS含有量が発明の範囲を超えているので、硫化物のB系介在物により粒成長が妨げられるので鉄損が悪く不適である。
試料25はSn含有量がtr.であるので、Snによる集合組織改善効果がないため低鉄損になると同時に磁束密度が低下している。
試料26はREM含有量が検出限界以下であり添加量が不適であるので、成品の結晶粒成長が十分でなく、結果として鉄損が高く不適である。
試料27はSn含有量が適正範囲を超えて不適であるので、結晶粒成長性が妨げられ、鉄損が高く不適である。
Samples 20 to 24 are invention examples, and comparative examples are sample 19 and samples 25 to 27.
Since the S content of the sample 19 exceeds the range of the invention, the grain growth is hindered by the B-type inclusions of sulfides, so the iron loss is poor and unsuitable.
Sample 25 has a Sn content of tr. Therefore, since there is no effect of improving the texture by Sn, the magnetic flux density is lowered at the same time as the iron loss is reduced.
Since the sample 26 has a REM content below the detection limit and an unsuitable amount, the crystal grain growth of the product is not sufficient, resulting in an unsuitable high iron loss.
Since the sample 27 is unsuitable because the Sn content exceeds the proper range, the crystal grain growth is hindered, and the iron loss is high and unsuitable.

Claims (2)

鋼中にSi、sol.Al、MnおよびSnを質量%で
2.0%≦Si≦3.5%
0.8%≦sol.Al≦2.5%
0.1%≦Mn≦1.5%
0.01%≦Sn≦0.3%
の範囲で含有し、さらに、
0.001%≦REM≦0.05%
の範囲で含有し、残部Feおよび不可避不純物からなることを特徴とする低鉄損無方向性電磁鋼板。
In steel, Si, sol.Al, Mn and Sn in mass% are 2.0% ≦ Si ≦ 3.5%
0.8% ≦ sol.Al ≦ 2.5%
0.1% ≦ Mn ≦ 1.5%
0.01% ≦ Sn ≦ 0.3%
In addition,
0.001% ≦ REM ≦ 0.05%
A low iron loss non-oriented electrical steel sheet comprising the remaining Fe and inevitable impurities.
さらに不可避不純物として、質量%で、
C≦0.005%
S≦0.003%
Ti≦0.003%
N≦0.003%
に低減したことを特徴とする請求項1記載の低鉄損無方向性電磁鋼板。
Furthermore, as an inevitable impurity,
C ≦ 0.005%
S ≦ 0.003%
Ti ≦ 0.003%
N ≦ 0.003%
The low iron loss non-oriented electrical steel sheet according to claim 1, wherein
JP2004321425A 2004-11-05 2004-11-05 Non-oriented electrical steel sheet with low core loss Withdrawn JP2006131946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321425A JP2006131946A (en) 2004-11-05 2004-11-05 Non-oriented electrical steel sheet with low core loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321425A JP2006131946A (en) 2004-11-05 2004-11-05 Non-oriented electrical steel sheet with low core loss

Publications (1)

Publication Number Publication Date
JP2006131946A true JP2006131946A (en) 2006-05-25

Family

ID=36725756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321425A Withdrawn JP2006131946A (en) 2004-11-05 2004-11-05 Non-oriented electrical steel sheet with low core loss

Country Status (1)

Country Link
JP (1) JP2006131946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418034A (en) * 2011-12-14 2012-04-18 武汉钢铁(集团)公司 Production method for high-grade non-oriented silicon steel
CN104451378A (en) * 2014-12-03 2015-03-25 武汉钢铁(集团)公司 Oriented silicon steel with excellent magnetic property and production method of oriented silicon steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418034A (en) * 2011-12-14 2012-04-18 武汉钢铁(集团)公司 Production method for high-grade non-oriented silicon steel
CN104451378A (en) * 2014-12-03 2015-03-25 武汉钢铁(集团)公司 Oriented silicon steel with excellent magnetic property and production method of oriented silicon steel

Similar Documents

Publication Publication Date Title
JP5892327B2 (en) Method for producing non-oriented electrical steel sheet
JP4747564B2 (en) Oriented electrical steel sheet
TWI457443B (en) Manufacturing method of non - directional electromagnetic steel sheet
WO2012055224A1 (en) Manufacture method of high efficiency non-oriented silicon steel having good magnetic performance
JP6432173B2 (en) Non-oriented electrical steel sheet with good all-round magnetic properties
JP5423616B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties and method for producing cast steel strip for producing non-oriented electrical steel sheet
JP2004332042A (en) Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface
JP5014830B2 (en) Method for producing high magnetic flux density non-oriented electrical steel sheet
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP4599843B2 (en) Method for producing non-oriented electrical steel sheet
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP2006131946A (en) Non-oriented electrical steel sheet with low core loss
JP4790151B2 (en) Non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
JP2005187846A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP5353234B2 (en) Method for producing grain-oriented electrical steel sheet
JP2701349B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP2003105508A (en) Nonoriented silicon steel sheet having excellent workability, and production method therefor
JP4292804B2 (en) Method for producing grain-oriented electrical steel sheet
JP3885450B2 (en) Non-oriented electrical steel sheet
JP4258949B2 (en) Electrical steel sheet for DC motor
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JP4273621B2 (en) Electrical steel sheet for high-speed small motors

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108