JP2006130541A - Different metal joined member joined by welding ferrous alloy member and aluminum alloy member - Google Patents

Different metal joined member joined by welding ferrous alloy member and aluminum alloy member Download PDF

Info

Publication number
JP2006130541A
JP2006130541A JP2004324027A JP2004324027A JP2006130541A JP 2006130541 A JP2006130541 A JP 2006130541A JP 2004324027 A JP2004324027 A JP 2004324027A JP 2004324027 A JP2004324027 A JP 2004324027A JP 2006130541 A JP2006130541 A JP 2006130541A
Authority
JP
Japan
Prior art keywords
alloy member
iron
aluminum
based alloy
solidified portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004324027A
Other languages
Japanese (ja)
Inventor
Koichiro Oka
紘一郎 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichirin Co Ltd
Original Assignee
Nichirin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichirin Co Ltd filed Critical Nichirin Co Ltd
Priority to JP2004324027A priority Critical patent/JP2006130541A/en
Publication of JP2006130541A publication Critical patent/JP2006130541A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a different metal joined member which can show the merits such as the excellent joining strength, the high productivity, etc. substantially equal to those of the same metal welded member, by completely eliminating the demerits and the problems in the prior arts in joining a ferrous alloy member and an aluminum alloy member, for example, traditional steel and so-called 5000 series aluminum alloy. <P>SOLUTION: The different metal joined member joined by welding the ferrous alloy member and the aluminum alloy member by the heat input from the ferrous alloy member side has a welding solidified portion in which a melted and solidified portion B of the ferrous alloy in the ferrous alloy member and a penetrated and solidified portion C of the ferrous alloy in the aluminum alloy member have been composed so as to be continuously integrated. Further, the cross-sectional area S2 of the melted and solidified portion is 4.0 to 14 times as large as that of the cross-sectional area S1 of the penetrated and solidified portion. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鉄系合金部材とアルミニウム系合金部材を溶接により接合して得られる接合体に関し、特にその溶接部の接合強度に優れた異種金属溶接接合体に関するものである。   The present invention relates to a joined body obtained by joining an iron-based alloy member and an aluminum-based alloy member by welding, and more particularly to a dissimilar metal welded joint having excellent joint strength at the welded portion.

近年、地球環境改善のためコストパフォーマンスのある車の軽量化による燃費改善とリサイクル性が強く求められている。   In recent years, there has been a strong demand for improved fuel efficiency and recyclability by reducing the weight of cars with cost performance in order to improve the global environment.

アルミニウム(以下、アルミと略称することがある)は鋼の比重7.8に対して2.7と軽く、耐食性、リサイクル性に優れ、比強度が鋼の2倍程度と高く、押出工法により複雑な形状の素材を経済的に得られることなどの特徴を有しており、車の軽量化に望ましい金属である。反面、アルミは鋼に比べて縦弾性係数が約三分の一、強度が二分の一以下と低く、熱伝導性が良く、凝固収縮率が大きいため溶接が鋼より難しく、鋼より材料コストが高いなど車の素材として使用し難い面も有している。   Aluminum (hereinafter sometimes abbreviated as “aluminum”) is lighter at 2.7 than the specific gravity of steel, 2.7, excellent in corrosion resistance and recyclability, and has a specific strength about twice that of steel, and is complicated by the extrusion method. It is a desirable metal for reducing the weight of a vehicle. Aluminum, on the other hand, has a longitudinal elastic modulus of about one-third and strength less than one-half that of steel, good thermal conductivity, and high solidification shrinkage, making welding more difficult than steel and lower material costs than steel. It is also difficult to use as a car material such as high.

従って、鋼とアルミの各々の利点を活かしたハイブリッド化ができれば、車が求めているニーズにマッチした対応できることになる。   Therefore, if it is possible to make a hybrid using the advantages of steel and aluminum, it will be possible to meet the needs of the car.

このハイブリッド化を可能にするためには接合特性に優れた接合技術が必須になる。   In order to enable this hybridization, a bonding technique with excellent bonding characteristics is essential.

ところが、鉄系合金とアルミ系合金を溶解して直接接合すると脆い金属間化合物を生成し、そのために十分な接合強度が得られず、実用化が極めて難しかった。このため、マグネを含む5000系のアルミ合金が使用し難いロー付け法・摩擦圧接法、あるいは部材同士を機械的に接合するため、接合材の形状、生産性、接合付帯設備などに制約がつくメカニカル接合法、使用対象部材の制約が大きいインサート材接合法が実用化されてきた。   However, when an iron-based alloy and an aluminum-based alloy are melted and directly bonded, a brittle intermetallic compound is generated, and therefore, sufficient bonding strength cannot be obtained, making practical application extremely difficult. For this reason, it is difficult to use a 5000 series aluminum alloy containing magne, the brazing method, the friction welding method, or the members are mechanically joined to each other, which restricts the shape of the joining material, the productivity, and the incidental equipment. The mechanical joining method and the insert material joining method with great restrictions on the members to be used have been put into practical use.

しかしこれらの接合法はいずれも以下のような不利や問題を有しており、その制約が多く、そのため鋼とアルミの各々の特徴を活かしたハイブリッド化がなかなか進展できなかった。
(メカニカル接合法)
ボルト接合、リベット接合、ネジ接合、メカニカルクリンチ、ヘミング、メカニカル成形接合など、部材同士を機械的に接合する方法である。しかし、この方法は、接合部品の形状制約、接合精度、生産性、及び汎用性などの面で同質材料(鋼同士など)の溶接より一般的に劣る。
(ロー付け法)
部材同士を媒介となるロー材を溶かして接合する方法である。この方法は鋼とアルミの接合法としても提案(特許文献1など)されてはいるが、フラックスにより鋼、アルミの酸化皮膜を除去し、母材を溶解することなく、両金属の活性面とロー材とで適切な化合物を生成することが必要になる。この適切な化合物を得るためロー材の材料、接合品の材質・形状、接合強度、接合品質の信頼性に制約が付される。従って、接合の作業性、生産性、汎用性はやはり、同質材料(鋼同士など)の溶接より一般的に不利を伴う。
(摩擦圧接法)
部材同志を加圧しながら回転させ、その際の摺動に伴う摩擦熱を利用した固相接合である。しかし、この方法は加圧回転が必要なことから接合部品に形状制約があり、接合で生じるバリの処理が必要なこと、ビート゛溶接のような長手方向の溶接が難しいことやMg含有アルミ合金(5000系)の場合は酸化物(MgO)の発生により溶接が困難になるなど作業性、汎用性、生産性の面でやはり同質材料(鋼同士など)の溶接より一般的に劣る。
(インサート材接合法)
部材同志間にクラッド材をインサートしてスポット溶接などによって接合する方法である。しかし、この方法はクラッド材のインサートに伴う部品形状に制約が付されることと、作業性に劣ることおよびコスト面の課題を有し、やはり同質材料(鋼同士など)の溶接より一般的に劣るものである。
特開平5−111757号
However, each of these joining methods has the following disadvantages and problems, and there are many limitations, so that it has been difficult to make a hybrid using the characteristics of steel and aluminum.
(Mechanical joining method)
This is a method of mechanically joining members together such as bolt joining, rivet joining, screw joining, mechanical clinch, hemming, and mechanical molding joining. However, this method is generally inferior to welding of homogeneous materials (such as steels) in terms of shape constraints, joining accuracy, productivity, and versatility of joined parts.
(Brazing method)
In this method, the brazing material that serves as a medium between the members is melted and joined. Although this method has also been proposed as a method for joining steel and aluminum (Patent Document 1, etc.), the active surface of both metals is removed without removing the oxide film of steel and aluminum by flux and dissolving the base metal. It is necessary to produce an appropriate compound with the raw material. In order to obtain this appropriate compound, restrictions are imposed on the reliability of the material of the brazing material, the material and shape of the joined product, the joining strength, and the joining quality. Therefore, the workability, productivity and versatility of joining are generally accompanied by disadvantages compared to welding of homogeneous materials (such as steel).
(Friction welding method)
This is a solid phase bonding that uses frictional heat generated by sliding the members while rotating the members while applying pressure. However, since this method requires pressure rotation, there are restrictions on the shape of the joined parts, it is necessary to treat burrs generated during joining, the longitudinal welding such as beat welding is difficult, and Mg-containing aluminum alloys ( 5000 type) is generally inferior to welding of homogeneous materials (such as steel) in terms of workability, versatility, and productivity, such as difficulty in welding due to generation of oxide (MgO).
(Insert material joining method)
In this method, a clad material is inserted between members and joined by spot welding or the like. However, this method has restrictions on the part shape associated with the insert of the clad material, inferior workability and cost problems, and is generally more common than welding of homogeneous materials (such as steel). It is inferior.
JP-A-5-111757

本発明は、上述した従来の鋼と5000系アルミニウム合金など鉄系合金部材とアルミニウム系合金部材の接合技術の背景に鑑み、これらの不利や問題点を全面的に解消し、同質部材同志の溶接と実質的に変わらない優れた接合強度と高い生産性などの利点を享受し得る画期的な異種金属接合体ならびにその接合技術の開発と実用化をその課題としてなされたものである。   In view of the background of the joining technology of the above-described conventional steel and 5000 series aluminum alloy such as an iron-based alloy member and an aluminum-based alloy member, the present invention completely eliminates these disadvantages and problems and welds homogeneous members together. The development and practical application of an epoch-making dissimilar metal joined body that can enjoy advantages such as excellent joining strength and high productivity, which are substantially the same as those, and its joining technology have been made as its subject.

本発明はこのような課題の解決のために完成されたものであって、その要旨とする特徴は以下の通りである。
(1)鉄系合金部材とアルミニウム系合金部材が鉄系合金部材側からの入熱により溶接された異種金属溶接接合体であって、前記鉄系合金部材において溶解凝固した鉄系合金の溶解凝固部と前記アルミ合金部材に溶け込んで凝固した鉄系合金の溶け込み凝固部とが連続して一体的に構成された溶接凝固部を有すると共に、前記溶解凝固部の断面積が、前記溶け込み凝固部の断面積の4.0〜14倍であることを特徴とする異種金属の溶接接合体。
(2)溶解凝固部の表面幅が1.9〜2.8mm且つ前記溶け込み凝固部の深さが0.2以上であることを特徴とする請求項1に記載の異種金属溶接接合体。
The present invention has been completed to solve such a problem, and the gist of the present invention is as follows.
(1) A dissimilar metal welded joint in which an iron-based alloy member and an aluminum-based alloy member are welded by heat input from the iron-based alloy member, and the solidification of the iron-based alloy melted and solidified in the iron-based alloy member And a solidified solid portion of the iron alloy solidified by melting into the aluminum alloy member continuously and integrally formed, and a cross-sectional area of the solidified solid portion of the molten solidified portion is A welded joint of dissimilar metals having a cross-sectional area of 4.0 to 14 times.
(2) The dissimilar metal welded joint according to claim 1, wherein the surface width of the melted and solidified portion is 1.9 to 2.8 mm, and the depth of the melted and solidified portion is 0.2 or more.

本発明によれば、優れた接合強度を備えた鉄系合金部材とアルミ系合金部材の異種金属接合体を提供することができる。この溶接法は鉄系合金とアルミ系合金が直接接合できるため高い生産性を実現でき、かつ強度部材用の5000系アルミ合金の接合も可能になることより、適用対象部材が拡がり、かつ接合部材強度の向上に繋がる。このように本発明はこの種技術分野における実用性の面で顕著な効果を提供する。   ADVANTAGE OF THE INVENTION According to this invention, the dissimilar metal joining body of the iron-type alloy member and the aluminum-type alloy member provided with the outstanding joining strength can be provided. This welding method can realize high productivity because an iron-based alloy and an aluminum-based alloy can be directly joined, and can also join a 5000-series aluminum alloy for a strength member. It leads to improvement of strength. Thus, the present invention provides a remarkable effect in terms of practicality in this kind of technical field.

本発明者は鋼などを素材とする鉄系合金部材と5000系アルミ合金を素材とするアルミ系合金部材の接合について、従来から困難とされてきた溶接法を見直し、実現の可能性があるかどうかを改めて試みることにした。そこで、各種の溶接実験、検討を進めた結果、レーザー溶接などの入熱密度並びにアスペクト比の高い溶接法を利用して、鉄系合金部材側から入熱して、主としてアルミ系合金部材側から急速に奪熱、冷却することで接合部を急冷凝固させることにより、両部材の接合部を鉄にアルミが過飽和に固溶した過飽和固溶体組織として接合強度を高めることが出来ることを確認し、先に特許出願(特願2004−213426)を行った。   The present inventor has reviewed the welding method, which has been considered difficult in the past, for the joining of iron-based alloy members made of steel or the like and aluminum-based alloy members made of a 5000-series aluminum alloy, and is there a possibility of realization? I decided to try again. Therefore, as a result of various welding experiments and examinations, heat was input from the iron-based alloy member side using a welding method with a high heat input density and aspect ratio such as laser welding, and rapidly from the aluminum-based alloy member side. It is confirmed that the joint strength can be increased as a supersaturated solid solution structure in which aluminum is supersaturated with iron in the joint part of both members by rapidly solidifying the joint part by heat absorption and cooling. A patent application (Japanese Patent Application No. 2004-213426) was filed.

そして、さらに継続して実験を行い、これらの結果を総合的に解析したところ、鉄系合金部材側から入熱により溶解し、アルミ系合金部材側からの奪熱、急冷により凝固した鉄系合金部材の領域における鉄合金の溶解凝固部と、鉄系合金部材の領域で同様に溶解したのちアルミ系合金部材の領域に溶け込んで同様に凝固した鉄合金の溶け込み凝固部とによって構成された溶接接合体の凝固プロフィールがその接合強度や品質に重要な影響を与えていることが判明し、本発明を完成させるに至った。   Further, further experiments were conducted and these results were comprehensively analyzed. As a result, the iron-based alloy melted by heat input from the iron-based alloy member side and solidified by heat removal from the aluminum-based alloy member side and rapid cooling. A welded joint composed of a melted and solidified portion of the iron alloy in the region of the member and a melted and solidified portion of the iron alloy that is similarly melted in the region of the iron-based alloy member and then solidified in the region of the aluminum-based alloy member It has been found that the solidification profile of the body has an important influence on the joint strength and quality, and the present invention has been completed.

図1に本発明溶接接合体の模式的な断面図を示している。ここにおいて、1は鉄系合金部材、2はアルミ系合金部材であり、3は両部材の接合面である。この鉄系合金部材1とアルミ系合金部材2にかけてワインカップ状を呈した部分は、本接合体の溶接により溶解、再凝固して形成された溶接凝固部(凝固部と略称することがある)を示している。   FIG. 1 shows a schematic cross-sectional view of the welded joint of the present invention. Here, 1 is an iron-based alloy member, 2 is an aluminum-based alloy member, and 3 is a joint surface of both members. A portion having a wine cup shape between the iron-based alloy member 1 and the aluminum-based alloy member 2 is a welded solidified portion formed by melting and re-solidifying by welding of this joined body (sometimes abbreviated as a solidified portion). Is shown.

この溶接凝固部は、鉄系合金部材1の領域において鉄合金がそのまま溶解、凝固したカップ部に相当する溶解凝固部Bと、鉄系合金部材1の領域で溶解した鉄合金がその後にアルミ系合金部材2の領域に溶け込んで凝固した把持部に相当する砲弾状の溶け込み凝固部Aとが、接合面3を貫通、連続した状態で一体的に形成されたものである。   The welded solidified portion is composed of a melted and solidified portion B corresponding to a cup portion in which the iron alloy is melted and solidified as it is in the region of the iron-based alloy member 1 and an iron-based alloy melted in the region of the iron-based alloy member 1 thereafter. A shell-like melted and solidified portion A corresponding to a gripped portion that has melted and solidified in the region of the alloy member 2 is integrally formed so as to penetrate and be continuous with the joint surface 3.

溶解凝固部Bは実質的に鉄系合金の固溶体相であり、一方、溶け込み凝固部Aは鉄系合金にアルミ系合金のアルミが5〜40%過飽和に固溶した過飽和固溶体相となっている。ここでのアルミの固溶量はアルミ系合金部材との境界面に近いほど高くなっている。いずれも、EPMAの面分析、AES分析の結果などにより確認されている。しかも、この溶け込み凝固部Aは鉄系合金部材1とアルミ系合金部材2との実際の溶接接合部となり、その高い接合強度を維持する上で重要な役割を担っている。この接合部には接合強度を著しく低下させる原因となる脆い金属間化合物は存在しない。この事実もAES分析で確かめられている。   The melted and solidified portion B is substantially a solid solution phase of an iron-based alloy, while the melted and solidified portion A is a supersaturated solid solution phase in which aluminum of an aluminum-based alloy is solid-dissolved to 5-40% supersaturated in an iron-based alloy. . Here, the solid solution amount of aluminum is higher as it is closer to the interface with the aluminum alloy member. Both are confirmed by the results of EPMA surface analysis, AES analysis, and the like. Moreover, this melted and solidified portion A becomes an actual welded joint between the iron-based alloy member 1 and the aluminum-based alloy member 2, and plays an important role in maintaining its high joint strength. There are no brittle intermetallic compounds that cause a significant reduction in bonding strength in this bonded portion. This fact is also confirmed by AES analysis.

また、砲弾状にアルミ系合金部材2に食込んだこの溶接接合部は砲弾状部分全体の1次アンカー効果と、さらにこの砲弾状部の外面に形成された微細な凹凸部がアルミ系合金部材2の内面に食込んで生じた2次アンカー効果の両方作用によりその接合強度が一層高められている。   In addition, this welded joint that bites into the aluminum-based alloy member 2 in a bullet shape is the primary anchor effect of the entire bullet-shaped portion, and further, the fine irregularities formed on the outer surface of this bullet-shaped portion are aluminum alloy members. The joint strength is further enhanced by both the actions of the secondary anchor effect generated by biting into the inner surface of 2.

そして、これら溶け込み凝固部Aと溶解凝固部Bとにより構成された溶接凝固部は全体としてワインカップ状を呈することにより、さらに具体的には以下のような数値プロフィールを有することで最大限の接合強度と品質を確保することができる。   The weld solidified portion composed of the melt solidified portion A and the melt solidified portion B exhibits a wine cup shape as a whole, and more specifically has the following numerical profile to maximize joining. Strength and quality can be ensured.

先ず、同図1のように、本接合体は溶接凝固部のプロフィールにおいて、溶解凝固部Bの断面積S2が溶け込み凝固部Aの断面積S1の4.0〜14倍であること、すなわち、S2/S1=4.0〜14の関係を満たすことが必須である。   First, as shown in FIG. 1, in this welded body profile, the cross-sectional area S2 of the melted and solidified part B is 4.0 to 14 times the cross-sectional area S1 of the melted and solidified part A in the profile of the welded solidified part. It is essential to satisfy the relationship of S2 / S1 = 4.0-14.

このS2/S1が4.0未満の条件になると、基本的には入熱が不足した状態であり、鉄系合金部材1及びアルミ系合金部材2における必要な鉄系合金の溶解量とアルミ系合金に対する溶け込み量を確保できず、鉄合金にアルミ系合金のアルミが5〜40%過飽和に固溶した過飽和固溶体相の急冷凝固凝固組織からなる砲弾状の溶け込み凝固部Aの形成が困難となる。その結果、鉄系合金部材1とアルミ系合金部材2との接合が不能(未接合)となったり、接合不良が生じ、十分な接合強度を得ることができなくなり、また両部材の接合界面や鉄系合金部材1に引けを生じ、さらに溶け込み凝固部Aや溶解凝固部B内に大きな気泡が発生し、品質面の欠陥も多発することになる。   When S2 / S1 is less than 4.0, the heat input is basically insufficient, and the required amount of iron-based alloy dissolved in the iron-based alloy member 1 and the aluminum-based alloy member 2 and the aluminum-based material The amount of penetration into the alloy cannot be secured, and it becomes difficult to form a shell-like penetration solidification part A composed of a rapidly solidified solidified structure of a supersaturated solid solution phase in which an aluminum alloy aluminum is solid-dissolved in an iron alloy in an amount of 5 to 40% supersaturated. . As a result, the joining of the iron-based alloy member 1 and the aluminum-based alloy member 2 becomes impossible (unjoined), a joining failure occurs, and sufficient joining strength cannot be obtained. The iron-based alloy member 1 is contracted, and large bubbles are generated in the melted and solidified portion A and the melted and solidified portion B, resulting in frequent quality defects.

一方、S2/S1が14を超える条件では、入熱過剰な状態であり、アルミ系合金部材2における鉄系合金(鋼)の溶解幅(表面幅)及び溶解量が大きくなり過ぎて、このため過剰な金属蒸気の発生により、突沸現象が生じるなどしてアルミ系合金に対する溶け込み量が不安定となり、やはり前記砲弾状の溶け込み凝固部Aを十分に形成させることが出来なくなる。従って、鉄系合金部材1とアルミ系合金部材2の接合がほとんど不能となり、目的とする十分な接合強度が期待できない状況となる。しかも、接合界面において脆化化合物の発生や空洞、引けが生じ、また溶け込み凝固部Aや溶解凝固部B内にもブロー―ホールが発生し、品質面においても大きな問題を生じることになる。   On the other hand, under the condition where S2 / S1 exceeds 14, the heat input is excessive, and the melting width (surface width) and the melting amount of the iron-based alloy (steel) in the aluminum-based alloy member 2 become too large. Due to the generation of excessive metal vapor, a bumping phenomenon occurs, so that the amount of penetration into the aluminum-based alloy becomes unstable, and it is impossible to sufficiently form the bullet-like melt-solidified portion A. Therefore, the joining of the iron-based alloy member 1 and the aluminum-based alloy member 2 becomes almost impossible, and the intended sufficient joining strength cannot be expected. In addition, generation of embrittlement compounds, cavities, and shrinkage occur at the bonding interface, and blow-holes are generated in the melt-solidified portion A and the melt-solidified portion B, which causes a serious problem in terms of quality.

また、上記条件に加え、同図のように、本接合体は溶接凝固部のプロフィールにおいて、溶解凝固部Bの表面幅(溶解幅)Dが1.9〜2.8mmであることが好ましい。   In addition to the above conditions, as shown in the figure, it is preferable that the surface width (dissolution width) D of the melted and solidified portion B is 1.9 to 2.8 mm.

このDが1.9mm未満の発生するケースは二つある。そのひとつは入熱が不足し、アルミ系合金部材2側に食い込ませて接合強度を得るための十分な溶け込み凝固部Aを形成する鉄合金の溶湯量を確保できないケースである。この場合、鉄合金溶湯量が少ないため、鉄合金とアルミの接合界面の長さが短く、鋼の凝固収縮によって接合界面が剥離し易くなるとともに鉄合金の食い込みによるアンカー効果が得られ難く、接合強度が低くなる。もうひとつのケースは単位面積当りの入熱量が過剰な場合である。この場合は過剰な金属蒸気の発生によりキーホールを開放型に維持し難く,突沸異常や気泡巻き込みが頻発する。また入熱面の鉄系合金(鋼)の溶解幅(表面幅)が狭いため、アルミ系合金部材2側に食い込んだ溶け込み凝固部Aの体積減少に伴う凹み異常が発生する。いずれのケースも安定して良好な接合強度と接合品質が得られない。   There are two cases where this D is less than 1.9 mm. One of them is a case where the heat input is insufficient, and a sufficient amount of molten iron alloy that forms the solidified solidified portion A to penetrate into the aluminum-based alloy member 2 side to obtain the bonding strength cannot be secured. In this case, since the amount of molten iron alloy is small, the length of the joining interface between the iron alloy and aluminum is short, the joining interface is easily peeled off due to solidification shrinkage of the steel, and the anchor effect due to the biting of the iron alloy is difficult to obtain. Strength is lowered. The other case is when the heat input per unit area is excessive. In this case, the generation of excessive metal vapor makes it difficult to keep the keyhole open, and abnormal bumping and bubble entrainment occur frequently. Further, since the melting width (surface width) of the iron-based alloy (steel) on the heat input surface is narrow, a dent abnormality occurs due to the volume reduction of the melted and solidified portion A that has digged into the aluminum-based alloy member 2 side. In either case, good bonding strength and bonding quality cannot be obtained stably.

一方、Dが2.8mmを越えるケースは入熱が過剰で、アルミ系合金部材2側に食い込む鉄合金溶湯量が多過ぎて、冷却速度が遅くなり、安定して鉄合金にアルミ系合金のアルミが5〜40%過飽和に固溶した過飽和固溶体相を主体とする急冷凝固組織が得難くなる。前記砲弾状の溶け込み凝固部Aの1次及び2次アンカー効果により、接合強度は得られるが入熱過剰による突沸異常や気泡巻き込み不良、凝固後の凹み異常など接合品質は良くなく、品質は安定しないことになる。   On the other hand, in the case where D exceeds 2.8 mm, the heat input is excessive, the amount of molten iron alloy that bites into the aluminum alloy member 2 side is excessive, the cooling rate becomes slow, and the iron alloy is stably added to the iron alloy. It is difficult to obtain a rapidly solidified structure mainly composed of a supersaturated solid solution phase in which aluminum is dissolved in supersaturation at 5 to 40%. Due to the primary and secondary anchoring effects of the bullet-shaped melted and solidified part A, bonding strength can be obtained, but the bonding quality is not good, such as bumping abnormality due to excessive heat input, bubble entrapment failure, dent abnormality after solidification, and the quality is stable. Will not.

さらに、同図のように、本接合体は同凝固部のプロフィールにおいて、溶け込み凝固部Aの深さEが0.2以上であることが好ましい。   Further, as shown in the figure, it is preferable that the depth E of the melted and solidified portion A is 0.2 or more in the profile of the solidified portion.

鉄系合金の溶け込み深さが小さくなれば、鉄系合金とアルミ系合金の接合界面の長さが短くなり、アルミ系合金による抜熱効果の減少による接合部組織の強度劣化と鋼凝固収縮応力による接合界面の剥離が生じる。特に鋼のような鉄系合金とアルミ系合金とではその融点差が1000℃程度と著しいため、鋼が凝固してからアルミが凝固を終えるまで時間がかかれば、接合界面に脆化層を生じ、接合部剥離が多発する。従って、鋼の溶け込み深さが0.2未満では接合部剥離が発生し、正常な接合品質を得ることが困難となる。   If the penetration depth of the iron-based alloy is reduced, the length of the joint interface between the iron-based alloy and the aluminum-based alloy is shortened, and the strength deterioration of the joint structure and the steel solidification shrinkage stress due to the reduction of the heat removal effect by the aluminum-based alloy. Separation of the bonding interface due to. In particular, the difference in melting point between an iron-based alloy such as steel and an aluminum-based alloy is as great as about 1000 ° C. Therefore, if it takes a long time from the solidification of the steel to the solidification of the aluminum, a brittle layer is formed at the joint interface. , Bonding peeling frequently occurs. Therefore, if the penetration depth of steel is less than 0.2, peeling of the joint portion occurs, and it becomes difficult to obtain normal joining quality.

次に本発明接合体の製作に際しての好ましい溶接条件などについて述べる。   Next, preferable welding conditions and the like for manufacturing the joined body of the present invention will be described.

先ず、溶接方法としては炭酸ガスレー溶接などのレーザー溶接法を採用することが有利である。このレーザー溶接法はアーク溶接法などと異なり、入熱密度(106W/cm2以上)が非常に高く、アスペクト比(溶け込み深さ/溶け込み幅)が極めて高い溶接ビードが得られる特徴がある。従って、鉄系合金とアルミ系合金の接合部の溶け込み幅を小さくした状態で溶解接合に十分な入熱を瞬時に行うことができるため、入熱後の冷却が急速(冷却速度:100K/s以上)に進行し、接合部を急冷凝固させることができ、これにより接合部を数μ〜10μ以下の微細な急冷凝固組織とすることができると同時に過飽和固溶体相を得ることができるのである。 First, it is advantageous to employ a laser welding method such as carbon dioxide spray welding as the welding method. Unlike the arc welding method, this laser welding method is characterized in that a weld bead having a very high heat input density (10 6 W / cm 2 or more) and an extremely high aspect ratio (penetration depth / penetration width) can be obtained. . Therefore, heat input sufficient for melting and joining can be instantaneously performed in a state where the penetration width of the joining portion of the iron-based alloy and the aluminum-based alloy is reduced, so that cooling after the heat input is rapid (cooling rate: 100 K / s Thus, the joint can be rapidly solidified, whereby the joint can be made into a fine rapidly solidified structure of several μ to 10 μm or less, and at the same time a supersaturated solid solution phase can be obtained.

また、このレーザー溶接によって鉄系合金部材1とアルミ系合金部材2を溶接する場合は、その入熱を、熱反射の少なく、アルミより比重が大きくその自重をうまく利用して溶湯を食い込ませて前記溶け込み凝固部を容易に形成することが可能な、鉄系合金側から行うことが良い。   In addition, when the iron-based alloy member 1 and the aluminum-based alloy member 2 are welded by this laser welding, the heat input is less heat-reflected, the specific gravity is larger than that of aluminum, and the own weight is used well to penetrate the molten metal. It is good to carry out from the iron-based alloy side which can form the said melt solidification part easily.

十分な接合強度が得られるレーザー溶接条件は基本的には高エネルギー密度で鉄側から安定的に入熱し、比較的広い溶解幅を確保しながら溶解した十分の量の鉄を短時間にアルミ側に適量砲弾状に食い込ませ、これにより前述した1次と2次の両方のアンカー効果を発揮する図1の溶け込み凝固部Aの形成を可能にすることである。この条件を満たすために、図2に示すように、まず、鉄系合金部材(1)側からレーザー光(R)を照射して入熱を行い、溶融鉄(M)の内側に生成されたキーホール(K)内に金属蒸気(V)が封じ込められない様にし、この蒸気(V)による突沸を防ぐことが必要になる。また溶融鉄(M)が飛び散らないよう入熱を調整する必要がある。溶融鉄(M)がアルミ合金部材(2)に差し込むことにより凝固後鉄側表面に引けによる凹みが発生し易い。凝固表面の過度な凹み発生を防ぐためには、入熱は溶接深さ方向だけでなく、凝固時に入熱周辺から溶融鉄(M)量を補充するため、幅方向にも行う必要がある。この幅方向の入熱はキーホール(K)生成に伴って得られる金属蒸気(V)を鉄表面上すなわちキーホール(K)の上方近傍でプラズマ発光させて、ここに発生したプラズマ雲(P)継続的に維持させることが重要となる。   Laser welding conditions that provide sufficient bonding strength are basically high energy density, stable heat input from the iron side, and a sufficient amount of iron melted in a short time while securing a relatively wide melting width. 1 is made to bite in an appropriate amount in a bullet shape, thereby enabling the formation of the melt-solidified portion A of FIG. 1 that exhibits both the primary and secondary anchor effects described above. In order to satisfy this condition, as shown in FIG. 2, first, the laser beam (R) is irradiated from the iron-based alloy member (1) side to perform heat input, and is generated inside the molten iron (M). It is necessary to prevent the metal vapor (V) from being contained in the keyhole (K) and to prevent bumping by the vapor (V). Moreover, it is necessary to adjust heat input so that molten iron (M) does not scatter. When the molten iron (M) is inserted into the aluminum alloy member (2), dents due to shrinkage tend to occur on the iron side surface after solidification. In order to prevent the occurrence of excessive dents on the solidified surface, the heat input needs to be performed not only in the welding depth direction but also in the width direction in order to supplement the amount of molten iron (M) from around the heat input during solidification. The heat input in the width direction causes the metal vapor (V) obtained with the generation of the keyhole (K) to emit plasma on the iron surface, that is, near the upper side of the keyhole (K), and a plasma cloud (P ) It is important to maintain it continuously.

炭酸ガスレーザー溶接を用いて本発明接合体を製作する具体的な溶接条件としては、入熱の出力を700〜775Wとし、溶接速度を375〜400mm/分とすることが推奨される。   As specific welding conditions for producing the joined body of the present invention using carbon dioxide laser welding, it is recommended that the heat input is 700 to 775 W and the welding speed is 375 to 400 mm / min.

以下に、鋼とアルミの良好な溶解接合品質が得られる本発明を実験例にもとづいて詳述する。   Hereinafter, the present invention capable of obtaining good melting and joining quality of steel and aluminum will be described in detail based on experimental examples.

(実施例)
ステンレスパイプ(JIS304,316L)にアルミ棒、パイプ(JIS3003、5052)を圧入したサンプルをレーザー溶接機(松下溶接システム社製YB-L150A8,ノズル径4、5φ、溶接速度:400mm/分、出力形態;CW)を用いてステンレスパイプ側からレーザーを照射し、溶接接合した。そしてこれらステンレス−アルミ接合体の接合強度並びに接合品質と溶接凝固部のプロフィールを調査した結果を表1及び表2に示す。なお、接合強度並びに接合品質の評価基準は下記の通りである。
(Example)
Laser welder (YB-L150A8 made by Matsushita Welding Systems Co., Ltd., nozzle diameter 4, 5φ, welding speed: 400mm / min, output form) Laser was irradiated from the stainless steel pipe side using CW) and welded. Tables 1 and 2 show the results of investigating the bonding strength, bonding quality, and weld solidified profile of these stainless steel-aluminum bonded bodies. In addition, the evaluation criteria of joining strength and joining quality are as follows.

[接合強度]
◎:母材破断、○:継ぎ手効率75%以上、△:継ぎ手効率20%以上、75%未満、×:未接合もしくは継ぎ手効率20%未満。
[Joint strength]
A: Breakage of base material, B: Joint efficiency of 75% or more, B: Joint efficiency of 20% or more and less than 75%, X: Unjoined or joint efficiency of less than 20%.

[接合品質]
◎:接合界面が連続した特異組織からなり、かつ気泡欠陥、凹み異常、引け異常がないものが、○:接合界面が連続した特異組織からなるが、微小な気泡、凹み、引けの欠陥を有するもの、△:部分的に接合界面が特異組織からなるもの、×:未接合又は接合界面が脆い化合物からなるもの。
[Joint quality]
◎: The joint interface consists of a continuous unique structure and has no bubble defects, dent abnormalities, or shrinkage abnormalities. ○: The joint interface consists of a continuous specific structure, but has minute bubbles, dents, or shrinkage defects. △: Partially bonded interface is made of a specific structure, X: Unbonded or bonded interface is made of a brittle compound.

なお、溶接凝固部のプロフィールの調査・測定に当たっては凝固部の周囲に 脆い金属化合物が生成している場合は、この部分を除外した寸法により求めた。   When investigating and measuring the profile of the welded solidified part, if a brittle metal compound was formed around the solidified part, it was determined from the dimensions excluding this part.

表1及び2の実験結果から、溶接凝固部のプロフィールにおいて、鉄合金(ステンレス鋼)の溶解凝固部と溶け込み凝固部の断面積比(S2/S1)が本発明の範囲(4.0〜14)を満たす実施例(No1〜4、11、12、15、16)については、接合界面が良好で、引張試験においてすべて母材破断に至っており、優れた接合強度と品質を有していることが分かる。   From the experimental results in Tables 1 and 2, in the profile of the welded solidified portion, the cross-sectional area ratio (S2 / S1) of the molten solidified portion and the penetration solidified portion of the iron alloy (stainless steel) is within the range of the present invention (4.0 to 14). ) (Examples No. 1 to 4, 11, 12, 15, 16) satisfying) have good bonding interfaces, all have been subjected to base material fracture in the tensile test, and have excellent bonding strength and quality. I understand.

一方、S2/S1が本発明の上限を超える比較例(No6〜9、13,14,17)においてはそのほとんどが接合強度及び品質共に不良な結果を示した。なお、No10の比較例は入熱が著しく不足し、溶け込み凝固部の形成が不能となったものである。   On the other hand, in the comparative examples (Nos. 6 to 9, 13, 14, and 17) in which S2 / S1 exceeded the upper limit of the present invention, most of the results showed poor results in both bonding strength and quality. In the comparative example of No. 10, the heat input was remarkably insufficient, and the formation of the melted and solidified portion became impossible.

また、S2/S1が本発明の下限を下回る比較例(No5)は接合強度は満足するものの、接合品質において不十分であり、通常の溶接法による接合体として満足できないものである。但し、この比較例(No5)のように、S2/S1が2.9で4を下回る様な場合でも、鋼の溶湯が砲弾状にアルミ側に食い込み、更にアルミとの接合界面において局部的にアルミに食い込む二重のアンカー効果を発揮することから、母材破断するほどの接合強度は得難いにしても、溶接が簡単にできることを考慮すればS2/S1が2.5以上であればスポット溶接には適するものである。しかし、S2/S1が2.5未満になると引けが大きくなるとともにアルミに食い込んだ鋼溶湯の冷却速度が遅くなり、脆い金属間化合物が発生し、上記アンカー効果を発揮できなくなり、スポット溶接においても適用不可となる。   Moreover, although the comparative example (No5) in which S2 / S1 is less than the lower limit of the present invention satisfies the bonding strength, the bonding quality is insufficient, and it cannot be satisfied as a bonded body by a normal welding method. However, even when S2 / S1 is less than 4 at 2.9 as in this comparative example (No. 5), the molten steel bites into the aluminum side in a cannonball shape, and further locally at the interface with the aluminum. Spot welding where S2 / S1 is 2.5 or more, considering that it can be easily welded even if it is difficult to obtain a joint strength enough to break the base metal because it exerts a double anchor effect that bites into aluminum. It is suitable for. However, when S2 / S1 is less than 2.5, the shrinkage increases and the cooling rate of the molten steel that has penetrated into the aluminum becomes slow, brittle intermetallic compounds are generated, and the anchor effect cannot be exhibited. Not applicable.

また、同表1,2より優れた接合強度と品質を備えた実施例の接合体は、溶接凝固部のプロフィールにおいて、さらに鉄合金の溶解凝固部の表面幅(D)についても本発明の範囲である1.9〜2.8mmを満足していることが判明する。一方、このDが1.9未満あるいは2.8を超える場合は比較例が示すとおり接合強度又は品質が十分でなく接合体として不適切である。   Further, the joined bodies of the examples having joint strength and quality superior to those in Tables 1 and 2 are within the scope of the present invention in terms of the surface width (D) of the melted and solidified part of the iron alloy in the profile of the welded solidified part. It is found that the following 1.9 to 2.8 mm is satisfied. On the other hand, when this D is less than 1.9 or exceeds 2.8, the bonding strength or quality is not sufficient as shown in the comparative example, which is inappropriate as a bonded body.

さらに、溶接凝固部のプロフィールにおける溶け込み凝固部の深さ(E)についても、その範囲が0.2mm以上を満たす実施例がこれを満たさない比較例に比べて接合強度及び接合品質において優れていることもこれらの表から分かる。   Further, with regard to the depth (E) of the penetration solidified portion in the profile of the weld solidified portion, the example in which the range satisfies 0.2 mm or more is excellent in the bonding strength and the bonding quality as compared with the comparative example not satisfying this. You can also see from these tables.

Figure 2006130541
Figure 2006130541

Figure 2006130541
Figure 2006130541

本発明に係る溶接接合体の模式的な断面図Schematic sectional view of a welded joint according to the present invention 本発明におけるレーザー溶接による鉄系合金部材とアルミ系合金部材の接合時の状態を示す模式図。The schematic diagram which shows the state at the time of joining of the iron-type alloy member and aluminum-type alloy member by the laser welding in this invention.

符号の説明Explanation of symbols

1:鉄系合金部材 2:アルミ(ニウム)系合金部材 3:接合面
A:溶け込み凝固部 B:溶解凝固部 C:溶け込み表面幅
D:溶解凝固分の表面幅 E:溶け込み凝固部の深さ F:鉄系合金部材の板厚
S:溶け込み凝固部の断面積 S2:溶解凝固部の断面積
R:レーザー光 M:溶融鉄 K:キーホール V:金属蒸気
P:プラズマ雲
1: Iron-based alloy member 2: Aluminum (nium) -based alloy member 3: Bonding surface A: Dissolved solidified portion B: Dissolved solidified portion C: Dissolved solidified width D: Surface width of dissolved solidified portion E: Depth of dissolvable solidified portion F: Thickness of the iron-based alloy member S: Cross-sectional area of the melt-solidified portion S2: Cross-sectional area of the melt-solidified portion R: Laser light M: Molten iron K: Keyhole V: Metal vapor P: Plasma cloud

Claims (2)

鉄系合金部材とアルミニウム系合金部材が鉄系合金部材側からの入熱により溶接された異種金属溶接接合体であって、前記鉄系合金部材において溶解凝固した鉄系合金の溶解凝固部と前記アルミ合金部材に溶け込んで凝固した鉄系合金の溶け込み凝固部とが連続して一体的に構成された溶接凝固部を有すると共に、前記溶解凝固部の断面積が、前記溶け込み凝固部の断面積の4.0〜14倍であることを特徴とする異種金属の溶接接合体。   A dissimilar metal welded joint in which an iron-based alloy member and an aluminum-based alloy member are welded by heat input from the iron-based alloy member side, wherein the melt-solidified portion of the iron-based alloy melted and solidified in the iron-based alloy member The welded solidified portion of the iron-based alloy melted and solidified in the aluminum alloy member has a continuous welded solidified portion, and the cross-sectional area of the melted solidified portion is equal to the cross-sectional area of the melted solidified portion. A welded joint of dissimilar metals, characterized by 4.0 to 14 times. 溶解凝固部の表面幅が1.9〜2.8mm且つ前記溶け込み凝固部の深さが0.2以上であることを特徴とする請求項1に記載の異種金属溶接接合体。


















The dissimilar metal welded joint according to claim 1, wherein a surface width of the melted and solidified portion is 1.9 to 2.8 mm, and a depth of the melted and solidified portion is 0.2 or more.


















JP2004324027A 2004-11-08 2004-11-08 Different metal joined member joined by welding ferrous alloy member and aluminum alloy member Pending JP2006130541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324027A JP2006130541A (en) 2004-11-08 2004-11-08 Different metal joined member joined by welding ferrous alloy member and aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324027A JP2006130541A (en) 2004-11-08 2004-11-08 Different metal joined member joined by welding ferrous alloy member and aluminum alloy member

Publications (1)

Publication Number Publication Date
JP2006130541A true JP2006130541A (en) 2006-05-25

Family

ID=36724536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324027A Pending JP2006130541A (en) 2004-11-08 2004-11-08 Different metal joined member joined by welding ferrous alloy member and aluminum alloy member

Country Status (1)

Country Link
JP (1) JP2006130541A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320953A (en) * 2005-05-20 2006-11-30 Nichirin Co Ltd Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy
WO2017208614A1 (en) * 2016-06-01 2017-12-07 株式会社 マキタ Electric tool
KR20190029030A (en) * 2017-09-11 2019-03-20 주식회사 엘지화학 Method for laser weding of different metals with optimization of welding condition by using intermetallic compound analysis
JP2020097039A (en) * 2018-12-17 2020-06-25 トヨタ自動車株式会社 Lap-welding method of dissimilar metal member
US11525469B2 (en) 2016-08-09 2022-12-13 Panasonic Intellectual Property Management Co., Ltd. Junction structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320953A (en) * 2005-05-20 2006-11-30 Nichirin Co Ltd Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy
WO2017208614A1 (en) * 2016-06-01 2017-12-07 株式会社 マキタ Electric tool
US11525469B2 (en) 2016-08-09 2022-12-13 Panasonic Intellectual Property Management Co., Ltd. Junction structure
KR20190029030A (en) * 2017-09-11 2019-03-20 주식회사 엘지화학 Method for laser weding of different metals with optimization of welding condition by using intermetallic compound analysis
CN110573293A (en) * 2017-09-11 2019-12-13 株式会社Lg化学 Laser welding method between different kinds of metals by intermetallic compound analysis optimization of welding conditions
KR102299768B1 (en) * 2017-09-11 2021-09-07 주식회사 엘지화학 Method for laser welding of different metals with optimization of welding condition by using intermetallic compound analysis
US11383324B2 (en) 2017-09-11 2022-07-12 Lg Chem, Ltd. Laser welding method between different kinds of metals for optimizing welding conditions through intermetallic compound analysis
JP2020097039A (en) * 2018-12-17 2020-06-25 トヨタ自動車株式会社 Lap-welding method of dissimilar metal member

Similar Documents

Publication Publication Date Title
JP5187712B2 (en) Joining method
Khan et al. Analysis of defects in clean fabrication process of friction stir welding
JP5014833B2 (en) MIG welding method for aluminum and steel
JP2008207227A (en) Mig welded joint and mig welding process for aluminum material and steel
JP2006239734A (en) Weld joint and method for forming the same
JP2018051570A (en) Dissimilar material jointing spot welding method, joint auxiliary member, and dissimilar material welding coupling
JP4438691B2 (en) Dissimilar material joint and weld joint method in which iron material and aluminum material are joined
JP2007136489A (en) Method for welding different materials
JP2008207245A (en) Joined product of dissimilar materials of steel and aluminum material
JPH0481288A (en) Method for joining steel material with aluminum material
JP4978121B2 (en) Butt joining method of metal plates
WO2021210322A1 (en) Arc spot welding method for joining dissimilar materials
JP2006130541A (en) Different metal joined member joined by welding ferrous alloy member and aluminum alloy member
JP2006320954A (en) Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy
JP4178134B2 (en) Method of joining an iron-based alloy member and an aluminum-based alloy member
JP3317192B2 (en) Friction welding method and vehicle structure
JP4933923B2 (en) Dissimilar material joining method
JP6435533B2 (en) Friction stir welding method for metal materials
JP2008200750A (en) One side arc spot welding method
JP2006150439A (en) Steel material-aluminum material welded joint, and welding method therefor
JP6675554B2 (en) Dissimilar material friction stir welding method
JP2006320953A (en) Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy
Das et al. Friction stir welding
JP5674355B2 (en) Welding method of aluminum material
JP2010099672A (en) Method of joining different kind of metal between casting product and sheet, and joining structure of different kind of metal thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302