JP2006130463A - Purification filter, production method for the same, and exhaust gas purification apparatus - Google Patents

Purification filter, production method for the same, and exhaust gas purification apparatus Download PDF

Info

Publication number
JP2006130463A
JP2006130463A JP2004324675A JP2004324675A JP2006130463A JP 2006130463 A JP2006130463 A JP 2006130463A JP 2004324675 A JP2004324675 A JP 2004324675A JP 2004324675 A JP2004324675 A JP 2004324675A JP 2006130463 A JP2006130463 A JP 2006130463A
Authority
JP
Japan
Prior art keywords
raw material
purification filter
exhaust gas
material substrate
whisker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004324675A
Other languages
Japanese (ja)
Inventor
Yoshiko Hishitani
佳子 菱谷
Makoto Uchiyama
誠 内山
Hidetomo Nojiri
秀智 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004324675A priority Critical patent/JP2006130463A/en
Publication of JP2006130463A publication Critical patent/JP2006130463A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purification filter having an improved collection efficiency and suppressed decrease of pressure loss, a production method therefor, and an exhaust gas purification apparatus. <P>SOLUTION: The purification filter comprises a whisker formed on a raw material substrate made of an alloy or a ceramic containing Mn, Al, Cr, In, Ag, Ga, Sn, Cu, Sc, Ge, Ti, Si, and the like. The raw material substrate is a porous material having an average fine pore diameter larger than the average diameter of the whisker. The raw material substrate is composed by filling a carrier with a powdery granule. The purification filter is produced by adjusting the contents of the elements contained in the raw material substrate and controlling the thickness and length of the whisker to be formed by heating in an inert gas atmosphere in the presence of a slight amount of oxygen. The exhaust gas purification apparatus comprises two or more layers of purification filters; a purification filter comprising a whisker formed on a raw material substrate and having a longer average length and a thicker thickness on the upstream side and a purification filter comprising a whisker formed on a raw material substrate and having a shorter average length and a thinner thickness on the downstream side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、浄化フィルター、その製造方法及び排気ガス浄化装置に係り、更に詳細には、微細なウィスカーを利用した浄化フィルター、その製造方法及び排気ガス浄化装置に関する。   The present invention relates to a purification filter, a manufacturing method thereof, and an exhaust gas purification device, and more particularly to a purification filter using fine whiskers, a manufacturing method thereof, and an exhaust gas purification device.

DPF(ディーゼルパーティキュレートフィルター)とは、主にディーゼル車の排気ガスに含まれる粒子状物質(DEP)を除去するために使う排出ガス浄化フィルターをいい、例えば、コーディエライト、炭化珪素、シリカ系繊維、Fe−Cr−Al合金及びSUSなどを用いたDPFが知られている。
これらの材料を用いたDPFは、以下のようなメリット及びデメリットがある。即ち、上記コーディエライトハニカムは、捕集効率が高いが、耐熱強度が低く、溶損・破損し易い。上記炭化珪素ハニカムは、捕集効率が高く耐熱強度が高いが、熱膨張により破損し易く高コストである。上記シリカ系繊維巻き付けは、捕集効率が高いが、耐熱強度が低く、高コストであり、捕集面積が小さい。上記コーディエライトフォームは、捕集面積が大きいが、捕集効率が低い、耐熱強度が低い、再生が困難である。上記Fe−Cr−Al金属フォームは、捕集面積が大きいが、捕集効率が低い、耐熱強度が低い、再生が困難ある。上記SUSメッシュは、耐震性に優れるが、捕集効率が低い、再生が困難であり、高コストである。
DPF (Diesel Particulate Filter) is an exhaust gas purification filter mainly used to remove particulate matter (DEP) contained in exhaust gas from diesel vehicles. For example, cordierite, silicon carbide, silica-based filter DPFs using fibers, Fe—Cr—Al alloys, SUS, and the like are known.
The DPF using these materials has the following merits and demerits. That is, the cordierite honeycomb has a high collection efficiency, but has a low heat resistance and is easily melted and damaged. The silicon carbide honeycomb has high collection efficiency and high heat resistance, but is easily damaged by thermal expansion and is expensive. The silica-based fiber wrapping has high collection efficiency, but has low heat resistance, high cost, and a small collection area. The cordierite foam has a large collection area, but has a low collection efficiency, a low heat resistance, and is difficult to regenerate. The Fe—Cr—Al metal foam has a large collection area, but has low collection efficiency, low heat resistance, and is difficult to regenerate. The SUS mesh is excellent in earthquake resistance, but has low collection efficiency, is difficult to regenerate, and is expensive.

また、粒子状物質(DEP)は、固形炭素粒、炭化水素、水、酸、塩基、アルコール、CO、CO、NOx、SOx及びその他有機物などから構成され、図1に示すように、10μm〜10nmの範囲に粒径分布をもつ。また、質量分布からわかるように、0.01〜0.1μm、0.1〜1μm、1〜10μmの範囲にそれぞれピークがある。
従って、DEPを除去するには、これら全ての大きさの粒子をいかに効率良く除去するかが重要である。
The particulate matter (DEP) is composed of solid carbon particles, hydrocarbons, water, acid, base, alcohol, CO, CO 2 , NOx, SOx, and other organic substances, and as shown in FIG. It has a particle size distribution in the range of 10 nm. Moreover, as can be seen from the mass distribution, there are peaks in the ranges of 0.01 to 0.1 μm, 0.1 to 1 μm, and 1 to 10 μm, respectively.
Therefore, in order to remove DEP, it is important how to remove particles of all these sizes efficiently.

このような背景から、セラミックスハニカム構造体から成る触媒付DPFをセル隔壁の平均孔径の異なる複数種から構成し、平均孔の大きなものから小さなものを直列に配置することが提案されている(例えば特許文献1参照)。
しかし、このDPFでは、圧力損失を少なくするため、細孔の大きさは小さくても10μm程度である。このため、100nm以下の微細粒子についての捕捉は難しい。また、セラミックスを用いるため、耐震性や熱衝撃により破損するなどの問題点があった。更に、捕捉効率を上げるために、フィルタ本体にある程度の大きさが必要であった。
特開2003−225540号公報
From such a background, it has been proposed that a DPF with a catalyst composed of a ceramic honeycomb structure is composed of a plurality of types having different average pore diameters of cell partition walls, and those having a large average pore and a small one are arranged in series (for example, Patent Document 1).
However, in this DPF, in order to reduce the pressure loss, the size of the pore is about 10 μm even if it is small. For this reason, it is difficult to capture fine particles of 100 nm or less. Moreover, since ceramics are used, there are problems such as damage due to earthquake resistance and thermal shock. Furthermore, in order to increase the capture efficiency, the filter body needs to have a certain size.
JP 2003-225540 A

また、金属メッシュと多孔質触媒層を組合せたフィルター、具体的には、導電性金属の金属素線で構成された金網と金属粉末の焼結層とから成る多孔質金属複合体で、フィルター機能とヒーター機能の複合機能を備えたDPFが提案されている(例えば特許文献2参照)。
しかし、このDPFは、金網構造のため、網目の孔が非常に大きい。また、金属粉末の焼結層を厚くすれば孔が小さくなるが一方で圧力損失が大きくなってしまう。このため、捕捉効率と低圧力損失の両立が難しいという問題点があった。
特開2003−97253号公報
In addition, a filter that combines a metal mesh and a porous catalyst layer, specifically, a porous metal composite composed of a metal mesh composed of a conductive metal wire and a sintered layer of a metal powder. A DPF having a combined function of the heater function has been proposed (see, for example, Patent Document 2).
However, since this DPF has a wire mesh structure, the mesh holes are very large. Further, if the sintered layer of the metal powder is thickened, the hole is reduced, but the pressure loss is increased. For this reason, there is a problem that it is difficult to achieve both capture efficiency and low pressure loss.
JP 2003-97253 A

更に、細孔径の平均値とその標準偏差を制御したセラミックスハニカムDPFが提案されている(例えば特許文献3参照)。このDPFは、平均粒径10μmの多孔質コーディエライトを使用して成り、0.1μm〜1μm程度までの粒子状物質(DEP)が捕捉可能である。
WO2002/026351
Furthermore, a ceramic honeycomb DPF in which the average value of the pore diameter and the standard deviation thereof are controlled has been proposed (see, for example, Patent Document 3). This DPF is made of porous cordierite having an average particle diameter of 10 μm, and can trap particulate matter (DEP) of about 0.1 μm to 1 μm.
WO2002 / 026351

一方、本発明者らは、サイズの異なるウィスカーの製造方法を提案している(特願2004−319018号)。即ち、ウィスカーを成長させる原料基体に含まれるマンガン(Mn)の組成を変えて不活性ガス中で熱処理をすると、得られるウィスカーの大きさが変わることを見出した。
ここで、「ウィスカー」とは、細長いヒゲ状結晶を意味し、一般にはプラスティックやセラミックスの強化材として用いられる。また、ウィスカーを形成させた基体は表面積が増加するため、触媒の担持体などに利用できる。
On the other hand, the present inventors have proposed a manufacturing method of whiskers having different sizes (Japanese Patent Application No. 2004-319018). That is, it has been found that when the composition of manganese (Mn) contained in the raw material base for growing whiskers is changed and heat treatment is performed in an inert gas, the size of the obtained whiskers changes.
Here, the “whisker” means an elongated bearded crystal and is generally used as a reinforcing material for plastics and ceramics. In addition, since the surface area of the substrate on which whiskers are formed increases, it can be used as a catalyst carrier.

そこで、本発明者らは、かかるウィスカーを用いたDPFと、従来公知のDPFとを同一サイズにて比較したところ、前者は極めて優れた特性を示すことを見出した。
即ち、該ウィスカーを用いたDPFは、現在使用頻度が高いハニカムフィルターと比べると、比表面積が大きい、触媒が分散性良く担持できる(触媒使用量を低減できる)、ウィスカーの弾性により衝撃や熱応力に強い、基材を金属にすることができるので熱伝導を高められる、などのメリットがある。また、SiCなどの細線不織フィルターと比べると、ウィスカーが凹凸になるので粒子がより補足し易い、強度を気にせずウィスカーサイズを制御できる、ウィスカーを微細化することでより小さな粒子の除去が可能となる、などのメリットがある。
Therefore, the present inventors have compared the DPF using such whiskers with a conventionally known DPF at the same size, and found that the former exhibits extremely excellent characteristics.
That is, the DPF using the whisker has a large specific surface area and can carry the catalyst with good dispersibility (reducing the amount of catalyst used) compared to the honeycomb filter which is currently used frequently, and the impact and thermal stress due to the elasticity of the whisker. It has a merit such that it is resistant to heat and the base material can be made of metal so that heat conduction can be enhanced. Also, compared to thin non-woven filters such as SiC, whiskers become uneven, making it easier for particles to capture, whisker size can be controlled without worrying about strength, and smaller whiskers can remove smaller particles There are advantages such as being possible.

本発明は、このような従来技術の有する課題と新たな知見に鑑みてなされたものであり、その目的とするところは、捕捉効率を向上するとともに、圧力損失の低下を抑制した浄化フィルター、その製造方法及び排気ガス浄化装置を提供することにある。   The present invention has been made in view of the problems and new knowledge of the prior art, and the object of the present invention is to provide a purification filter that improves the capture efficiency and suppresses the decrease in pressure loss, and its A manufacturing method and an exhaust gas purification device are provided.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、所定の元素を含む原料基体上に成長させた微細なウィスカーにより、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by fine whiskers grown on a raw material substrate containing a predetermined element, and to complete the present invention. It came.

本発明によれば、微細且つ表面積が増大したウィスカーを使用するので、圧力損失が少ないうえに従来品の補足可能限界の1/10以下の粒子まで補足できる。また、従来品と同じ補足効率のフィルターを、小型化、軽量化(低コスト化)することができる。   According to the present invention, since the whisker having a fine and increased surface area is used, the pressure loss is small and it is possible to supplement particles up to 1/10 or less of the supplemental limit of conventional products. In addition, a filter having the same supplementary efficiency as the conventional product can be reduced in size and weight (cost reduction).

以下、本発明の浄化フィルターについて詳細に説明する。なお、本特許請求の範囲及び本明細書において、「%」は特記しない限り質量百分率を表すものとする。   Hereinafter, the purification filter of the present invention will be described in detail. In the claims and the specification, “%” represents a mass percentage unless otherwise specified.

上述の如く、本発明の浄化フィルターは、原料基体上にウィスカーを形成して成る。また、この原料基体は、マンガン(Mn)、アルミニウム(Al)、クロム(Cr)、インジウム(In)、銀(Ag)、ガリウム(Ga)、錫(Sn)、銅(Cu)、スカンジウム(Sc)、ゲルマニウム(Ge)、チタン(Ti)又はシリコン(Si)、及びこれら元素の任意の組み合わせを含む合金とするか、これら元素の少なくとも1種を含むセラミックスとする。
このような元素が原料基体の表面でウィスカーを形成することにより、比表面積の大きい浄化フィルターが得られる。また、ウィスカーは、片方の端部が開放されているため、圧力損失が少ない。更に、篩効果で10μm以下の粒子が捕捉されるとともに、ウィスカーの凹凸による衝突捕捉によっても粒子が捕捉されるため、捕捉効率が向上する。
As described above, the purification filter of the present invention is formed by forming whiskers on a raw material substrate. Further, this raw material base is made of manganese (Mn), aluminum (Al), chromium (Cr), indium (In), silver (Ag), gallium (Ga), tin (Sn), copper (Cu), scandium (Sc). ), Germanium (Ge), titanium (Ti) or silicon (Si), and an alloy containing any combination of these elements, or a ceramic containing at least one of these elements.
Such elements form whiskers on the surface of the raw material substrate, whereby a purification filter having a large specific surface area can be obtained. In addition, since one end of the whisker is open, there is little pressure loss. Furthermore, particles having a size of 10 μm or less are captured by the sieving effect, and the particles are also captured by collision capture by the unevenness of the whisker, so that the capture efficiency is improved.

ここで、本発明の浄化フィルターが発揮する衝突捕捉について説明する。
図2(左図)に示すように、細孔による篩効果のみを利用したフィルターは、該細孔の大きさに対応した粒子を捕捉できるに留まるとともに、一旦粒子が捕捉されると細孔が塞がれてしまい圧力損失が増大する。
これに対して、本発明の浄化フィルターは、ウィスカーを用いるので篩効果に加えて、流れてきた粒子がウィスカーに衝突するときに該ウィスカーに引っ掛かることにより捕捉できる効果(衝突捕捉)を有する。即ち、図2(右図)に示すように、実際に細孔径を捕捉粒子のサイズまで小さくしなくても粒子を3次元的に捕捉できるため、従来の1/10以下の粒子まで捕捉でき、上記圧力損失の問題が改善される。
なお、太さ1μmのウィスカーを充填した浄化フィルターが衝突捕捉により捕集できるPM粒子の粒子径と捕集率との関係を図3のグラフに示す。
Here, the collision capture exhibited by the purification filter of the present invention will be described.
As shown in FIG. 2 (left figure), a filter that uses only the sieving effect by pores can not only capture particles corresponding to the size of the pores, but also once the particles are captured, The pressure loss increases due to clogging.
On the other hand, since the purification filter of the present invention uses whiskers, in addition to the sieving effect, when the flowing particles collide with the whiskers, they have the effect of being caught by being caught by the whiskers (collision capture). That is, as shown in FIG. 2 (right figure), since the particles can be captured three-dimensionally without actually reducing the pore diameter to the size of the captured particles, it is possible to capture up to 1/10 or less of the conventional particles, The pressure loss problem is improved.
FIG. 3 is a graph showing the relationship between the particle size of PM particles that can be collected by collision capture by a purification filter filled with whiskers having a thickness of 1 μm and the collection rate.

また、本発明の浄化フィルターの使用による圧力損失の低減について説明する。
例えば、図4(左図)に示すように、原料基体として用いる直径10μmの粉粒体上に、太さ2μm、長さ20μmのウィスカー(円錐)を密生させる場合は、直径50μmの球体に対する空間占有率は3%となる。
また、図4(右図)に示すように、原料基体として用いる直径5μmの粉粒体上に、太さ20nm、長さ1μmのウィスカー(円錐)を密生させる場合は、直径7μmの球体に対する空間占有率は47%となる。
このようにウィスカーの間隙に確保される空間により、多孔度の高い浄化フィルターを構成できるので、圧力損失を大幅に低減できる。
Moreover, the reduction of the pressure loss by using the purification filter of the present invention will be described.
For example, as shown in FIG. 4 (left figure), when whiskers (cones) having a thickness of 2 μm and a length of 20 μm are densely formed on a granular material having a diameter of 10 μm used as a raw material substrate, a space for a sphere having a diameter of 50 μm. The occupation ratio is 3%.
In addition, as shown in FIG. 4 (right figure), when whiskers (cones) having a thickness of 20 nm and a length of 1 μm are densely formed on a granular material having a diameter of 5 μm used as a raw material substrate, a space for a sphere having a diameter of 7 μm is provided. The occupation ratio is 47%.
Since the purification filter with high porosity can be configured by the space secured in the gap between the whiskers in this way, the pressure loss can be greatly reduced.

上記原料基体としては、多孔質体を使用でき、このときは、該多孔質体の平均細孔径が上記ウィスカーの平均径より大きいことが好適である。これより、多孔質の細孔内にウィスカーが形成され易くなり、平均細孔径がより小さくなるので、ウィスカー形成前よりも小さな粒子を捕捉できる。
上記多孔質体としては、例えば、図5に示すような合金メッシュや多孔質金属(発泡金属)などが挙げられ、これらにウィスカーを形成する場合は、細孔径より細かい粒子(1μm程度)まで篩効果を発揮でき、衝突捕捉効果により更に細かい粒子(〜0.01μm)まで除去できる。
As the raw material substrate, a porous body can be used. In this case, it is preferable that the average pore diameter of the porous body is larger than the average diameter of the whiskers. Accordingly, whiskers are easily formed in the porous pores, and the average pore diameter becomes smaller, so that smaller particles can be captured than before the whisker formation.
Examples of the porous body include an alloy mesh and a porous metal (foamed metal) as shown in FIG. 5, and when forming whiskers on these, sieve to particles finer than the pore diameter (about 1 μm). The effect can be exhibited, and even finer particles (˜0.01 μm) can be removed by the collision capturing effect.

また、上記原料基体としては、粉粒体を使用することもできる。このときは、それらを担体内に充填して浄化フィルターとすることが好適である。このときは、粉粒体に形成されたウィスカー同士が絡み合い、適度な空隙率が確保された多孔質形状が構成され得る。よって、捕捉効率が向上し低圧力損失となるとともに、高強度(耐震性)で耐熱衝撃性に優れた浄化フィルターが得られる。例えば、粉粒体の表面積の半分に径1μm、長さ10μmのウィスカーを形成した場合は、ウィスカーを設けない場合に比べて表面積が8倍以上となる。また、従来のフィルターと同じ効果を奏するフィルターを小型化・軽量化(低コスト化)できる。
上記粉粒体としては、代表的には、Ni−Mn合金、インコネル(Ni−Cr−Fe系合金)、ステンレス(Fe−Cr−Ni系、Fe−Cr−Al系合金など)等の粉末の他、これら合金をチップ状、円柱状及び短繊維状などにしたものも含む。また、浄化フィルターを製造する際は、図6に示すように、粉粒体のアニール処理(加熱処理)後に担体に充填しても良いし(左図)、粉粒体を多孔質金属等に充填してからアニール処理しても良い(右図)。担体としては、上述の多孔質体やメタル担体などを使用できる。なお、担体内に充填する粉粒体は固定されていても良いし、固定されていなくても良い。
Moreover, a granular material can also be used as said raw material base | substrate. In this case, it is preferable to fill them in a carrier to obtain a purification filter. At this time, whiskers formed in the granular material are entangled with each other, and a porous shape in which an appropriate porosity is secured can be configured. As a result, a purification filter with improved trapping efficiency and low pressure loss, high strength (seismic resistance) and excellent thermal shock resistance can be obtained. For example, when a whisker having a diameter of 1 μm and a length of 10 μm is formed on half of the surface area of the granular material, the surface area is 8 times or more compared to the case where no whisker is provided. In addition, a filter having the same effect as a conventional filter can be reduced in size and weight (cost reduction).
As the above-mentioned granular material, typically, a powder of Ni-Mn alloy, Inconel (Ni-Cr-Fe alloy), stainless steel (Fe-Cr-Ni alloy, Fe-Cr-Al alloy, etc.), etc. In addition, these alloys including chips, columns, short fibers, and the like are also included. Moreover, when manufacturing a purification filter, as shown in FIG. 6, you may fill a support | carrier after the annealing process (heating process) of a granular material (left figure), or a granular material is made into a porous metal etc. Annealing may be performed after filling (right figure). As the carrier, the above-mentioned porous body or metal carrier can be used. In addition, the granular material with which it fills in a support | carrier may be fixed, and does not need to be fixed.

次に、本発明の浄化フィルター製造方法について詳細に説明する。
本発明の製造方法では、まず、原料基体である合金又はセラミックスに含まれる元素のうち、ウィスカーを構成する元素の含有量を調整する。次いで、原料基体を反応炉内に設置し、不活性雰囲気中且つ微量酸素の存在下で加熱処理することにより、長さ及び太さが制御されたウィスカーを原料基体の表面に形成できる。
例えば、マンガン粉末含有ニッケル発泡金属を原料基体とする場合には、図7に示すように、同一の熱処理条件下において、Mn粉末の含有比率を10〜80%の範囲で変更すると、平均太さが10nm〜5μm、平均長さが2〜50μmまでの範囲でウィスカーの大きさを任意に設計できる。
このように、本発明では、ウィスカーの大きさを適宜制御することにより、対象物とする粒子の大きさに合ったサイズの浄化フィルターを製造できる。
Next, the purification filter manufacturing method of the present invention will be described in detail.
In the production method of the present invention, first, the content of the elements constituting the whisker among the elements contained in the alloy or ceramic as the raw material substrate is adjusted. Next, the raw material substrate is placed in a reaction furnace and subjected to heat treatment in an inert atmosphere and in the presence of a trace amount of oxygen, whereby a whisker having a controlled length and thickness can be formed on the surface of the raw material substrate.
For example, when the nickel powder metal containing manganese powder is used as the raw material base, the average thickness is changed by changing the content ratio of Mn powder in the range of 10 to 80% under the same heat treatment conditions as shown in FIG. Can be arbitrarily designed in the range of 10 nm to 5 μm and an average length of 2 to 50 μm.
As described above, in the present invention, a purification filter having a size suitable for the size of the target particle can be manufactured by appropriately controlling the size of the whisker.

ここで、現時点では、かかるウィスカーが成長する原理は明らかではないが、ウィスカーを構成する元素は蒸気圧が高く、原料基体中では揮発し易いこと、また原料基体中の他の成分と比べて同じ温度においてより蒸気圧が低い酸化物(但し、複数の酸化数を持つ金属の場合、全ての酸化数でこの条件を満たす必要はない)があること、によるものと推察できる。即ち、まず、原料基体の表面周辺にウィスカー構成元素の蒸気又はその酸化物の蒸気が存在する状態が形成される。次いで、原料基体の表面にウィスカーの基点となる核が形成される。更に、この核を先端としてウィスカーが成長する。このとき、原料基体表面の温度と不活性ガスの流量には最適範囲があり、その範囲から大きくても小さくても形成密度が減少すると考えられる。例えば、マンガンとインジウムを含む原料基体の表面が1000℃のときは、マンガンの蒸気圧は約3×10−2Torr(約4Pa)で酸化マンガン(MnO)の蒸気圧が約3×10−7Torr、インジウムの蒸気圧は2×10−2Torrで酸化インジウムの蒸気圧が7×10−8Torrであることが密接に関係すると考えられる。 Here, at present, the principle of the growth of such whiskers is not clear, but the elements constituting the whiskers have a high vapor pressure and are easy to volatilize in the raw material substrate, and are the same as other components in the raw material substrate. It can be inferred that there is an oxide having a lower vapor pressure at temperature (however, in the case of a metal having a plurality of oxidation numbers, it is not necessary to satisfy this condition for all oxidation numbers). That is, first, a state is formed in which the vapor of the whisker constituent element or the vapor of its oxide exists around the surface of the raw material substrate. Next, a nucleus serving as a base point of the whisker is formed on the surface of the raw material substrate. Furthermore, whiskers grow with this nucleus as the tip. At this time, there is an optimum range for the temperature of the raw material substrate surface and the flow rate of the inert gas, and it is considered that the formation density is reduced regardless of whether the range is larger or smaller. For example, when the surface of the raw material substrate containing manganese and indium is 1000 ° C., the vapor pressure of manganese is about 3 × 10 −2 Torr (about 4 Pa) and the vapor pressure of manganese oxide (MnO) is about 3 × 10 −7. It is considered that the vapor pressure of Torr and indium is 2 × 10 −2 Torr and the vapor pressure of indium oxide is 7 × 10 −8 Torr.

上記原料基体は、合金又はセラミックスを多孔質状、メッシュ状(織布・不織布)及び粉粒状などにして使用できるが、特にフィルター構造に成形した後に、加熱処理することが好適である。このときは、ウィスカー形成基体を担体に充填する場合に比べて、捕捉効率が向上し、また圧力損失の制御も容易になる。
なお、「フィルター構造」とは、原料基体を多孔質体にしたり、担体としての多孔質体(原料基体としての性質は問わない)の細孔内に予め原料基体である粉粒体を担持又は充填させることなどが該当する。
The raw material substrate can be used in the form of an alloy or ceramic in a porous shape, mesh shape (woven fabric / nonwoven fabric), powdery particle shape, etc., but it is particularly preferable to heat-treat after forming into a filter structure. In this case, the trapping efficiency is improved and the pressure loss can be easily controlled as compared with the case where the carrier is filled with the whisker-forming substrate.
The “filter structure” means that the raw material substrate is made porous, or the granular material that is the raw material substrate is supported in advance in the pores of the porous body as a carrier (regardless of the properties as the raw material substrate). For example, filling.

また、上記不活性雰囲気としては、例えば、アルゴン、窒素、ヘリウム、ネオン、クリプトン、キセノン及びラドン、又はこれらを任意に組合わせたガスなどを使用できる。
更に、加熱処理においては、これら不活性ガスとともに、微量の酸素が存在することを要する。これは、原料基体から形成されるウィスカーは、酸化物として成長するからである。但し、当該酸素は、反応炉内に不活性ガスを送入する前の大気に残存する程度(1〜1000ppm程度)で足りる。
更にまた、加熱処理時の焼成温度は、使用する反応炉や試料の大きさ、形状などにも依存する。例えば、反応炉の容積が3Lの場合には、不活性ガスを0.1〜5L/minで供給し、900〜1100℃で30〜1000分間焼成することができる。
Further, as the inert atmosphere, for example, argon, nitrogen, helium, neon, krypton, xenon and radon, or a gas in which these are arbitrarily combined can be used.
Furthermore, in the heat treatment, it is necessary that a small amount of oxygen be present together with these inert gases. This is because whiskers formed from the raw material base grow as oxides. However, the oxygen is sufficient to remain in the atmosphere before the inert gas is fed into the reactor (about 1 to 1000 ppm).
Furthermore, the firing temperature during the heat treatment also depends on the reactor used, the size and shape of the sample, and the like. For example, when the volume of the reaction furnace is 3 L, an inert gas can be supplied at 0.1 to 5 L / min and baked at 900 to 1100 ° C. for 30 to 1000 minutes.

次に、本発明の排気ガス浄化装置について詳細に説明する。
本発明の排気ガス浄化装置は、上述の浄化フィルターを2層以上用いて構成される。また、排気ガスの流れ方向に対して上流側に、ウィスカーの平均長さ及び太さが大きい浄化フィルターを配設し、下流側に該平均長さ及び太さが小さい浄化フィルターを配設する。
これより、上流側で大きな粒子が捕捉され、下流側で小さな粒子が捕捉されるため、排気ガスを高効率で浄化できる。また、浄化フィルターにおいて、原料基体に対するウィスカーサイズ比率が大きいほど、空隙率が高くなるので、捕捉された粒子の蓄積による圧力損失の低下を防止できる。更に、再生までの寿命が長くなる。
なお、本発明の浄化フィルター1層において、原料基体に含まれるウィスカー構成元素の含有量比を偏らせたことによって、部分的に大きさの異なるウィスカーを有する場合も本排気ガス浄化装置と同様の効果を奏することは言うまでもない。
Next, the exhaust gas purification apparatus of the present invention will be described in detail.
The exhaust gas purification apparatus of the present invention is configured using two or more layers of the above-described purification filter. Further, a purification filter having a large average length and thickness of the whisker is disposed on the upstream side with respect to the flow direction of the exhaust gas, and a purification filter having a small average length and thickness is disposed on the downstream side.
As a result, large particles are captured on the upstream side and small particles are captured on the downstream side, so that the exhaust gas can be purified with high efficiency. Further, in the purification filter, the larger the whisker size ratio with respect to the raw material substrate, the higher the porosity, so that it is possible to prevent a decrease in pressure loss due to accumulation of trapped particles. Furthermore, the lifetime until reproduction is extended.
In the purification filter 1 layer of the present invention, even when the whisker constituent elements contained in the raw material base are biased to have whisker partially different in size, the same as in the exhaust gas purification device of the present invention. Needless to say, it has an effect.

ここで、本発明の排気ガス浄化装置の代表的な製造方法を以下に示す。
図8に示すように、第1例としては、細孔内にウィスカー構成元素を含む多孔質金属板(原料基体)を2枚用い、排気ガス流路の上流側には該ウィスカー構成元素の含有量の多いもの、下流側には該ウィスカー構成元素の含有量の少ないものを配設する。第2例としては、外側(先に排気ガスが接触する部位)にウィスカー構成元素の含有量が多い多孔質金属基板、内側に該含有量が少ない多孔質金属基板をそれぞれ筒型に加工してハウジングする。第3例としては、1枚の多孔質金属基板を筒型にして、その外側にウィスカー構成元素を多く含有させ、内側にウィスカー構成元素を少なく含有させる(粉末担持や金属形成時に組成を制御する)。
これら第1〜3例の基板を不活性ガス中でアニール処理し、その後にそれぞれを排気ガス流路に設置することで、排気ガス浄化装置が得られる。
Here, a typical manufacturing method of the exhaust gas purification apparatus of the present invention will be described below.
As shown in FIG. 8, as a first example, two porous metal plates (raw material bases) containing whisker constituent elements are used in the pores, and the whisker constituent elements are contained upstream of the exhaust gas passage. Those having a large amount and those having a small content of the whisker constituent element are disposed on the downstream side. As a second example, a porous metal substrate having a large content of whisker constituent elements on the outer side (site where the exhaust gas contacts first) and a porous metal substrate having a small content on the inner side are processed into cylindrical shapes. Housing. As a third example, a single porous metal substrate is formed into a cylindrical shape, containing a large amount of whisker constituent elements on the outside and containing a small amount of whisker constituent elements on the inside (controlling the composition during powder loading or metal formation) ).
An exhaust gas purification device can be obtained by annealing the substrates of the first to third examples in an inert gas and then installing each of them in the exhaust gas flow path.

また、図9に示すように、第4例としては、ウィスカー構成元素を含む多孔質金属基板を、交互に目封止したハニカム状に構成する。このとき、排気ガス流路方向に対して下流側を封止した(上流側に開口を有する)排気ガス流路内はウィスカー構成元素の含有量を多くし、上流側を封止した(下流側に開口を有する)排気ガス流路内は該含有量を少なくする。この基板を不活性ガス中でアニール処理し、その後に排気ガス流路に設置することで、排気ガス浄化装置が得られる。   As shown in FIG. 9, as a fourth example, a porous metal substrate containing whisker constituent elements is formed in a honeycomb shape in which plugs are alternately plugged. At this time, the exhaust gas flow path in which the downstream side is sealed with respect to the direction of the exhaust gas flow path (having an opening on the upstream side) increases the content of whisker constituent elements, and the upstream side is sealed (downstream side) This content is reduced in the exhaust gas flow path (having an opening at the top). The substrate is annealed in an inert gas, and then installed in the exhaust gas flow path to obtain an exhaust gas purification device.

更に、図10に示すように、第5例としては、排気ガス流路内に設置する担体内にウィスカー形成粒子を充填する。このとき、排気ガス流れ方向に対して上流側に、大きいウィスカーを備える粒子を充填し、下流側に、小さいウィスカーを備える粒子を配設することができる(左図)。また、上流側及び下流側を交互に目封止したハニカム状担体を用意し、このうち、上流側に開口を有する排気ガス流路内には、大きいウィスカーを備える粒子を充填し、下流側に開口を有する排気ガス流路内には、小さいウィスカーを備える粒子を充填することができる(右図)。   Furthermore, as shown in FIG. 10, as a fifth example, whisker-forming particles are filled in a carrier installed in the exhaust gas flow path. At this time, particles with large whiskers can be filled upstream with respect to the exhaust gas flow direction, and particles with small whiskers can be disposed downstream (left figure). Further, a honeycomb-shaped carrier in which the upstream side and the downstream side are alternately plugged is prepared, and among these, the exhaust gas passage having an opening on the upstream side is filled with particles having large whiskers, and the downstream side is filled with particles. The exhaust gas flow path having an opening can be filled with particles having small whiskers (right figure).

また、本発明の排気ガス浄化装置では、上記浄化フィルターを集塵極とし、この近傍に導電材より成る放電電極を配設することが好適である。
このときは、両極間に直流電圧を印加すると、排気ガス粒子が放電電極で電荷を帯び、集塵極に引き寄せられるので、捕捉効率がより向上する。また、直流電圧は、浄化フィルターの大きさなどにより異なるが、例えば1k〜10kV程度に設定できる。
In the exhaust gas purification apparatus of the present invention, it is preferable that the purification filter is a dust collecting electrode and a discharge electrode made of a conductive material is disposed in the vicinity thereof.
In this case, when a DC voltage is applied between the two electrodes, the exhaust gas particles are charged by the discharge electrode and are attracted to the dust collecting electrode, so that the trapping efficiency is further improved. Further, the direct-current voltage varies depending on the size of the purification filter, but can be set to about 1 k to 10 kV, for example.

更に、本発明の排気ガス浄化装置では、上記ウィスカーの表面に酸化触媒を担持することが好適である。
酸化触媒を担持することで、効率良く再生処理できるので、排気ガス浄化装置を高寿命化できる。また、表面に細かい凹凸があるため、触媒が担持されやすく、担持量が少なくて済む。上記酸化触媒としては、例えば、パラジウム、ロジウム、白金、金、鉄、セリウム、バナジウム、ニッケル、コバルト、タングステンなどが挙げられる。
Furthermore, in the exhaust gas purification apparatus of the present invention, it is preferable to carry an oxidation catalyst on the surface of the whisker.
By carrying the oxidation catalyst, the regeneration process can be performed efficiently, so that the life of the exhaust gas purification device can be extended. Further, since there are fine irregularities on the surface, the catalyst is easily supported, and the amount supported is small. Examples of the oxidation catalyst include palladium, rhodium, platinum, gold, iron, cerium, vanadium, nickel, cobalt, tungsten, and the like.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1)
平均粒径10μmのNi−Mn合金粉末をディスク型の多孔質金属の容器に充填し(上流側:80%Mn、下流側:50%Mn)、これをArガスフロー中で1000℃/h昇温、1000℃で2h保持の加熱処理を行い、ウィスカーを備える浄化フィルターを得た。
具体的には、図11に示すように、上流側に平均太さが1〜5μm、平均長さが50μmのウィスカー(空隙率は約95%)を形成し、下流側に平均太さが100〜1000nm、平均長さが10μmのウィスカー(空隙率は約50%)を形成した。
Example 1
A disk-type porous metal container is filled with Ni-Mn alloy powder having an average particle size of 10 μm (upstream side: 80% Mn, downstream side: 50% Mn), and this is heated at 1000 ° C./h in an Ar gas flow. A heat treatment was carried out at 1000 ° C. for 2 hours to obtain a purification filter equipped with whiskers.
Specifically, as shown in FIG. 11, whiskers (with a porosity of about 95%) having an average thickness of 1 to 5 μm and an average length of 50 μm are formed on the upstream side, and the average thickness is 100 on the downstream side. Whiskers (having a porosity of about 50%) having a length of ˜1000 nm and an average length of 10 μm were formed.

(比較例1)
実施例1と同一の外観形状(大きさ)の形状になるように、粒径10μmのカオリン、タルク、シリカ、アルミナ粉末を調整して得られる、質量比でSiO:50%、Al:35%、MgO:15%を含むコージェライト原料粉末を造孔材とともにディスク型に成型し、1400℃で焼成し空隙率50%のセラミックスフィルターを得た。
(Comparative Example 1)
It is obtained by adjusting kaolin, talc, silica, and alumina powder having a particle size of 10 μm so as to have the same external shape (size) as in Example 1, and in a mass ratio, SiO 2 : 50%, Al 2 O 3 : A cordierite raw material powder containing 35% and MgO: 15% was molded into a disk shape together with a pore former and fired at 1400 ° C. to obtain a ceramic filter having a porosity of 50%.

<評価測定>
実施例1及び比較例1で得られたフィルターを排気ガス流路に設置し、ディーゼル排気ガスを1m/sで導入した際の、排気側のガス粒径分布を測定した。この結果を図11に示す。
<Evaluation measurement>
The filters obtained in Example 1 and Comparative Example 1 were installed in the exhaust gas flow path, and the gas particle size distribution on the exhaust side when diesel exhaust gas was introduced at 1 m / s was measured. The result is shown in FIG.

図11より、実施例で得たフィルターは、ウィスカーが形成されていることによる篩(ふるい)機能による粒子の捕捉と、粒子衝突による捕捉効果により、0.01μmの粒子まで高効率に捕捉できることがわかる。
一方、比較例1で得たフィルターは、粒子衝突による捕捉効果は少なく、また細孔径が大きいため、小さくても0.1μm程度までしか捕捉できないことがわかる。
From FIG. 11, the filter obtained in the example can capture particles up to 0.01 μm with high efficiency by capturing particles by the sieve function due to the formation of whiskers and capturing effect by particle collision. Recognize.
On the other hand, it can be seen that the filter obtained in Comparative Example 1 has a small trapping effect due to particle collision and has a large pore diameter, so that it can capture only about 0.1 μm even if it is small.

以上、本発明を若干の好適実施例により詳細に説明したが、本発明はこれら実施例に限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能である。
例えば、原料基体としてはインコネルなども使用できる。
Although the present invention has been described in detail with some preferred embodiments, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the gist of the present invention.
For example, Inconel can be used as the raw material substrate.

粒子状物質(DEP)の粒径分布を示すグラフである。It is a graph which shows the particle size distribution of a particulate matter (DEP). 衝突捕捉の一例を示す概略図である。It is a schematic diagram showing an example of collision capture. 衝突捕捉により捕集できるPM粒子の粒子径と捕集率との関係を示すグラフである。It is a graph which shows the relationship between the particle diameter of PM particle which can be collected by collision capture, and a collection rate. ウィスカーの密生度合による空間占有率を示す概略図である。It is the schematic which shows the space occupation rate by the denseness degree of a whisker. 多孔質体の一例を示す概略図である。It is the schematic which shows an example of a porous body. 粉粒体のアニール処理により形成されたウィスカーの一例を示す概略図である。It is the schematic which shows an example of the whisker formed by the annealing process of a granular material. ウィスカー構成元素の含有比率と得られるウィスカーの一例を示す写真である。It is a photograph which shows an example of the content ratio of a whisker constituent element, and the obtained whisker. 排気ガス浄化装置の一例を示す概略図である。It is the schematic which shows an example of an exhaust-gas purification apparatus. 排気ガス浄化装置の他の例を示す概略図である。It is the schematic which shows the other example of an exhaust-gas purification apparatus. 排気ガス浄化装置の更に他の例を示す概略図である。It is the schematic which shows the further another example of an exhaust-gas purification apparatus. 実施例1で形成したウィスカーを示す写真である。2 is a photograph showing whiskers formed in Example 1. FIG. DPF通過前のガス粒径分布と、フィルター通過後(実施例及び比較例)の粒径分布図である。It is a gas particle size distribution before DPF passage, and a particle size distribution figure after a filter passage (an example and a comparative example).

Claims (9)

原料基体上にウィスカーを形成して成る浄化フィルターであって、
上記原料基体が、マンガン、アルミニウム、クロム、インジウム、銀、ガリウム、錫、銅、スカンジウム、ゲルマニウム、チタン及びシリコンから成る群より選ばれた少なくとも1種の元素を含む合金又はこれら元素の少なくとも1種を含むセラミックスであることを特徴とする浄化フィルター。
A purification filter formed by forming whiskers on a raw material substrate,
An alloy containing at least one element selected from the group consisting of manganese, aluminum, chromium, indium, silver, gallium, tin, copper, scandium, germanium, titanium and silicon, or at least one of these elements A purification filter characterized by being ceramics containing
上記原料基体が多孔質体であり、該多孔質体の平均細孔径が上記ウィスカーの平均径より大きいことを特徴とする請求項1に記載の浄化フィルター。   The purification filter according to claim 1, wherein the raw material base is a porous body, and an average pore diameter of the porous body is larger than an average diameter of the whisker. 上記原料基体が粉粒体であり、それらを担体内に充填して成ることを特徴とする請求項1に記載の浄化フィルター。   2. The purification filter according to claim 1, wherein the raw material substrate is a granular material and is filled in a carrier. 請求項1〜3のいずれか1つの項に記載の浄化フィルターを製造するに当たり、
原料基体に含まれる少なくとも1種の元素の含有率を調整し、該原料基体を不活性雰囲気中且つ微量酸素の存在下で加熱処理して、形成するウィスカーの長さ及び太さを制御することを特徴とする浄化フィルター製造方法。
In manufacturing the purification filter according to any one of claims 1 to 3,
Adjusting the content of at least one element contained in the raw material substrate, and heat-treating the raw material substrate in an inert atmosphere and in the presence of a trace amount of oxygen to control the length and thickness of the whisker to be formed. A purification filter manufacturing method characterized by the above.
上記原料基体をフィルター構造に成形した後に、加熱処理することを特徴とする請求項4に記載の浄化フィルター製造方法。   The purification filter manufacturing method according to claim 4, wherein the raw material substrate is heat-treated after being formed into a filter structure. 上記原料基体が粉粒体であり、この粉粒体を多孔質体に担持させた後に、加熱処理することを特徴とする請求項4又は5に記載の浄化フィルター製造方法。   6. The method for producing a purification filter according to claim 4, wherein the raw material substrate is a granular material, and heat treatment is performed after the granular material is supported on a porous body. 請求項1〜3のいずれか1つの項に記載の浄化フィルターを2層以上用いて構成される排気ガス浄化装置であって、
排気ガス流れ方向に対して上流側に、上記原料基体上に形成されたウィスカーの平均長さ及び太さが大きい浄化フィルターを配設し、下流側に該平均長さ及び太さが小さい浄化フィルターを配設して成ることを特徴とする排気ガス浄化装置。
An exhaust gas purification apparatus configured using two or more layers of the purification filter according to any one of claims 1 to 3,
A purification filter having a large average length and thickness of whiskers formed on the raw material substrate is disposed upstream of the exhaust gas flow direction, and a purification filter having a small average length and thickness is disposed downstream. An exhaust gas purifying device comprising:
上記浄化フィルターを集塵極とし、この近傍に導電材より成る放電電極を配設し、両極間に直流電圧を印加することにより排気ガス粒子が集塵極に吸引捕捉されることを特徴とする請求項7に記載の排気ガス浄化装置。   The purification filter is a dust collecting electrode, a discharge electrode made of a conductive material is disposed in the vicinity thereof, and exhaust gas particles are sucked and captured by the dust collecting electrode by applying a DC voltage between the two electrodes. The exhaust gas purification apparatus according to claim 7. 上記ウィスカーの表面に酸化触媒を担持して成ることを特徴とする請求項7又は8に記載の排気ガス浄化装置。   The exhaust gas purifying device according to claim 7 or 8, wherein an oxidation catalyst is supported on a surface of the whisker.
JP2004324675A 2004-11-09 2004-11-09 Purification filter, production method for the same, and exhaust gas purification apparatus Pending JP2006130463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324675A JP2006130463A (en) 2004-11-09 2004-11-09 Purification filter, production method for the same, and exhaust gas purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324675A JP2006130463A (en) 2004-11-09 2004-11-09 Purification filter, production method for the same, and exhaust gas purification apparatus

Publications (1)

Publication Number Publication Date
JP2006130463A true JP2006130463A (en) 2006-05-25

Family

ID=36724466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324675A Pending JP2006130463A (en) 2004-11-09 2004-11-09 Purification filter, production method for the same, and exhaust gas purification apparatus

Country Status (1)

Country Link
JP (1) JP2006130463A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052865A (en) * 2010-08-31 2012-03-15 Osaka Gas Co Ltd Virus collection system
JP2012509169A (en) * 2008-11-21 2012-04-19 アライアンス フォア サステイナブル エナジー エルエルシー Porous block nanofiber composite filter
CN115155811A (en) * 2022-06-22 2022-10-11 南华大学 Radon daughter filtering module and method based on high-voltage electrostatic field

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133988A (en) * 1987-11-19 1989-05-26 Ngk Spark Plug Co Ltd Production of reticular silica whisker-porous ceramic composite
JPH01197375A (en) * 1988-02-01 1989-08-09 Ngk Spark Plug Co Ltd Porous body and production of porous body
JPH06190221A (en) * 1992-09-14 1994-07-12 Sumitomo Electric Ind Ltd Filter medium
JPH06190222A (en) * 1992-09-14 1994-07-12 Sumitomo Electric Ind Ltd Filter medium for cleaning waste gas
JPH07291756A (en) * 1994-04-25 1995-11-07 Isuzu Motors Ltd Porous ceramics and production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133988A (en) * 1987-11-19 1989-05-26 Ngk Spark Plug Co Ltd Production of reticular silica whisker-porous ceramic composite
JPH01197375A (en) * 1988-02-01 1989-08-09 Ngk Spark Plug Co Ltd Porous body and production of porous body
JPH06190221A (en) * 1992-09-14 1994-07-12 Sumitomo Electric Ind Ltd Filter medium
JPH06190222A (en) * 1992-09-14 1994-07-12 Sumitomo Electric Ind Ltd Filter medium for cleaning waste gas
JPH07291756A (en) * 1994-04-25 1995-11-07 Isuzu Motors Ltd Porous ceramics and production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509169A (en) * 2008-11-21 2012-04-19 アライアンス フォア サステイナブル エナジー エルエルシー Porous block nanofiber composite filter
US9409111B2 (en) 2008-11-21 2016-08-09 Global Water Group, Incorporated Porous block nanofiber composite filters
JP2012052865A (en) * 2010-08-31 2012-03-15 Osaka Gas Co Ltd Virus collection system
CN115155811A (en) * 2022-06-22 2022-10-11 南华大学 Radon daughter filtering module and method based on high-voltage electrostatic field
CN115155811B (en) * 2022-06-22 2023-12-19 南华大学 Radon daughter filtering module and method based on high-voltage electrostatic field

Similar Documents

Publication Publication Date Title
JP5001009B2 (en) Ceramic honeycomb structure
JP5237630B2 (en) Honeycomb structure
KR101834587B1 (en) Method for applying discriminating layer onto porous ceramic filters via gas-borne prefabricated porous assemblies
JP4916989B2 (en) Exhaust gas purification device and method of manufacturing the exhaust gas purification device
US20070140928A1 (en) Low pressure drop coated diesel exhaust filter
KR101457238B1 (en) Improved soot filter
CN1394686A (en) Ceramic filter and ceramic filter with catalyst
JPWO2008066167A1 (en) Ceramic honeycomb filter and manufacturing method thereof
WO2013145316A1 (en) Honeycomb filter and production method for honeycomb filter
CN107207370A (en) Honeycomb structured body
JP2007130629A (en) Exhaust gas cleaning filter and manufacturing method for the same
JP5106716B2 (en) Exhaust gas purification material and exhaust gas purification device
KR20080057336A (en) Exhaust gas purifying apparatus
JP2012102004A (en) Honeycomb structured body and exhaust gas purifying apparatus
JP4431528B2 (en) Manufacturing method of diesel particulate filter
JP4626804B2 (en) Exhaust gas purification catalyst
JP2006130463A (en) Purification filter, production method for the same, and exhaust gas purification apparatus
WO1992005857A1 (en) Self-heating filter
JP4218559B2 (en) Diesel exhaust gas purification device
JP5322364B2 (en) Ceramic filter element and manufacturing method thereof
JP2007021409A (en) Method for manufacturing diesel particulate filter
JP3874246B2 (en) Filter type catalyst for diesel exhaust gas purification
JP4626803B2 (en) Exhaust gas purification catalyst
CN110314450B (en) Ceramic porous body, method for producing same, and filter for dust collection
JP2010077845A (en) Exhaust emission control filter and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100514