JP2006129783A - Swallowing food base material and method for producing the same - Google Patents

Swallowing food base material and method for producing the same Download PDF

Info

Publication number
JP2006129783A
JP2006129783A JP2004322729A JP2004322729A JP2006129783A JP 2006129783 A JP2006129783 A JP 2006129783A JP 2004322729 A JP2004322729 A JP 2004322729A JP 2004322729 A JP2004322729 A JP 2004322729A JP 2006129783 A JP2006129783 A JP 2006129783A
Authority
JP
Japan
Prior art keywords
base material
dextrin
food base
swallowing food
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004322729A
Other languages
Japanese (ja)
Other versions
JP4283758B2 (en
Inventor
Takehiko Nakajima
武彦 中島
Junji Nashimoto
順二 梨本
Chiaki Imada
千晶 今田
Mineo Watase
峰男 渡瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSHI KK
Original Assignee
NISSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSHI KK filed Critical NISSHI KK
Priority to JP2004322729A priority Critical patent/JP4283758B2/en
Publication of JP2006129783A publication Critical patent/JP2006129783A/en
Application granted granted Critical
Publication of JP4283758B2 publication Critical patent/JP4283758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Grain Derivatives (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a swallowing food base material for producing a food preservable for a long period after cooking and reducing burden of feeding. <P>SOLUTION: This swallowing food base material is obtained by adding maltotrio hydrolase to a liquefied liquid adjusted in pH followed by saccharifying, refining and concentrating the saccharified liquid, passing the liquid through sodium-type strong acid cation exchange resin to subject non-aging dextrin containing no component with a molecular weight of ≥1×10<SP>5</SP>to chromatographic fraction, and mixing the non-aging dextrin thus obtained with thickening polysaccharides. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、嚥下食基材に関し、詳しくは、冷凍、解凍を繰り返しても均質な状態を保つ嚥下食基材に関するものである。   The present invention relates to a swallowing food base material, and more particularly to a swallowing food base material that maintains a homogeneous state even after repeated freezing and thawing.

年齢とともに咀嚼力が低下してくると、食物を飲み込む際の嚥下反射も鈍くなる。また、嚥下反射がスムーズに行われなくなると、所謂誤嚥を起こしてしまい、生命の危険につながる事態も生じ得る。高齢化社会といわれる今日では、嚥下反射の鈍化した嚥下障害者のために、スムーズな嚥下反射を促すことが可能で取扱いの容易な食品の開発が不可欠になっている。そして、そのような嚥下障害者用の食品として、タンパク質、糖質、脂質、ゲル化剤、ビタミン類、ミネラル類等を適当な割合で混合した組成物等が開発されている(特許文献1)。   As the masticatory power decreases with age, the swallowing reflex when swallowing food becomes dull. In addition, if the swallowing reflex is not performed smoothly, so-called aspiration may occur, which may lead to life threatening. In today's aging society, it is indispensable to develop foods that can facilitate smooth swallowing reflexes and are easy to handle for people with dysphagia who have slowed swallowing reflexes. And as a food for such a dysphagia person, the composition etc. which mixed protein, saccharide | sugar, a lipid, a gelatinizer, vitamins, minerals, etc. in an appropriate ratio are developed (patent document 1). .

特開2000−135070号公報Japanese Patent Laid-Open No. 2000-135070

しかしながら、上記従来の嚥下障害者用の食品は、冷蔵したり、冷凍、解凍を繰り返したりすると不均質になってしまい、消化・吸収に悪影響を及ぼすばかりでなく、誤嚥を引き起こす虞れがあった。それゆえ、病院や介護施設で当該食品を使用する場合には、食事介助の度に、栄養のバランスやカロリー計算を行って新たに加工しなければならず、非常に面倒であった。その上、食べきれずに残した場合や使い切れなかった場合には廃棄せざるを得ず、きわめて不経済であった。   However, the conventional foods for dysphagic patients become non-homogeneous when refrigerated, repeated freezing and thawing, which not only adversely affects digestion and absorption, but may cause aspiration. It was. Therefore, when the food is used in a hospital or a nursing facility, it must be newly processed by calculating nutritional balance and calorie every time meal assistance is provided, which is very troublesome. In addition, if left uneaten or not used up, it must be discarded, which is extremely uneconomical.

本発明の目的は、調理後に長期間に亘って保存可能で食事介助の負担を軽減できる食品を製造するための嚥下食基材を提供することにある。   The objective of this invention is providing the swallowing food base material for manufacturing the foodstuff which can be preserve | saved for a long period after cooking and can reduce the burden of meal assistance.

かかる本発明の内、請求項1に記載の発明の構成は、分子量が1×10以上の高分子成分を含まないデキストリンと、増粘多糖類とからなる機能性の嚥下食基材にある。なお、本発明の嚥下食基材は、そのまま食品として利用することも可能であるし、別の食品に添加する補助材としても利用することができる。 Among the present inventions, the structure of the invention described in claim 1 is a functional swallowing food base material comprising a dextrin not containing a polymer component having a molecular weight of 1 × 10 5 or more and a thickening polysaccharide. . In addition, the swallowing food base material of the present invention can be used as a food as it is, or can be used as an auxiliary material added to another food.

請求項2に記載の発明の構成は、マルトトリオヒドロラーゼを作用させた澱粉の糖化液をクロマトグラフィーで分画して得た非老化性デキストリンと、増粘多糖類とを混合してなる機能性の嚥下食基材にある。   The structure of the invention described in claim 2 is a functional product obtained by mixing a non-aging dextrin obtained by fractionating a starch saccharified solution treated with maltotriohydrolase by chromatography and a thickening polysaccharide. In the swallowing food base.

請求項3に記載の発明の構成は、請求項1、または請求項2に記載された発明において、イソマルトオリゴ糖、ビタミンA、ビタミンC、ビタミンE、DHA、EPAの内の少なくとも一種が添加されていることにある。   The structure of the invention described in claim 3 is the invention described in claim 1 or claim 2, wherein at least one of isomaltoligosaccharide, vitamin A, vitamin C, vitamin E, DHA, and EPA is added. There is in being.

請求項4に記載の発明の構成は、請求項1〜3のいずれかに記載された発明において、排泄臭軽減物質を添加したことにある。   The structure of invention of Claim 4 exists in adding the excretion odor reduction substance in the invention described in any one of Claims 1-3.

請求項5に記載の発明の構成は、分子量が1×10以上の高分子成分を含まないデキストリンと、増粘多糖類とを混合することを特徴とする嚥下食基材の製造方法にある。 According to a fifth aspect of the present invention, there is provided a method for producing a swallowing food base material comprising mixing a dextrin not containing a polymer component having a molecular weight of 1 × 10 5 or more and a thickening polysaccharide. .

請求項6に記載の発明の構成は、マルトトリオヒドロラーゼを作用させた澱粉の液化液をクロマトグラフィーで分画して得たデキストリンと、増粘多糖類とを混合することを特徴とする嚥下食基材の製造方法。   The constitution of the invention described in claim 6 is a swallowing meal characterized by mixing a dextrin obtained by fractionating a liquefied starch solution treated with maltotriohydrolase by chromatography and a thickening polysaccharide. A method for producing a substrate.

請求項1,2に係る嚥下食基材は、均質性が高いので、高齢者や嚥下障害者の食事に利用した場合に、誤嚥を起こす心配がない。また、冷凍、解凍を繰り返しても、高い均質性が保たれるため、病院・介護施設で食事を作った後に長期間に亘って保存でき、食事介助の負担を軽減することができる。また、使用し切れなかった場合や食べ残した場合に、保存した後に使用することが可能であるため、経済性および実用性に優れている。   Since the swallowing food base material according to claims 1 and 2 has high homogeneity, there is no fear of causing aspiration when used for meals of elderly people or persons with dysphagia. In addition, even after repeated freezing and thawing, high homogeneity is maintained, so that meals can be stored for a long period after being prepared in a hospital / care facility, and the burden of meal assistance can be reduced. Moreover, since it can be used after storage when it is not used up or left over, it is excellent in economic efficiency and practicality.

請求項3に係る嚥下食基材は、デキストリンに添加された各種の物質により、整腸機能、皮膚や粘膜を正常に保つ機能、ストレスや病気に対する抵抗力を高める機能、抗酸化作用により生活習慣病や老化と関連した疾患を予防する機能、記憶力や学習機能を高める機能、高脂血症を低減する機能等の各種の機能を発現させることができる。   The swallowing food base material according to claim 3 is a lifestyle by virtue of various substances added to dextrin, function of intestinal regulation, function of maintaining skin and mucous membranes normally, function of increasing resistance to stress and disease, and antioxidant action Various functions such as a function for preventing diseases and diseases related to aging, a function for improving memory and learning function, and a function for reducing hyperlipidemia can be expressed.

請求項4に係る嚥下食基材は、嚥下障害者の排泄物の悪臭を低減させることができるため、嚥下障害者の介護負担の軽減に寄与することができる。   Since the swallowing food base material according to claim 4 can reduce the malodor of the excrement of the dysphagia person, it can contribute to the reduction of the care burden of the dysphagia person.

一方、請求項5,6に係る嚥下食基材の製造方法によれば、均質性が高く高齢者や嚥下障害が利用しても誤嚥を起こさない嚥下食基材を非常に容易に、かつ、効率良く安価に製造することができる。加えて、嚥下食基材の主原料である非老化性デキストリンの製造の際に、副生成物としてマルトトリオースを安価に得ることができる。   On the other hand, according to the method for producing a swallowing food base material according to claims 5 and 6, a swallowing food base material that has high homogeneity and does not cause aspiration even if used by an elderly person or swallowing disorder, and Can be manufactured efficiently and inexpensively. In addition, maltotriose can be obtained at a low cost as a by-product in the production of non-aging dextrin, which is the main raw material of the swallowing food base material.

本発明で使用する分子量が1×10以上の高分子成分を含まないデキストリン(以下、非老化性デキストリンという)は、澱粉の液化液に特定の酵素を作用させて分解した後、その分解液をイオン交換クロマトグラフィーで分画することによって得ることができる。なお、デキストリンの原料となる澱粉の種類は、特に限定されず、コーンスターチ、小麦澱粉、米澱粉等の地上澱粉や、馬鈴薯澱粉・タピオカ澱粉等の地下澱粉等のいずれも使用することができる。 A dextrin containing no polymer component having a molecular weight of 1 × 10 5 or more used in the present invention (hereinafter referred to as non-aging dextrin) is decomposed by causing a specific enzyme to act on a starch liquefaction liquid, and then the decomposition liquid. Can be obtained by fractionation by ion exchange chromatography. In addition, the kind of starch used as a raw material for dextrin is not particularly limited, and any of ground starch such as corn starch, wheat starch and rice starch, and underground starch such as potato starch and tapioca starch can be used.

また、非老化性デキストリンを得る際に使用する澱粉の分解酵素としては、マルトトリオヒドロラーゼを好適に用いることができる。さらに、非老化性デキストリンを得る際には、澱粉の液化液にマルトトリオヒドロラーゼを作用させることにより、マルトトリオース含有量が25%ds(dry substance:固形分換算における百分率)以上48%ds未満の糖化液とする必要があり、マルトトリオース含有量を27%ds以上43%ds未満に調整するのが好ましい。   Moreover, maltotriohydrolase can be used suitably as a starch degrading enzyme used when obtaining non-aging dextrin. Further, when non-aging dextrin is obtained, maltotriose hydrolase is allowed to act on starch liquefaction liquid, so that the maltotriose content is 25% ds (dry substance: percentage in terms of solid content) or more and less than 48% ds. It is necessary to adjust the maltotriose content to 27% ds or more and less than 43% ds.

加えて、非老化性デキストリンを得る際には、澱粉の糖化液の分散性および酵素活性の見地から、液化液の澱粉濃度を25%以上35%未満に調整するとともに、pHを5以上8以下に調整するのが好ましい。なお、pHの調整は、液化液に消石灰を加えること等により行うことが好ましい。   In addition, when obtaining non-aging dextrin, from the viewpoint of the dispersibility of the starch saccharified solution and the enzyme activity, the starch concentration of the liquefied solution is adjusted to 25% or more and less than 35%, and the pH is 5 or more and 8 or less. It is preferable to adjust to. The pH is preferably adjusted by adding slaked lime to the liquefied liquid.

さらに、非老化性デキストリンを得る際には、収率を高くするために、澱粉の液化液のDE(dextrose equivalent:ここでは、還元糖をデキストローストとして測定した場合における還元糖の固形分に対する比の値)を、3〜20の範囲に調整することが好ましく、5〜15の範囲に調整することがより好ましい。さらに、マルトトリオヒドロラーゼによる分解反応は、酵素活性を高めるために、45〜65℃に維持して行うのが好ましく、50〜60℃に維持して行うのがより好ましい。   Furthermore, when obtaining non-aging dextrin, in order to increase the yield, DE (dextrose equivalent: where the ratio of reducing sugar to the solid content when reducing sugar is measured as dextrose roast) Is preferably adjusted to a range of 3 to 20, more preferably 5 to 15. Furthermore, the decomposition reaction with maltotriohydrolase is preferably performed at 45 to 65 ° C., more preferably 50 to 60 ° C., in order to increase the enzyme activity.

分解酵素として使用するマルトトリオヒドロラーゼは、起源を問わずいずれのマルトトリオヒドロラーゼでも使用可能である。このようなマルトトリオヒドロラーゼとしては、天野エンザイム株式会社製の「AMT」酵素(600U/ml、Microbacterium起源)等を好適に使用することができる。なお、澱粉の液化液を酵素により分解する際に、マルトトリオヒドロラーゼとともにα−アミラーゼやプルラナーゼを併用することも可能である。かかるα−アミラーゼとしては、起源を問わずいずれのα−アミラーゼをも使用することができ、大和化成株式会社製の「クライスターゼT10S」(17,000JLU)等を好適に用いることができる。一方、プルラナーゼとしては、起源を問わずいずれのプルラナーゼをも使用することがで、天野エンザイム株式会社製の「アマノ」(900U/ml)等を好適に使用することができる。   Any maltotriohydrolase can be used as the degrading enzyme regardless of its origin. As such a maltotriohydrolase, an “AMT” enzyme (600 U / ml, Microbacterium origin) manufactured by Amano Enzyme Co., Ltd. can be preferably used. In addition, when decomposing | disassembling the starch liquefaction liquid with an enzyme, it is also possible to use together alpha-amylase and pullulanase with maltotriohydrolase. As such α-amylase, any α-amylase can be used regardless of its origin, and “Christase T10S” (17,000 JLU) manufactured by Daiwa Kasei Co., Ltd. can be suitably used. On the other hand, as pullulanase, any pullulanase can be used regardless of origin, and “Amano” (900 U / ml) manufactured by Amano Enzyme Co., Ltd. can be preferably used.

また、マルトトリオヒドロラーゼの添加量は、反応温度、糖化時間によって適宜調整することができる。たとえば、反応温度55℃にて48時間に亘って糖化させる場合には、マルトトリオヒドロラーゼの添加量を1.0〜2.0U/gとするのが好ましく、反応温度55℃にて72時間に亘って糖化させるときには、0.5〜1.5U/gとするのが好ましい。   Moreover, the addition amount of maltotriohydrolase can be suitably adjusted with reaction temperature and saccharification time. For example, when saccharification is carried out at a reaction temperature of 55 ° C. for 48 hours, the amount of maltotriohydrolase added is preferably 1.0 to 2.0 U / g, and at a reaction temperature of 55 ° C. for 72 hours. When saccharifying over, it is preferably 0.5 to 1.5 U / g.

加えて、α−アミラーゼを併用する場合には、α−アミラーゼの添加量を0.3〜2.0U/gとするのが好ましく、プルラナーゼを併用する場合には、プルラナーゼの添加量を0.5〜1.0 U/gとするのが好ましい。   In addition, when α-amylase is used in combination, the addition amount of α-amylase is preferably 0.3 to 2.0 U / g. When pullulanase is used in combination, the addition amount of pullulanase is set to 0. It is preferable to set it as 5-1.0 U / g.

また、酵素で分解させた後の糖化液は、クロマトグラフィーによって非老化性デキストリン液画分を分画する必要がある。かかるクロマトグラフィーによる分画方法としては、イオン交換クロマトグラフィーを利用することができる。また、糖化液をクロマトグラフィーによって分画(以下、クロマト分画という)する際には、分画効率の見地から、活性炭濾過や、二床一混床方式等のイオン交換精製装置等によって糖化液を予め精製および濃縮して使用するのが好ましい。なお、糖化液を予め濃縮する場合には、濃縮液の固形分(マルトオリゴ糖)濃度を、40〜70%とするのが好ましい。   In addition, the saccharified solution after being decomposed with an enzyme needs to fractionate a non-aging dextrin solution fraction by chromatography. As a fractionation method by such chromatography, ion exchange chromatography can be used. When fractionating a saccharified solution by chromatography (hereinafter referred to as chromatographic fractionation), from the viewpoint of fractionation efficiency, the saccharified solution is obtained by activated carbon filtration or an ion exchange purification apparatus such as a two-bed mixed bed system. Is preferably purified and concentrated before use. In addition, when concentrating saccharified liquid beforehand, it is preferable that the solid content (maltooligosaccharide) density | concentration of a concentrated liquid shall be 40 to 70%.

さらに、イオン交換クロマトグラフィーに使用するイオン交換樹脂としては、強酸性陽イオン交換樹脂を用いるのが好ましい。かかる強酸性陽イオン交換樹脂は、デキストリン成分(マルトオリゴ糖)と三糖類以下の糖類とを分画する作用を奏する。そのような強酸性陽イオン交換樹脂としては、アルカリ金属型強酸性陽イオン交換樹脂あるいはアルカリ土類金属型強酸性陽イオン交換樹脂のいずれをも使用することができるが、アルカリ金属型強酸性陽イオン交換樹脂を用いると好ましく、ナトリウム型強酸性陽イオン交換樹脂を用いると特に好ましい。なお、ナトリウム型強酸性陽イオン交換樹脂としては、三菱化成株式会社製の「ダイヤイオンFRK」シリーズや「ダイヤイオンユニビーズ」シリーズのナトリウム型強酸性陽イオン交換樹脂を好適に用いることができる。   Furthermore, as the ion exchange resin used for ion exchange chromatography, it is preferable to use a strongly acidic cation exchange resin. Such a strongly acidic cation exchange resin has an effect of fractionating a dextrin component (maltooligosaccharide) and a saccharide of a trisaccharide or less. As such a strong acid cation exchange resin, either an alkali metal type strong acid cation exchange resin or an alkaline earth metal type strong acid cation exchange resin can be used. It is preferable to use an ion exchange resin, and it is particularly preferable to use a sodium-type strongly acidic cation exchange resin. As the sodium-type strongly acidic cation exchange resin, sodium type strongly acidic cation exchange resins of “Diaion FRK” series and “Diaion Unibeads” series manufactured by Mitsubishi Kasei can be suitably used.

一方、イオン交換クロマトグラフィーによってデキストリン液画分を分画する際には、カラムを通過させる糖化液の温度を40〜90℃とするのが好ましく、55〜75℃とすると特に好ましい。また、通過させる際の糖化液の速度は、SV(Space Velocity:1時間当たりに流す溶液の容量の樹脂容積に対する比)が0.01〜0.10の範囲となるように調整するのが好ましい。   On the other hand, when fractionating a dextrin liquid fraction by ion exchange chromatography, the temperature of the saccharified liquid passing through the column is preferably 40 to 90 ° C, particularly preferably 55 to 75 ° C. In addition, the speed of the saccharified solution at the time of passing is preferably adjusted so that SV (Space Velocity: ratio of the volume of the solution flowing per hour to the resin volume) is in the range of 0.01 to 0.10. .

上記の如き強酸性陽イオン交換樹脂を利用した工業的なクロマト分画の具体例としては、図1の如き強酸性陽イオン交換樹脂を充填した分離四塔からなるクロマトグラフィー装置によるクロマト分画を挙げることができる。かかるクロマトグラフィー装置によるクロマト分画においては、下記の四つの段階を順次反復することによって、原料である糖化液が非老化性デキストリン液画分と高純度マルトトリオース液画分とに分画される。   As a specific example of industrial chromatographic fractionation using the strong acid cation exchange resin as described above, chromatographic fractionation by a chromatographic apparatus comprising four separate towers packed with a strong acid cation exchange resin as shown in FIG. Can be mentioned. In chromatographic fractionation using such a chromatography apparatus, the saccharified solution as a raw material is fractionated into a non-aging dextrin liquid fraction and a high-purity maltotriose liquid fraction by sequentially repeating the following four steps. The

[第一段階]
充填装置内に澱粉液化液をマルトトリオヒドロラーゼで糖化した精製分離原料液を第一塔(1)から第二塔(2)、第三塔(3)を経て第四塔(4)の方へ循環させる。
[第二段階]
精製分離原料液を第三塔(3)に供給して当該区画を流下させるとともに、その間に、当該区画から流出する非老化性デキストリン溶液を系外に抜き出す。
[第三段階]
溶離水を第一塔(1)に供給して当該区画を流下させるとともに、その間に、当該区画から流出するマルトトリオース成分に富む溶液を系外に抜き出す。
[第四段階]
第一塔(1)に溶離水を供給して当該区画を流下させ、第一塔(1)の流出液を第二塔(2)へ流入させ、第二塔(2)の流出液を第三塔(3)へ流入させ、第三塔(3)から流出する非老化性デキストリン溶液を系外に抜き出す。
[the first stage]
Purified and separated raw material liquid obtained by saccharifying the starch liquefaction liquid with maltotriohydrolase in the filling device passes from the first tower (1) to the second tower (2) and the third tower (3) to the fourth tower (4). Circulate.
[Second stage]
The purified separation raw material liquid is supplied to the third tower (3) to flow down the section, and during that time, the non-aging dextrin solution flowing out of the section is extracted out of the system.
[Third stage]
While eluting water is supplied to the first tower (1) to flow down the section, a solution rich in maltotriose components flowing out from the section is withdrawn out of the system.
[Fourth stage]
Elution water is supplied to the first tower (1) to flow down the section, the effluent from the first tower (1) is introduced into the second tower (2), and the effluent from the second tower (2) is fed to the first tower (1). The non-aging dextrin solution that flows into the third tower (3) and flows out from the third tower (3) is extracted out of the system.

なお、上記の如く分画する際には、食品とする際の利便性の観点から、適度な粘度を発現させるために、非老化性デキストリン液のDE値が5〜10の範囲内になるように調整するのが好ましい。また、分画された非老化性デキストリン液は、長期貯蔵や食品への添加の際の利便性の観点から粉末化することが好ましい。また、非老化性デキストリン液は、スプレー乾燥等の方法によって、高湿度下でも流動性が良好な粉末にすることができる。   When fractionating as described above, the DE value of the non-aging dextrin solution is within the range of 5 to 10 in order to develop an appropriate viscosity from the viewpoint of convenience when preparing a food. It is preferable to adjust to. The fractionated non-aging dextrin solution is preferably powdered from the viewpoint of convenience during long-term storage or addition to food. Further, the non-aging dextrin solution can be made into a powder having good fluidity even under high humidity by a method such as spray drying.

一方、上記したデキストリンに加える増粘多糖類としては、海草から抽出されたアルギン酸やカラギナン、種子から抽出したローカストビーンガム、発酵産物であるキサンタンガム、リンゴやレモン等の果物から抽出したペクチン等を挙げることができる。   On the other hand, examples of thickening polysaccharides added to the dextrin include alginic acid and carrageenan extracted from seaweed, locust bean gum extracted from seeds, xanthan gum as a fermentation product, pectin extracted from fruits such as apples and lemons, etc. be able to.

また、上記した非老化性デキストリンには、必要に応じて、イソマルトオリゴ糖、ビタミンA、ビタミンC、ビタミンE、DHA(ドコサヘキサエン酸)、EPA(エイコサペンタエン酸)の内の一種または二種以上を添加することができる。非老化性デキストリンにイソマルトオリゴ糖を添加した場合には、嚥下食基材は、整腸効果を奏するものとなる。また、非老化性デキストリンにビタミンAを添加した場合には、嚥下食基材は、皮膚や粘膜を正常に保つ効果を奏するものとなり、ビタミンCを添加した場合には、ストレスや病気に対する抵抗力を高める効果を奏するものとなり、ビタミンEを添加した場合には、抗酸化作用により生活習慣病や老化と関連した疾患を予防する効果を奏するものとなる。さらに、非老化性デキストリンにDHAを添加した場合には、嚥下食基材は、記憶力や学習機能を高める効果を奏するものとなり、EPAを添加した場合には、高脂血症を改善する効果を奏するものとなる。   In addition, the non-aging dextrin described above contains one or more of isomaltoligosaccharide, vitamin A, vitamin C, vitamin E, DHA (docosahexaenoic acid), and EPA (eicosapentaenoic acid) as necessary. Can be added. When isomaltoligosaccharide is added to non-aging dextrin, the swallowing food base material has an intestinal regulating effect. In addition, when vitamin A is added to non-aging dextrins, the swallowing food base material has the effect of keeping the skin and mucous membranes normal, and when vitamin C is added, it is resistant to stress and disease. When vitamin E is added, it has an effect of preventing lifestyle-related diseases and diseases related to aging due to its antioxidant action. Furthermore, when DHA is added to non-aging dextrin, the swallowing food base material has an effect of improving memory ability and learning function, and when EPA is added, it has the effect of improving hyperlipidemia. To play.

また、上記した非老化性デキストリンには、必要に応じて、排泄臭軽減物質を添加することができる。そのように非老化性デキストリンに排泄臭軽減物質を添加した場合には、嚥下食基材は、排泄後の悪臭(アンモニア臭等)を低減させることができる。なお、かかる排泄臭軽減物質としては、マッシュルームからの抽出物であるシャンピニオンエキス等を挙げることができる。   Moreover, an excretion odor reducing substance can be added to the above non-aging dextrin as needed. Thus, when the excretion odor reducing substance is added to the non-aging dextrin, the swallowing food base material can reduce malodors (such as ammonia odor) after excretion. Examples of the excretion odor reducing substance include champignon extract, which is an extract from mushrooms.

加えて、本発明の嚥下食基材は、下式1で示される動的粘弾性tanδの値を0.5以上1.0未満の範囲に調整することが好ましく、0.7〜0.8の範囲内にあると特に好ましい。すなわち、呑み込まれた食品が咽頭をスムーズに通過するためには、適度に変形し易く食品と咽頭粘膜との摩擦が小さいことが必要であるが、嚥下食基材の動的粘弾性tanδの値を上記の如き範囲に調整することによって、食品を適度に変形し易くし食品と咽頭粘膜との摩擦を小さくすることが可能となるからである。なお、そのように動的粘弾性tanδの値が0.5以上1.0未満の範囲にある嚥下食基材を用いて食品を調整することにより、所謂“喉越し”が良好となり、美味しいとの食感を提供することが可能となる。
tanδ=G”/G’ (但し、G’=動的弾性率(堅さ)、G”=動的損失(柔らかさ))・・式1
In addition, the swallowing food base material of the present invention preferably adjusts the value of the dynamic viscoelasticity tan δ represented by the following formula 1 to a range of 0.5 or more and less than 1.0, 0.7 to 0.8 It is especially preferable that it is in the range. In other words, in order for the swallowed food to pass smoothly through the pharynx, it is necessary that the food and the pharyngeal mucous membrane have a small friction between the food and the pharyngeal mucosa. This is because the food can be easily deformed moderately and the friction between the food and the pharyngeal mucosa can be reduced by adjusting the above to the above range. In addition, by adjusting the food using the swallowing food base material in which the value of dynamic viscoelasticity tan δ is in the range of 0.5 or more and less than 1.0, so-called “over the throat” becomes good and delicious. It becomes possible to provide a texture.
tan δ = G ″ / G ′ (where G ′ = dynamic elastic modulus (stiffness), G ″ = dynamic loss (softness)).

加えて、本発明の嚥下食基材は、冷凍、解凍した後のtanδの値も0.5以上1.0未満であると好ましい。一般的な嚥下食基材は、冷凍、解凍した後には、tanδの値が大きく低下して食品の“喉越し”が悪くなってしまうが、そのようにtanδの値の低下率を抑制することによって、冷凍、解凍を繰り返した場合でも、良好な嚥下反射を促すとともに“喉越し”の良好な食品を提供することが可能となる。   In addition, the swallowing food base material of the present invention preferably has a tan δ value of 0.5 or more and less than 1.0 after being frozen and thawed. In general swallow food bases, after freezing and thawing, the value of tan δ is greatly reduced and the food “over the throat” is worsened. In this way, the rate of decrease in the value of tan δ is suppressed. Thus, even when freezing and thawing are repeated, it is possible to promote a good swallowing reflex and provide a food with good “over the throat”.

以下、本発明の嚥下食基材の具体例を、実施例により詳細に説明する。   Hereinafter, the specific example of the swallowing food base material of this invention is demonstrated in detail by an Example.

a.デキストリンの調整
所定濃度の澱粉乳(コーンスターチ糖化液)に消石灰を加えてpH調整を行った後、その澱粉乳に所定量のαーアミラーゼを添加した。しかる後、その澱粉乳をジェットクッカーで約105℃に加熱し、その温度で約10分間に亘って保持した。さらに、加熱後の液化液を、ジェットクッカーで約120℃に加熱することによって、αーアミラーゼを失活させた。さらに、その液化液を大気圧に開放してpHおよび温度を調整したDE8〜10の液化液に、マルトトリオヒドロラーゼ(天野エンザイム株式会社製の「AMT」酵素)を0.6U/9(0.1重量%)添加し、約58℃の温度下にて、マルトトリオースの含有量が25〜48%になるまで糖化させた。しかる後、その糖化液を精製・濃縮した後、ナトリウム型強酸性陽イオン交換樹脂中に通して、非老化性デキストリン区分とマルトトリオース含有量60%の区分とに分離した。そして、分離された非老化性デキストリン区分を精製・濃縮した後に、噴霧乾燥機で粉末化することによって、実施例1のデキストリンを得た。
a. Preparation of dextrin After adjusting pH by adding slaked lime to a predetermined concentration of starch milk (corn starch saccharified solution), a predetermined amount of α-amylase was added to the starch milk. Thereafter, the starch milk was heated to about 105 ° C. with a jet cooker and held at that temperature for about 10 minutes. Furthermore, α-amylase was inactivated by heating the liquefied liquid after heating to about 120 ° C. with a jet cooker. Further, maltotriohydrolase (“AMT” enzyme, manufactured by Amano Enzyme Co., Ltd.) 0.6U / 9 (0. 0) was added to the liquefied liquid of DE8 to 10 whose pH and temperature were adjusted by opening the liquefied liquid to atmospheric pressure. 1% by weight) and saccharified at a temperature of about 58 ° C. until the maltotriose content is 25 to 48%. Thereafter, the saccharified solution was purified and concentrated, and then passed through a sodium-type strongly acidic cation exchange resin to separate into a non-aging dextrin section and a section with maltotriose content of 60%. And after purifying and concentrating the separated non-aging dextrin section, the dextrin of Example 1 was obtained by pulverizing with a spray dryer.

上記の如く得られた実施例1のデキストリンの分子量分布を、RI検出器によって測定した。なお、分子量分布の測定は、(株)東洋ソーダ製のカラム(Bio−Gel TSK30−XL)を用い、0.02mol%のNaCl溶液を溶離液とし、室温下にて流速を0.8ml/minとして行った。分子量分布の測定結果を図2に示す。また、測定した分子量分布から分子量1×10未満の成分の比率、分子量1×104 未満の成分の比率、分子量1×105 以上の成分の比率を算出した。各成分の比率を表1に示す。表1から、実施例1のデキストリンには、分子量1×10以上の成分が含まれていないことが分かる。さらに、測定した分子量分布から数平均分子量、重量平均分子量、分散度を算出した。算出した数平均分子量、重量平均分子量、分散度を表2に示す。一方、実施例1のデキストリンのDE値をフェーリング・レーマン・ショール法で測定した。測定結果を表2に示す。 The molecular weight distribution of the dextrin of Example 1 obtained as described above was measured with an RI detector. The molecular weight distribution was measured using a column (Bio-Gel TSK30-XL) manufactured by Toyo Soda Co., Ltd. with a 0.02 mol% NaCl solution as an eluent and a flow rate of 0.8 ml / min at room temperature. Went as. The measurement result of molecular weight distribution is shown in FIG. Further, from the measured molecular weight distribution, the ratio of components having a molecular weight of less than 1 × 10 3 , the ratio of components having a molecular weight of less than 1 × 10 4 , and the ratio of components having a molecular weight of 1 × 10 5 or more were calculated. Table 1 shows the ratio of each component. From Table 1, it can be seen that the dextrin of Example 1 does not contain a component having a molecular weight of 1 × 10 5 or more. Furthermore, the number average molecular weight, the weight average molecular weight, and the degree of dispersion were calculated from the measured molecular weight distribution. The calculated number average molecular weight, weight average molecular weight, and degree of dispersion are shown in Table 2. On the other hand, the DE value of the dextrin of Example 1 was measured by the Fehring-Lehman-Schol method. The measurement results are shown in Table 2.

b.嚥下食基材の製造
上記の如く得られた実施例1のデキストリン(非老化性デキストリン)70重量部をキサンタンガム30重量部と混合することによって、実施例1の嚥下食基材を製造した。
b. Production of swallowing food base material The swallowing food base material of Example 1 was produced by mixing 70 parts by weight of the dextrin (non-aging dextrin) of Example 1 obtained as described above with 30 parts by weight of xanthan gum.

c.均質性の評価
上記の如く得られた実施例1の嚥下食基材の2%トロミ液を調整し、市販の冷蔵庫を利用して、そのトロミ液の冷凍保存(24時間)および解凍を繰り返し、濁度の変化を測定することによって、トロミ液の均質性の変化の様子を調べた。なお、濁度は、島津製作所製UV−160A型 分光光度計を用い、2倍に希釈したトロミ液を入れた10mm厚みのセルの720nmにおける吸光度によって評価した。冷凍、解凍の回数に対する濁度の変化を表3に示す。
c. Evaluation of homogeneity Adjust the 2% trolley solution of the swallowing food base material of Example 1 obtained as described above, and use a commercially available refrigerator to repeatedly freeze and thaw the trolley solution (24 hours), By measuring the change in turbidity, the state of change in the homogeneity of the tromi liquid was investigated. The turbidity was evaluated by the absorbance at 720 nm of a 10 mm thick cell containing a 2-fold diluted Tomi solution using a Shimadzu UV-160A spectrophotometer. Table 3 shows changes in turbidity with respect to the number of freezing and thawing.

a.デキストリンの調整
糖化液をマルトトリオヒドロラーゼ(天野エンザイム株式会社製の「AMT」酵素)によって分解させる際のマルトトリオヒドロラーゼの添加量を0.54U/g(0.09重量%)に変更した以外は、実施例1と同様にして、実施例2のデキストリンを得た。しかる後、実施例1と同様な方法で、得られた実施例2のデキストリンの分子量分布を測定し、分子量1×10未満の成分の比率、分子量1×104 未満の成分の比率、分子量1×105 以上の成分の比率、および数平均分子量、重量平均分子量、分散度を算出した。各分子量を有する成分の比率を表1に示す。さらに、算出した数平均分子量、重量平均分子量、分散度を表2に示す。表1から、実施例2のデキストリンにも、分子量1×10以上の成分が含まれていないことが分かる。また、実施例1と同様な方法で、実施例2のデキストリンのDE値を測定した。測定結果を表2に示す。
a. Preparation of dextrin The amount of maltotriohydrolase added when degrading the saccharified solution with maltotriohydrolase (“AMT” enzyme manufactured by Amano Enzyme Inc.) was changed to 0.54 U / g (0.09% by weight). In the same manner as in Example 1, the dextrin of Example 2 was obtained. Thereafter, the molecular weight distribution of the obtained dextrin of Example 2 was measured in the same manner as in Example 1, and the ratio of components having a molecular weight of less than 1 × 10 3 , the ratio of components having a molecular weight of less than 1 × 10 4 , and the molecular weight. The ratio of components of 1 × 10 5 or more, the number average molecular weight, the weight average molecular weight, and the degree of dispersion were calculated. Table 1 shows the ratio of components having respective molecular weights. Further, Table 2 shows the calculated number average molecular weight, weight average molecular weight, and degree of dispersion. From Table 1, it can be seen that the dextrin of Example 2 does not contain any component having a molecular weight of 1 × 10 5 or more. Further, the DE value of the dextrin of Example 2 was measured in the same manner as in Example 1. The measurement results are shown in Table 2.

b.嚥下食基材の製造
上記の如く得られた実施例2のデキストリン70重量部をキサンタンガム30重量部と混合することによって、実施例1の嚥下食基材を製造した。
b. Production of swallowing food base material The swallowing food base material of Example 1 was produced by mixing 70 parts by weight of the dextrin of Example 2 obtained as described above with 30 parts by weight of xanthan gum.

c.均質性の評価
得られた実施例2の嚥下食基材の2%トロミ液を調整し、実施例1と同様な方法により、そのトロミ液の均質性の変化の様子を調べた。冷凍、解凍の回数に対する濁度の変化を表3に示す。
c. Evaluation of homogeneity The 2% trolley solution of the swallowing food base material obtained in Example 2 was prepared, and the state of change in homogeneity of the trolley solution was examined by the same method as in Example 1. Table 3 shows changes in turbidity with respect to the number of freezing and thawing.

[比較例]
a.嚥下食基材の製造
所定の濃度の澱粉乳に消石灰を加えてpH調整を行った後、その澱粉乳に所定量のαーアミラーゼを添加した。しかる後、その澱粉乳をジェットクッカーで約90℃に加熱し、その温度で約10分間に亘って保持した。さらに、加熱後の澱粉乳を、ジェットクッカーで約120℃に加熱することによって、αーアミラーゼを失活させた。しかる後、その澱粉乳を大気圧に開放した後に、再度αーアミラーゼを添加し、DEの値が8〜10になるまで90℃の温度で液化を進めた。そして、液化を終了した澱粉乳を精製した後に、噴霧乾燥機で粉末化することによって、比較例のデキストリンを得た。
[Comparative example]
a. Manufacture of a swallowing food base After adjusting pH by adding slaked lime to a predetermined concentration of starch milk, a predetermined amount of α-amylase was added to the starch milk. Thereafter, the starch milk was heated to about 90 ° C. with a jet cooker and held at that temperature for about 10 minutes. Furthermore, α-amylase was inactivated by heating the heated starch milk to about 120 ° C. with a jet cooker. Thereafter, after the starch milk was released to atmospheric pressure, α-amylase was added again, and liquefaction proceeded at a temperature of 90 ° C. until the DE value reached 8-10. And after refine | purifying the starch milk which complete | finished liquefaction, the dextrin of the comparative example was obtained by pulverizing with a spray dryer.

上記の如く得られた比較例のデキストリンの分子量分布を、実施例1と同様な方法で測定した。分子量分布の測定結果を図3に示す。また、分子量分布から分子量1×10未満の成分の比率、分子量1×104 未満の成分の比率、分子量1×105 以上の成分の比率、および数平均分子量、重量平均分子量、分散度を算出した。各分子量を有する成分の比率を表1に示す。さらに、算出した数平均分子量、重量平均分子量、分散度を表2に示す。表1から、比較例のデキストリンには、分子量1×10以上の成分が約7.3%含まれていることが分かる。さらに、実施例1と同様な方法で、比較例のデキストリンのDE値を測定した。測定結果を表2に示す。 The molecular weight distribution of the comparative dextrin obtained as described above was measured in the same manner as in Example 1. The measurement result of molecular weight distribution is shown in FIG. Further, from the molecular weight distribution, the ratio of the component having a molecular weight of less than 1 × 10 3 , the ratio of the component having a molecular weight of less than 1 × 10 4 , the ratio of the component having a molecular weight of 1 × 10 5 or more, and the number average molecular weight, weight average molecular weight, and dispersity Calculated. Table 1 shows the ratio of components having respective molecular weights. Further, Table 2 shows the calculated number average molecular weight, weight average molecular weight, and degree of dispersion. From Table 1, it can be seen that the dextrin of the comparative example contains about 7.3% of a component having a molecular weight of 1 × 10 5 or more. Furthermore, the DE value of the dextrin of the comparative example was measured in the same manner as in Example 1. The measurement results are shown in Table 2.

b.嚥下食基材の製造
上記の如く得られた比較例のデキストリン70重量部とキサンタンガム30重量部とを混合することによって、比較例の嚥下食基材を製造した。
b. Production of swallowing food base material A comparative swallowing food base material was produced by mixing 70 parts by weight of the dextrin of the comparative example obtained as described above and 30 parts by weight of xanthan gum.

c.均質性の評価
得られた比較例の嚥下食基材の2%トロミ液を調整し、実施例1と同様な方法により、そのトロミ液の均質性の変化の様子を調べた。冷凍、解凍の回数に対する濁度の変化を表3に示す。
c. Evaluation of homogeneity The 2% trolley solution of the obtained swallowing food base material of the comparative example was prepared, and the state of change in homogeneity of the trolley solution was examined by the same method as in Example 1. Table 3 shows changes in turbidity with respect to the number of freezing and thawing.

Figure 2006129783
Figure 2006129783

Figure 2006129783
Figure 2006129783

Figure 2006129783
Figure 2006129783

表3から、実施例1および実施例2の嚥下食基材のトロミ液は、冷凍−解凍を繰り返しても濁度が増加せず、均質性が保たれることが分かる。これに対して、比較例の嚥下食基材のトロミ液は、冷凍、解凍の回数の増加に伴って濁度が増加し、次第に不均質になっていくことが分かる。   From Table 3, it can be seen that the trolley liquids of the swallowing food base materials of Example 1 and Example 2 do not increase in turbidity even when freeze-thaw is repeated, and the homogeneity is maintained. On the other hand, it can be seen that the trolley solution of the swallowing food base material of the comparative example increases in turbidity as the number of freezing and thawing increases, and gradually becomes heterogeneous.

加えて、各実施例および比較例の嚥下食基材について、動的粘弾性測定を実施したところ、実施例1および実施例2の嚥下食基材は、冷凍前のtanδの値が、それぞれ、約0.7、約0.8であり、冷凍・解凍を繰り返しても、それらの値に変化がみられなかった(tanδの保持率は、何れも95%以上であった)。そして、実施例1および実施例2の嚥下食基材のトロミ液を冷凍した後に解凍して試食したところ、良好な嚥下反射を促すことが可能であり、“喉越し”も良好であった。   In addition, when the dynamic viscoelasticity measurement was performed on the swallowing food bases of each Example and Comparative Example, the swallowing food bases of Example 1 and Example 2 each had a value of tan δ before freezing, These values were about 0.7 and about 0.8, and even when freezing and thawing were repeated, there was no change in those values (the retention rate of tan δ was 95% or more in all cases). When the trolley solution of the swallowing food base material of Example 1 and Example 2 was frozen and then thawed and sampled, it was possible to promote good swallowing reflexes, and “over the throat” was also good.

一方、比較例の嚥下食基材は、冷凍前のtanδの値が約0.5であり、冷凍・解凍した後には、その値が約0.4に低下した(tanδの保持率=80%)。また、比較例の嚥下食基材のトロミ液を冷凍した後に解凍して試食したところ、“喉越し”がやや不良であった。   On the other hand, the swallowing food base material of the comparative example had a tan δ value before freezing of about 0.5, and after freezing and thawing, the value decreased to about 0.4 (retention rate of tan δ = 80% ). In addition, when the trolley solution of the swallowing food base material of the comparative example was frozen and then thawed and sampled, “over the throat” was somewhat poor.

本発明の嚥下食基材は、高齢者等の嚥下障害者向けの食品を作る際の基材(補助食品)として、広汎に利用することができる。   The swallowing food base material of the present invention can be widely used as a base material (auxiliary food) when preparing food for dysphagic persons such as elderly people.

クロマト分離装置の概略を示す説明図である。It is explanatory drawing which shows the outline of a chromatographic separation apparatus. 実施例1のデキストリンの分子量分布を示す説明図である。FIG. 3 is an explanatory diagram showing a molecular weight distribution of dextrin of Example 1. 比較例のデキストリンの分子量分布を示す説明図である。It is explanatory drawing which shows the molecular weight distribution of the dextrin of a comparative example.

符号の説明Explanation of symbols

M・・クロマト分離装置、1・・第一塔、2・・第二塔、3・・第三塔、4・・第四塔。   M ・ ・ chromatographic separation device, 1 ・ ・ first tower, 2 ・ ・ second tower, 3 ・ ・ third tower, 4 ・ ・ fourth tower.

Claims (6)

分子量が1×10以上の高分子成分を含まないデキストリンと、増粘多糖類とからなる嚥下食基材。 A swallowing food base material comprising a dextrin not containing a polymer component having a molecular weight of 1 × 10 5 or more and a thickening polysaccharide. マルトトリオヒドロラーゼを作用させた澱粉の糖化液をクロマトグラフィーで分画して得た非老化性デキストリンと、増粘多糖類とを混合してなる嚥下食基材。   A swallowing food base material obtained by mixing a non-aging dextrin obtained by fractionating a starch saccharified solution treated with maltotriohydrolase by chromatography with a thickening polysaccharide. イソマルトオリゴ糖、ビタミンA、ビタミンC、ビタミンE、DHA、EPAの内の少なくとも一種が添加されていることを特徴とする請求項1、または請求項2に記載の嚥下食基材。   The swallowing food base material according to claim 1 or 2, wherein at least one of isomaltoligosaccharide, vitamin A, vitamin C, vitamin E, DHA, and EPA is added. 排泄臭軽減物質を添加したことを特徴とする請求項1〜3のいずれかに記載の嚥下食基材。   The swallowing food base material according to any one of claims 1 to 3, wherein an excretion odor reducing substance is added. 分子量が1×10以上の高分子成分を含まないデキストリンと、増粘多糖類とを混合することを特徴とする嚥下食基材の製造方法。 A method for producing a swallowing food base material, comprising mixing a dextrin not containing a polymer component having a molecular weight of 1 × 10 5 or more and a thickening polysaccharide. マルトトリオヒドロラーゼを作用させた澱粉の液化液をクロマトグラフィーで分画して得たデキストリンと、増粘多糖類とを混合することを特徴とする嚥下食基材の製造方法。   A method for producing a swallowing food base material, comprising mixing a dextrin obtained by fractionating a liquefied liquid of starch treated with maltotriohydrolase by chromatography and a thickening polysaccharide.
JP2004322729A 2004-11-05 2004-11-05 Swallowing food substrate and method for producing the same Expired - Fee Related JP4283758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004322729A JP4283758B2 (en) 2004-11-05 2004-11-05 Swallowing food substrate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004322729A JP4283758B2 (en) 2004-11-05 2004-11-05 Swallowing food substrate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006129783A true JP2006129783A (en) 2006-05-25
JP4283758B2 JP4283758B2 (en) 2009-06-24

Family

ID=36723838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004322729A Expired - Fee Related JP4283758B2 (en) 2004-11-05 2004-11-05 Swallowing food substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4283758B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021264A1 (en) * 2016-07-28 2018-02-01 沢井製薬株式会社 Texture evaluation method and texture evaluation apparatus for orally disintegrable test object
KR20190139353A (en) * 2018-06-07 2019-12-18 주식회사 신세계푸드 MANUFACTURING METHOD OF rice gruel AND rice gruel USING THE SAME
JP2019219185A (en) * 2018-06-15 2019-12-26 三栄源エフ・エフ・アイ株式会社 Evaluation method of swallowing property of food and drink
EP3827674A4 (en) * 2018-07-24 2022-04-20 Nutri Co., Ltd. High-dispersibility dextrin powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021264A1 (en) * 2016-07-28 2018-02-01 沢井製薬株式会社 Texture evaluation method and texture evaluation apparatus for orally disintegrable test object
JPWO2018021264A1 (en) * 2016-07-28 2019-05-09 沢井製薬株式会社 Method and apparatus for evaluating the texture of a sample having orally disintegrating properties
US10890572B2 (en) 2016-07-28 2021-01-12 Sawai Pharmaceutical Co., Ltd. Mouthfeel evaluation method and mouthfeel evaluation apparatus for orally disintegrating test object
KR20190139353A (en) * 2018-06-07 2019-12-18 주식회사 신세계푸드 MANUFACTURING METHOD OF rice gruel AND rice gruel USING THE SAME
KR102278064B1 (en) * 2018-06-07 2021-07-15 주식회사 신세계푸드 MANUFACTURING METHOD OF rice gruel AND rice gruel USING THE SAME
JP2019219185A (en) * 2018-06-15 2019-12-26 三栄源エフ・エフ・アイ株式会社 Evaluation method of swallowing property of food and drink
JP7101056B2 (en) 2018-06-15 2022-07-14 三栄源エフ・エフ・アイ株式会社 Evaluation method of swallowing characteristics of food and drink
EP3827674A4 (en) * 2018-07-24 2022-04-20 Nutri Co., Ltd. High-dispersibility dextrin powder

Also Published As

Publication number Publication date
JP4283758B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
CN107348294B (en) Cubilose collagen solid beverage and preparation method thereof
JP5341601B2 (en) Gelling agent for liquid food and method for producing gelled food
CN109198356A (en) A kind of solid beverage and preparation method thereof with adjusting function of intestinal canal
WO2009113652A1 (en) Branched dextrin, process for production thereof, and food or beverage
Salanță et al. Functionality of special beer processes and potential health benefits
CN104982928B (en) A kind of japanese yew fruit health care ferment and preparation method thereof
JP2008069364A (en) Branched maltodextrin and method for producing the same
JP2008504038A (en) Pre-biological preparation
CN109069522A (en) Enteral butyric acid dose and butyric acid producing strains multiplication agent
JPH03244365A (en) Food composition having intestinal function controlling action
JP6470099B2 (en) Starch decomposition product, and powdered rice cake, syrup and food and drink using the starch decomposition product
Lugani et al. Xylitol, an emerging prebiotic: a review
CN100553489C (en) The preparation method who contains the Rhizoma Dioscoreae esculentae dietary fiber of sweet potato resistant starch
JP2009137929A (en) Method for producing polyphenol extract, prophylactic agent for osteoporosis, saccharide-digesting enzyme inhibitor, functional compositions using them, and food composition, food composition for specified health use, quasi-drug composition, and pharmaceutical composition each containing the functional composition
Wisker et al. Fermentation of non-starch polysaccharides in mixed diets and single fibre sources: comparative studies in human subjects and in vitro
CN106173721B (en) A kind of soy molasses fermented tea fermented beverage and preparation method thereof
JP4286254B2 (en) Glycemic index reducing composition and food
JP4283758B2 (en) Swallowing food substrate and method for producing the same
KR101959191B1 (en) Soup with immune-enhancing effects comprising sulfur containing brown rice and mealworm as its effective component
JP6301024B2 (en) Felicaribacterium spp.
CN108056343A (en) The production method of light rice syrup beverage
Dini et al. Cassava flour and starch as differentiated ingredients for gluten free products
AU2014246718B2 (en) Use of a dietary fibre supplement in a food formulation
JPH02154673A (en) Production of beverage containing water-soluble dietary fiber
CN101861985B (en) Oligosaccharide buckwheat rice and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees