JP2006129126A - Device and method for forming film on spherical material and manufacturing method of surface acoustic wave element - Google Patents

Device and method for forming film on spherical material and manufacturing method of surface acoustic wave element Download PDF

Info

Publication number
JP2006129126A
JP2006129126A JP2004315415A JP2004315415A JP2006129126A JP 2006129126 A JP2006129126 A JP 2006129126A JP 2004315415 A JP2004315415 A JP 2004315415A JP 2004315415 A JP2004315415 A JP 2004315415A JP 2006129126 A JP2006129126 A JP 2006129126A
Authority
JP
Japan
Prior art keywords
spherical
base material
film
spherical base
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004315415A
Other languages
Japanese (ja)
Other versions
JP4552598B2 (en
Inventor
Nobutaka Nakaso
教尊 中曽
Tsunero Oki
恒郎 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2004315415A priority Critical patent/JP4552598B2/en
Publication of JP2006129126A publication Critical patent/JP2006129126A/en
Application granted granted Critical
Publication of JP4552598B2 publication Critical patent/JP4552598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film forming method and a film forming device which form a uniform film in a region to which photo lithography process is applied for the purpose of forming a propagation path or an electrode pattern, etc. of resist films, a sensitive film, etc. on a surface of spherical material to be coated in manufacturing process of a spherical surface acoustic wave element. <P>SOLUTION: The film forming device of the spherical material comprises a rotation means 30 which rotates a rotation supporter 31; and a means which mounts the spherical material 10 fixing in a position departed from the rotation axis of the center of the rotation supporter 31, and forms a uniform thickness film covering the transmission path region (a circular region) by fixing the spherical material 10 on a material supporter 41 which is installed departed position from a center of the rotation axis of the rotation supporter 31, and rotating the spherical material about a rotation axis center. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、球状弾性表面波素子の基材である球状基材に感応膜、レジスト等の被膜を形成する方法及び形成装置並びに感応膜を形成した弾性表面波素子の製造方法に関する。   The present invention relates to a method and apparatus for forming a coating film such as a sensitive film and a resist on a spherical base material that is a base material for a spherical surface acoustic wave element, and a method for manufacturing a surface acoustic wave element having a sensitive film formed thereon.

基材上に弾性表面波を発生させるとともに、基材上に発生された弾性表面波を受信するものとして弾性表面波素子は従来から良く知られている。   2. Description of the Related Art A surface acoustic wave element has been well known as a device that generates surface acoustic waves on a substrate and receives surface acoustic waves generated on the substrate.

従来の弾性表面波素子では平坦な基材上に1対のすだれ状電極が設けられている。基材が圧電性材料で形成されているか、又はすだれ状電極と基板の間には圧電膜が設けられており、一方のすだれ状電極に高周波電圧を供給することにより電極の並んでいる方向に弾性表面波を励起させる。他方のすだれ状電極はこの弾性表面波の伝搬方向に配置されており、この弾性表面波を受信する。   In a conventional surface acoustic wave device, a pair of interdigital electrodes are provided on a flat substrate. The substrate is formed of a piezoelectric material, or a piezoelectric film is provided between the interdigital electrode and the substrate, and a high frequency voltage is supplied to one interdigital electrode so that the electrodes are aligned. Excitation of surface acoustic waves. The other interdigital electrode is arranged in the propagation direction of the surface acoustic wave and receives the surface acoustic wave.

弾性表面波素子は、遅延線、発信機のための発振素子若しくは共振素子、周波数を選択するためのフィルタ、化学センサ、バイオセンサ、又はリモートタグ等に使用されている。   The surface acoustic wave element is used for a delay line, an oscillation element or a resonance element for a transmitter, a filter for selecting a frequency, a chemical sensor, a biosensor, a remote tag, or the like.

弾性表面波素子の精度を高める方法として、球状の基材の表面に弾性表面波を伝搬させて基材を多数回周回させる球状弾性表面波素子が知られている(例えば、特許文献1参照)。
球状弾性表面波素子とは図11に示すように、球形の表面を持った水晶の単結晶からなる基材を用意し、そこに例えばすだれ状電極などを用いることで、ある方向に弾性表面波を励起するとき、球表面の幾何学的特徴により球表面にビーム状に励起された弾性波のエネルギーが球表面を円環状に伝搬し、回折の影響を受けにくくなることを利用して球表面に弾性表面波を多重に周回させる素子である。
弾性表面波が球状の表面を周回する際の円環状の経路の幅(ビーム幅)をある範囲に制御することができ、球表面の直径とその弾性表面波の波長が所定の関係にある時には全く変らないように設計することも可能である。
As a method for increasing the accuracy of a surface acoustic wave element, a spherical surface acoustic wave element that propagates a surface acoustic wave to the surface of a spherical base material and makes the base material circulate many times is known (for example, see Patent Document 1). .
As shown in FIG. 11, a spherical surface acoustic wave element is prepared by preparing a base material made of a single crystal of a crystal having a spherical surface, and using, for example, a comb-like electrode or the like, whereby a surface acoustic wave is generated in a certain direction. The surface of the sphere is utilized by utilizing the fact that the energy of the elastic wave excited in the form of a beam on the surface of the sphere propagates in a ring shape due to the geometric characteristics of the surface of the sphere, making it less susceptible to diffraction. This is an element that circulates a surface acoustic wave in multiple layers.
The width of the annular path (beam width) when the surface acoustic wave circulates on the spherical surface can be controlled within a certain range, and when the diameter of the surface of the sphere and the wavelength of the surface acoustic wave have a predetermined relationship It is also possible to design so that it does not change at all.

球表面の弾性表面波の周回現象を用いる場合に前提となるのは、弾性表面波が周回する球表面上の領域(以下伝搬路と称する)で、不連続な基材の弾性物性や構造の変化があると弾性表面波はその境界で反射されることから多重の周回が困難になる。   The precondition for using the surface acoustic wave circulation phenomenon on the surface of the sphere is the region on the surface of the sphere where the surface acoustic wave circulates (hereinafter referred to as the propagation path). If there is a change, the surface acoustic wave is reflected at the boundary, making it difficult to wrap around multiple times.

これは伝搬路に、外部の環境に合わせて弾性物性を変化させたり、その表面にガス物質などを吸着して弾性波の伝搬を変えることで環境評価を行う球状弾性表面波素子の感応膜が、その厚さが伝搬路に沿って大きく変化することによっても起こり問題になる。   This is because the sensitive film of the spherical surface acoustic wave element that evaluates the environment by changing the elastic physical properties according to the external environment or changing the propagation of elastic waves by adsorbing gas substances etc. on the surface of the propagation path. This also occurs when the thickness changes greatly along the propagation path.

また、膜厚が大きくなり弾性表面波を吸収することもその性能に大きく影響する。伝搬時に伝搬減衰が大きいと長い距離弾性表面波を伝搬させることが出来ず、所定の周回する際の必要時間からその伝搬速度を測定する際に測定感度の低下をきたす。   In addition, increasing the film thickness and absorbing surface acoustic waves greatly affects its performance. If the propagation attenuation is large at the time of propagation, a long-distance surface acoustic wave cannot be propagated, resulting in a decrease in measurement sensitivity when measuring the propagation speed from the required time for a predetermined orbit.

さらに、伝搬経路上にパラジウム金属膜を形成して水素センサーを作成できるが、パラジウム膜の深部に水素が到達して平衡状態に達するまでに時間がかかることから、可能な限り薄い感応膜を形成することが求められている。これは有機膜によりなる感応膜の形成でも同じである。   Furthermore, it is possible to create a hydrogen sensor by forming a palladium metal film on the propagation path, but it takes time for hydrogen to reach the deep state of the palladium film and reach an equilibrium state, so as thin a sensitive film as possible is formed. It is requested to do. This also applies to the formation of a sensitive film made of an organic film.

また、球状弾性表面波素子の製造工程でも同様の課題が発生する。
弾性表面波をその伝搬路に周回させる場合に、その表面に膜構造を持たせる場合、一般に周回路に亘って略均一の厚さに形成することが望まれる。
周回経路全周に亘って均一に膜を形成する方法として、球状基材を回転させながら、例えば、インクジェットのノズルで膜材料を滴下しながら、球状基材表面に被膜を形成することが行われているが、時間が掛かることが問題である。
Similar problems occur in the manufacturing process of the spherical surface acoustic wave device.
When a surface acoustic wave is circulated in its propagation path, it is generally desirable that the surface be provided with a substantially uniform thickness over the peripheral circuit when the surface has a film structure.
As a method of forming a film uniformly over the entire circumference of the circulation path, a film is formed on the surface of the spherical substrate while rotating the spherical substrate, for example, while dropping a film material with an inkjet nozzle. However, it takes time.

また、図12(a)に示すように、球状基材10の伝搬路にそって数回にわけて従来のスピンコーターを用いて被膜を形成することが考えられるが、スピンコーターでは被塗布物が球状であることを理由に、図12(b)に示すように、A領域は薄く、B領域は遠心力によってかえって円環状に厚く膜形成されることから伝搬路上の均一性と言う視点からは問題である。
また、C領域はレジストが重力や表面張力で溜まることから非常に厚く形成されて、後でこれを取り除くプロセスが必要になる。
回転中心はこの例の場合1箇所しかなく、1回のスピンコートで1個の球状基材しか被膜形成できないことになり、量産性に問題がある。
In addition, as shown in FIG. 12A, it is conceivable to form a film using a conventional spin coater several times along the propagation path of the spherical base material 10. From the viewpoint of uniformity on the propagation path because the A region is thin and the B region is formed in a thick annular shape by centrifugal force, as shown in FIG. 12 (b). Is a problem.
Also, the C region is formed very thick because the resist accumulates due to gravity and surface tension, and a process for removing this later is required.
In this example, there is only one center of rotation, and only one spherical base material can be formed by one spin coating, and there is a problem in mass productivity.

球状弾性表面波素子において、すだれ状電極の形成は、球状基材の表面に例えば蒸着によってクロムと金の薄膜を形成し、そのあとレジストを塗布して感光層を形成し、露光、現像、エッチングというパターニング処理を行うが、すだれ状電極の電極取りだしを図11に示すように、両極つまり伝搬路領域の両サイドに形成する必要がある。
その場合は図13に示すように球状基材の略半円以上に亘って正確に電極取り出しパターンを形成する必要があるが、この際に球状基材の半円以上の領域に均一なレジスト膜を形成することは、上記同様にスピンコーターでは困難であることは明かである。
特開2003−115744号公報
In a spherical surface acoustic wave device, interdigital electrodes are formed by forming a thin film of chromium and gold, for example, by vapor deposition on the surface of a spherical substrate, and then applying a resist to form a photosensitive layer, and then exposing, developing, and etching. However, as shown in FIG. 11, it is necessary to form the interdigital electrodes on both sides, that is, on both sides of the propagation path region.
In this case, as shown in FIG. 13, it is necessary to accurately form an electrode extraction pattern over a substantially semicircle or more of the spherical base material. In this case, a uniform resist film in a region of the semicircular or more of the spherical base material. It is clear that the formation of is difficult with a spin coater as described above.
JP 2003-115744 A

本発明は、上記課題に鑑みてなされたものであり、球状弾性表面波素子の製造過程において、被塗布物である球状基材の表面にレジスト、感応膜等の被膜を伝搬路又は電極パターンを形成すること等を目的としたフォトリソグラフィープロセスの適用される領域に均一な被膜を形成するための被膜形成方法及び被膜形成装置を提供することを目的とする。   The present invention has been made in view of the above problems, and in the process of manufacturing a spherical surface acoustic wave element, a coating such as a resist or a sensitive film is applied to the surface of a spherical base material that is an object to be coated. It is an object of the present invention to provide a film forming method and a film forming apparatus for forming a uniform film in a region to which a photolithography process intended to be formed is applied.

本発明は、上記課題を達成するために、まず請求項1においては、少なくとも被塗布物である球状基材を回転支持体の回転軸から離間した箇所に固定して搭載する手段と、被膜の材料となる薬液を球状基材に滴下して、回転支持体を回転させる回転手段とを具備してなる球状基材への被膜形成装置としたものである。   In order to achieve the above object, according to the present invention, in claim 1, at least a spherical base material that is an object to be coated is fixedly mounted at a location separated from the rotation shaft of the rotary support, An apparatus for forming a coating film on a spherical base material is provided that includes a rotating means for dropping a chemical solution as a material onto the spherical base material and rotating a rotary support.

また、請求項2においては、遠心力によって薬液を球形表面に沿って泳動することによって、球形基材表面に被膜を形成する方法において、少なくとも被塗布物である球状基材を回転支持体の回転軸から離間した箇所に固定して搭載する工程と、被膜の材料となる薬液を球状基材に滴下する工程と、回転支持体を回転させる工程とを具備することを特徴とする球状基材への被膜形成方法としたものである。   According to a second aspect of the present invention, in the method of forming a film on the surface of the spherical substrate by moving the chemical solution along the spherical surface by centrifugal force, at least the spherical substrate that is the object to be coated is rotated by the rotating support. To a spherical base material comprising: a step of fixing and mounting at a location spaced from the shaft; a step of dripping a chemical solution as a coating material material onto the spherical base material; and a step of rotating the rotary support. This is a film forming method.

また、請求項3においては、前記薬液が微細パターン形成に用いる感光性レジスト材料であることを特徴とする請求項2記載の球状基材への被膜形成方法としたものである。   According to a third aspect of the present invention, in the method for forming a film on a spherical base material according to the second aspect, the chemical solution is a photosensitive resist material used for forming a fine pattern.

また、請求項4においては、前記薬液を球状基材に滴下する工程は、前記球状基材の最大外周線の中心軸を中心に前記球状基材を回転させながら行うことを特徴とする請求項2または3に記載の球状基材への被膜形成方法としたものである。   Further, in claim 4, the step of dropping the chemical solution onto the spherical base material is performed while rotating the spherical base material around the central axis of the maximum outer peripheral line of the spherical base material. The method for forming a film on the spherical base material described in 2 or 3 is used.

さらにまた、請求項5においては、前記球状基材の最大外周線を含む円環領域に弾性表面波を励起/検出する電気音響変換手段が形成されてなる弾性表面波素子を、前記球状基材の最大外周線の中心線が回転支持体の回転軸に垂直に交差する配置に固定し、感応膜の材料である薬液を滴下し、回転支持体を回転することにより、前記円環領域に、周囲の環境変化に従って弾性表面波の伝搬状態を変化させる感応膜を形成することを特徴とする弾性表面波素子の製造方法としたものである。   Furthermore, in claim 5, the surface acoustic wave element in which electroacoustic conversion means for exciting / detecting surface acoustic waves is formed in an annular region including the maximum outer peripheral line of the spherical base material is used as the spherical base material. The center line of the maximum outer peripheral line is fixed in an arrangement perpendicularly intersecting the rotation axis of the rotating support, and a chemical solution that is a material of the sensitive film is dropped, and the rotating support is rotated, thereby rotating the rotating region, A surface acoustic wave element manufacturing method is characterized by forming a sensitive film that changes the propagation state of a surface acoustic wave in accordance with changes in the surrounding environment.

本発明の球状基材への被膜形成方法及び被膜形成装置によれば、球状基材もしくは球状弾性表面波素子の伝搬路に相当する領域に、レジスト、感応膜等の被膜を均一に形成することができる。
また、回転手段の回転軸上の遠心力を利用しているため、球状基材を多数個搭載でき、量産性に富んだ球状基材への被膜形成装置を提供できる。
また、本発明の球状基材への被膜形成装置及び球状基材への被膜形成方法を用いて、球状弾性表面波素子表面に感応膜を形成することにより、弾性表面波の伝搬状態を変化させることができる球状弾性表面波素子を容易に得ることができる。
According to the method and apparatus for forming a film on a spherical substrate of the present invention, a film such as a resist or a sensitive film is uniformly formed in a region corresponding to the propagation path of the spherical substrate or the spherical surface acoustic wave element. Can do.
In addition, since the centrifugal force on the rotating shaft of the rotating means is used, a large number of spherical base materials can be mounted, and a coating device for forming a spherical base material with high mass productivity can be provided.
In addition, the propagation state of the surface acoustic wave is changed by forming a sensitive film on the surface of the spherical surface acoustic wave element by using the film forming apparatus for the spherical substrate and the method for forming the film on the spherical substrate of the present invention. It is possible to easily obtain a spherical surface acoustic wave element that can be used.

以下、本発明の実施の形態につき説明する。
図1は、請求項1に係る球状基材への被膜形成装置の一実施例を示す模式構成図である。本発明の球状基材への被膜形成装置は、回転支持体31を回転する回転手段30と、球状基材10を回転支持体31の回転軸から離間した箇所に固定して搭載する手段とを有している。
本発明において、球状基材とは、少なくともその一部に球形表面を有した基材であればよく、例えば球形の一部が欠けていたり平面を有していても良いものとする。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a schematic configuration diagram showing an embodiment of a film forming apparatus for a spherical base material according to claim 1. The apparatus for forming a coating film on a spherical base material of the present invention comprises a rotating means 30 for rotating the rotary support 31 and a means for fixing and mounting the spherical base material 10 at a location separated from the rotational axis of the rotary support 31. Have.
In the present invention, the spherical base material may be a base material having a spherical surface at least at a part thereof. For example, a part of the spherical shape may be missing or have a flat surface.

上記被膜形成装置を用いて、請求項2に係る球状基材に被膜を形成する方法について述べる。
回転支持体31の回転軸から離間した箇所に設置された基材支持台41に球状基材10を固定して、被膜の形成材料である薬液を球状基材10に滴下し、回転支持体31を回転手段にて回転させることにより、遠心塗布(球状基材の薬液に遠心力を働かせることにより流動させて膜形成を行うこと)により球状基材10表面に被膜を形成することができる。図2は、球状基材10の伝搬路領域(円環領域)に形成される被膜の配置について示したもので、球状弾性表面波素子の伝搬路領域と交わる最大外周線の法線方向にある回転軸中心について球状基材を回転させることによって、球状弾性表面波素子の伝搬路領域に渡って等しく領域を横切る表面に遠心力を作用させて、伝搬路領域に亘って均一な厚さの被膜膜を形成することを可能にしたものである。遠心力が伝搬路領域においては最も薬液を流動させる力を生じさせることができるために、伝搬路領域では非常に薄く、均一な膜を形成できる。
本発明において弾性表面波とは、材料表面に沿って弾性エネルギーを集中させて伝搬する弾性波を総称しており、漏洩弾性表面波、擬似弾性表面波、SH波、ラブ波、回廊波等も含み、それらを用いた素子も弾性表面波素子、また球状弾性表面波素子と表現している。
A method for forming a film on the spherical base material according to claim 2 using the film forming apparatus will be described.
The spherical base material 10 is fixed to a base material support base 41 installed at a location away from the rotation axis of the rotary support 31, and a chemical solution, which is a film forming material, is dropped onto the spherical base material 10. By rotating with a rotating means, a film can be formed on the surface of the spherical substrate 10 by centrifugal application (by forming a film by applying a centrifugal force to the chemical solution of the spherical substrate). FIG. 2 shows the arrangement of the coating formed in the propagation path region (annular region) of the spherical base material 10, which is in the normal direction of the maximum outer circumference line intersecting with the propagation path region of the spherical surface acoustic wave element. By rotating the spherical base material about the rotation axis center, a centrifugal force is applied to the surface that crosses the region equally over the propagation path region of the spherical surface acoustic wave element, so that the coating has a uniform thickness over the propagation path region. It is possible to form a film. Since the centrifugal force can generate the force that causes the most chemical liquid to flow in the propagation path region, a very thin and uniform film can be formed in the propagation path region.
In the present invention, the surface acoustic wave is a general term for an acoustic wave that propagates by concentrating elastic energy along the material surface, and includes a leaky surface acoustic wave, a pseudo surface acoustic wave, an SH wave, a love wave, a corridor wave, and the like. In addition, an element using them is also expressed as a surface acoustic wave element or a spherical surface acoustic wave element.

具体的に説明すると、図1に示す回転支持体31の中心の回転軸から離れた位置に設置された基材支持台41に球状基材10を固定し、回転軸中心について球状基材を回転させることによって、伝搬路領域に亘って均一な厚さの被膜を形成する。
この配置の場合、被膜が形成される伝搬路領域は、図1の球状基材10のZ軸を地軸とする赤道近傍である。
ここでは、球状基材10を回転支持体31に2個配置した事例を示しているが、回転支持体31の同心円位置に多数の球状基材10を配置して一括して成膜を行うことができる。基材支持台41への球状基材10の固定は真空吸着もしくは、取り外し可能な接着剤等が利用できる。
More specifically, the spherical base material 10 is fixed to the base material support base 41 installed at a position away from the central rotational axis of the rotary support 31 shown in FIG. 1, and the spherical base material is rotated about the rotational axis center. By doing so, a film having a uniform thickness is formed over the propagation path region.
In this arrangement, the propagation path region where the film is formed is in the vicinity of the equator with the Z axis of the spherical base material 10 of FIG.
Here, an example in which two spherical base materials 10 are arranged on the rotary support 31 is shown. However, a large number of spherical base materials 10 are arranged at concentric positions on the rotary support 31 and film formation is performed collectively. Can do. For fixing the spherical base material 10 to the base material support base 41, vacuum suction or a removable adhesive can be used.

図3(a)〜(b)は、球状基材10に薬液を滴下したときの薬液の広がり状態を示す説明図である。
薬液は図3(a)に示すように薬液供給ノズル51から滴下すると、重力にしたがって下方に厚くなるが、高速で回転するにしたがって、図3(b)に示すように薬液61は遠心力が働く方向に力を受けて薄く延ばされる。重力は遠心力に比較して小さく、伝搬路領域に均一な膜が形成される。
FIGS. 3A to 3B are explanatory views showing the spread state of the chemical solution when the chemical solution is dropped onto the spherical base material 10.
When the chemical liquid is dripped from the chemical liquid supply nozzle 51 as shown in FIG. 3A, it thickens downward according to gravity, but as it rotates at a high speed, the chemical liquid 61 has a centrifugal force as shown in FIG. It is stretched thinly by receiving force in the working direction. Gravity is smaller than centrifugal force, and a uniform film is formed in the propagation path region.

上記被膜の形成方法では、薬液を球状基材10の円環領域にわたって塗らなくては遠心力による薬液の移動によっても、塗布されない円環領域が残ることから、比較的多くの薬液を滴下する必要がある。
これを防ぐ方法として、図4(a)に示すように、先ず、水平位置で薬液供給ノズル51から薬液を滴下し、次に、図4(b)に示すように、球状基材10を中心にして回転させるか、あるいは図4(c)に示すように、水平面内に振動させることによって、薬液を広げ、図4(d)に示すように、球状基材10の表面上に薬液溜まり62を形成した後遠心塗布を行うことにより、薬液の節約が可能となる。
In the method for forming a film, since a ring region that is not applied remains even if the chemical solution is applied over the annular region of the spherical base material 10 even if the chemical solution is moved by centrifugal force, a relatively large amount of the chemical solution needs to be dropped. There is.
As a method for preventing this, as shown in FIG. 4A, first, a chemical solution is dropped from the chemical solution supply nozzle 51 in a horizontal position, and then, as shown in FIG. Then, as shown in FIG. 4C, the chemical solution is spread by vibrating in a horizontal plane, and as shown in FIG. 4D, the chemical solution reservoir 62 is formed on the surface of the spherical base material 10. The chemical solution can be saved by performing centrifugal coating after forming the film.

また、請求項4に係わる発明では、薬液供給ノズル51から薬液を滴下し、球状基材10表面に薬液溜まり62を形成する方法として、図5に示すように、予め球状基材10を回転しながら、薬液供給ノズル51から薬液を滴下することにより、必要箇所に、必要量の薬液溜まり62を形成することができる。
この方法は、使用薬液量を最小限に設定でき、且つ、均一に薬液溜まりを形成できることから、その後の遠心塗布工程での薬液流動プロセスが安定し、結果としてより均一な被膜をすることができる。球状基材10の表面に均一な被膜64が形成された状態を図6に示す。
Further, in the invention according to claim 4, as a method of dropping the chemical liquid from the chemical liquid supply nozzle 51 and forming the chemical liquid reservoir 62 on the surface of the spherical base material 10, the spherical base material 10 is rotated in advance as shown in FIG. However, by dropping the chemical solution from the chemical solution supply nozzle 51, a necessary amount of the chemical solution reservoir 62 can be formed at a necessary location.
In this method, the amount of chemical used can be set to the minimum and the chemical pool can be formed uniformly, so that the chemical fluid flow process in the subsequent centrifugal coating process is stabilized, and as a result, a more uniform film can be formed. . FIG. 6 shows a state in which a uniform film 64 is formed on the surface of the spherical substrate 10.

上記の被膜形成方法によると、図6に示すように、球状基材10の表面に均一な被膜を形成できるが、基材支持台41と球状基材10が固定された領域に薬液溜まり63が発生し、これを取り除くプロセスが必要になる。
そこで、図7に示すように、基材支持台41と球状基材10が固定された領域に貫通孔44を形成し、遠心塗布で押し出された薬液を貫通孔44を介して補助容器等に取り込むことにことにより、基材支持台41と球状基材10が固定された領域に薬液溜まりを無くすことができる。
According to the above-described film forming method, a uniform film can be formed on the surface of the spherical base material 10 as shown in FIG. 6, but the chemical solution reservoir 63 is formed in the region where the base material support base 41 and the spherical base material 10 are fixed. A process that occurs and removes it is required.
Therefore, as shown in FIG. 7, a through hole 44 is formed in a region where the base material support base 41 and the spherical base material 10 are fixed, and the chemical liquid pushed out by centrifugal coating is passed through the through hole 44 to an auxiliary container or the like. By taking in, a chemical | medical solution reservoir can be eliminated in the area | region where the base-material support stand 41 and the spherical base material 10 were fixed.

図8に、多数の球状基材10表面に被膜を形成する被膜形成装置の一例を示す。
この被膜形成装置は、回転板32の中央回転軸を回転中心として、上下の回転板32取り付けられた振り子型支持材42に多数の球状基材10を固定して、球状基材10に薬液を滴下して、回転板32を回転することにより、遠心塗布にて、一度に多くの球状基材10の表面に被膜を形成することができるようにしたものである。
この装置では、例えば、中央回転軸位置から外側の振り子型支持材42に薬液をシャワー、あるいは薬液滴下ノズルを用いて噴霧、あるいは滴下すれば、球状基材10への薬液の滴下と遠心塗布を非常に効率良く行うことが出来る。
FIG. 8 shows an example of a film forming apparatus for forming a film on the surface of many spherical base materials 10.
The coating film forming apparatus fixes a large number of spherical base materials 10 to a pendulum type support material 42 attached to the upper and lower rotary plates 32 with the central rotational axis of the rotary plate 32 as the center of rotation, and applies a chemical solution to the spherical base material 10. By dropping and rotating the rotating plate 32, a coating can be formed on the surface of many spherical base materials 10 at a time by centrifugal coating.
In this apparatus, for example, if a chemical solution is showered or sprayed by using a nozzle under a chemical droplet on the pendulum type support member 42 on the outer side from the center rotational axis position, the chemical solution is dropped onto the spherical base material 10 and centrifuged. It can be done very efficiently.

図9(a)に、球状基材10表面に被膜を形成する被膜形成装置の他の例を示す。
この被膜形成装置は、回転アーム33に連結された振り子型支持材43上に固定された球状基材10を回転アーム33にて振り子状に回転することにより、遠心塗布にて球状基材10表面に均一な被膜64を形成しようとするものである。この例では、回転アーム33及び振り子型支持材43をもって回転支持体を成している。
図9(b)〜(d)に、薬液を滴下して被膜が形成されるまでの被膜形成状態を示す。
まず、図9(b)に示すような静止状態で、振り子型支持材43上に固定された球状基材10に薬液供給ノズル51より薬液を滴下し、球状基材10の上部に薬液溜まり62を形成する。
次に、図9(c)に示すような低速回転状態で、球状基材10の上部に薬液溜まり62が伸ばされた状態の薬液溜まり62aを形成する。
さらに、図9(c)に示すような高速回転状態で、遠心塗布を行うことにより、球状基材10の表面に均一な被膜64を形成する。
この装置を使った被膜形成の利点は、静止状態で薬液を球状基材10の上面に滴下するだけで、球状基材10の円環領域全周に亘って均一な被膜を形成できることである。
FIG. 9A shows another example of a film forming apparatus that forms a film on the surface of the spherical base material 10.
The coating film forming apparatus rotates the spherical base material 10 fixed on a pendulum type support member 43 connected to the rotary arm 33 in a pendulum shape by the rotary arm 33, so that the surface of the spherical base material 10 is obtained by centrifugal coating. A uniform coating 64 is to be formed. In this example, the rotary arm 33 and the pendulum type support material 43 form a rotary support.
FIGS. 9B to 9D show the state of film formation until the film is formed by dropping the chemical solution.
First, in a stationary state as shown in FIG. 9B, a chemical solution is dropped from the chemical solution supply nozzle 51 onto the spherical base material 10 fixed on the pendulum type support member 43, and a chemical solution reservoir 62 is formed on the spherical base material 10. Form.
Next, the chemical reservoir 62a is formed in a state where the chemical reservoir 62 is extended on the upper part of the spherical base material 10 in a low-speed rotation state as shown in FIG. 9C.
Further, a uniform coating 64 is formed on the surface of the spherical substrate 10 by performing centrifugal coating in a high-speed rotation state as shown in FIG.
The advantage of film formation using this apparatus is that a uniform film can be formed over the entire circumference of the annular region of the spherical substrate 10 simply by dropping the chemical solution onto the upper surface of the spherical substrate 10 in a stationary state.

以下、本発明の被膜形成装置及び被膜形成方法を用いて、請求項5に係る球状弾性波素子の製造方法について説明する。
ここで、球状基材10を非圧電性基材で製造する場合と圧電性基材を用いて製造する場合とがあるが、ここでは圧電性基材を用いた球状弾性表面波素子の製造方法について説明する。
まず、球状基材10として、水晶などの圧電結晶基材を準備する。
この構成で弾性表面波素子を作成する場合は、結晶軸によって規定された弾性表面波を励起して周回させることが出きる特定の伝搬路が存在するために、弾性表面波素子作成上の結晶軸にしたがって製造する必要がある。
Hereinafter, the manufacturing method of the spherical elastic wave element concerning Claim 5 is demonstrated using the film formation apparatus and film formation method of this invention.
Here, there are a case where the spherical substrate 10 is manufactured using a non-piezoelectric substrate and a case where the spherical substrate 10 is manufactured using a piezoelectric substrate. Here, a method for manufacturing a spherical surface acoustic wave element using a piezoelectric substrate is used. Will be described.
First, a piezoelectric crystal substrate such as quartz is prepared as the spherical substrate 10.
When creating a surface acoustic wave device with this configuration, there is a specific propagation path through which the surface acoustic wave defined by the crystal axis can be excited and circulated. It is necessary to manufacture according to the axis.

次に、球状基材10の所定の結晶面に相当する位置に、すだれ状電極を形成するための導電膜(通常は金属膜)を蒸着もしくはスパッタリング等で形成する。
次に、本発明の被膜形成装置及び被膜形成方法を用いて、導電膜が形成された球状基材10の表面にフォトレジストを形成する。
Next, a conductive film (usually a metal film) for forming interdigital electrodes is formed by vapor deposition or sputtering at a position corresponding to a predetermined crystal plane of the spherical substrate 10.
Next, a photoresist is formed on the surface of the spherical base material 10 on which the conductive film is formed using the film forming apparatus and the film forming method of the present invention.

次に、フォトレジストが形成された球状基材10の表面にフォトマスクを用いて、パターン露光、現像等の一連のパターニング処理を行ってレジストパターンを形成する。   Next, a series of patterning processes such as pattern exposure and development are performed on the surface of the spherical base material 10 on which the photoresist has been formed using a photomask to form a resist pattern.

次に、レジストパターンをマスクにして導電膜を専用のエッチング液にてエッチングし、レジストパターンを剥離して、球状基材10のの最大外周線を含む円環領域よりなる伝搬路領域に弾性表面波を励起/検出する電気音響変換手段が形成された球状弾性表面波素子を作製することができる。
球状弾性表面波に用いられる電気音響変換手段は最も適しているものはすだれ状電極(あるいは櫛型電極)であって、通常圧電性基材に接して形成され、電極に電圧が印可されることで圧電膜あるいは圧電性の球状基材の表面に電界を及ぼして弾性波を発生することが出来る。
Next, the conductive film is etched with a dedicated etching solution using the resist pattern as a mask, the resist pattern is peeled off, and an elastic surface is formed on the propagation path region formed of the annular region including the maximum outer peripheral line of the spherical substrate 10. A spherical surface acoustic wave element in which electroacoustic conversion means for exciting / detecting waves is formed can be produced.
The most suitable electroacoustic transducer used for spherical surface acoustic waves is an interdigital electrode (or comb-shaped electrode), which is usually formed in contact with a piezoelectric substrate, and a voltage is applied to the electrode. Thus, an elastic field can be generated by applying an electric field to the surface of the piezoelectric film or the piezoelectric spherical base material.

なお、上記パターニング方法とは異なって、球状基材上に、予めレジストパターンを形成しておき、金属膜を形成した後レジストパターンを剥離してすだれ状電極を作製するリフトオフプロセスでも、本発明の被膜形成装置及び被膜形成方法を展開できる。   Unlike the above patterning method, a lift-off process in which a resist pattern is formed in advance on a spherical substrate, a metal film is formed, and then the resist pattern is peeled off to produce an interdigital electrode. A film forming apparatus and a film forming method can be developed.

次に、本発明の被膜形成装置及び被膜形成方法を用いて、球状弾性表面波素子の弾性表面波が周回する伝搬経路上に、周囲の環境変化(例えば、温度、湿度、圧力、ガス成分とその濃度等)に対して弾性表面波の伝搬特性(周回速度、減衰率など)が変化する感応膜を形成することで、弾性表面波の伝搬状態を変化できるセンサー付の球状弾性表面波素子
を作製できる。
Next, using the coating film forming apparatus and the coating film forming method of the present invention, on the propagation path around which the surface acoustic wave of the spherical surface acoustic wave element circulates, the surrounding environment changes (for example, temperature, humidity, pressure, gas components, and the like) A spherical surface acoustic wave device with a sensor that can change the propagation state of surface acoustic waves by forming a sensitive film that changes the surface acoustic wave propagation characteristics (circular velocity, attenuation rate, etc.) Can be made.

一方すだれ状電極を用いた球状弾性表面波素子は様々な形状が提案されており、本発明はそれらについて詳しくは述べないが、圧電性を有する球状基材10表面に直接形成されていても、あるいは図10に示すように、本発明の被膜形成装置及び被膜形成方法を用いて、感応膜が形成された球状基材10表面に極接近して(空隙を有して)、支持基材44に形成されたすだれ状電極が対向配置されることで、圧電性を有する球形基材10表面に電界を及ぼし、よってすだれ状電極パターンと同様の電界パターンを形成し、結果として球状基材10表面に弾性波を励起するものでもよい。   On the other hand, various shapes of spherical surface acoustic wave elements using interdigital electrodes have been proposed, and the present invention does not describe them in detail, but even if they are directly formed on the surface of the spherical base material 10 having piezoelectricity, Alternatively, as shown in FIG. 10, by using the coating film forming apparatus and the coating film forming method of the present invention, the support base material 44 is brought close to the surface of the spherical base material 10 on which the sensitive film is formed (with a gap). The interdigital electrodes formed on each other are arranged to face each other, so that an electric field is exerted on the surface of the spherical base material 10 having piezoelectricity, and thus an electric field pattern similar to the interdigital electrode pattern is formed. It is also possible to excite an elastic wave.

上記したように、本発明の被膜形成装置及び被膜形成方法を用いて、球状基材表面に被膜を形成することにより、均一なレジスト膜、感応膜を容易に、効率よく得ることができる。   As described above, a uniform resist film and sensitive film can be obtained easily and efficiently by forming a film on the surface of the spherical substrate using the film forming apparatus and the film forming method of the present invention.

本発明の球状基材への被膜形成装置の一実施例を示す説明図である。It is explanatory drawing which shows one Example of the film formation apparatus to the spherical base material of this invention. 球状基材10の伝搬路領域(円環領域)に形成される被膜の配置を示す説明図である。FIG. 3 is an explanatory diagram showing an arrangement of a film formed in a propagation path region (annular region) of a spherical base material 10. (a)〜(b)は、球状基材10に薬液を滴下したときの薬液の広がり状態を示す説明図である。(A)-(b) is explanatory drawing which shows the spreading state of a chemical | medical solution when a chemical | medical solution is dripped at the spherical base material 10. FIG. (a)〜(d)は、球状基材10に薬液を滴下し、薬液溜まりの形成状態を示す説明図である。(A)-(d) is explanatory drawing which dripped a chemical | medical solution to the spherical base material 10, and shows the formation state of a chemical | medical solution pool. 基材支持台を回転して球状基材10に薬液溜まりを形成している状態を示す説明図である。4 is an explanatory view showing a state in which a chemical liquid pool is formed on the spherical base material 10 by rotating the base material support base. FIG. 球状基材10に被膜を形成した状態の一例を示す説明図である。3 is an explanatory view showing an example of a state in which a film is formed on the spherical base material 10. FIG. 基材支持台に貫通孔を形成して、球状基材10に被膜を形成した状態の一例を示す説明図である。FIG. 3 is an explanatory diagram illustrating an example of a state in which a through hole is formed in a base material support base and a film is formed on a spherical base material. 球状基材への被膜形成装置の他の実施例を示す説明図である。It is explanatory drawing which shows the other Example of the film formation apparatus to a spherical base material. (a)は、球状基材への被膜形成装置の他の実施例を示す説明図である。(b)〜(d)は、薬液溜まり、被膜の形成状態を示す説明図である。(A) is explanatory drawing which shows the other Example of the film formation apparatus to a spherical base material. (B)-(d) is explanatory drawing which shows the formation state of a chemical | medical solution reservoir and a film. 本発明の被膜形成装置及び被膜形成方法を用いて作製した球状弾性表面波素子の一例を示す説明図である。It is explanatory drawing which shows an example of the spherical surface acoustic wave element produced using the film formation apparatus and film formation method of this invention. 球状弾性表面波素子の一例を示す説明図である。It is explanatory drawing which shows an example of a spherical surface acoustic wave element. (a)及び(b)は、スピンコータを用いた球状基材への被膜形成の一例を示す説明図である。(A) And (b) is explanatory drawing which shows an example of the film formation to the spherical base material using a spin coater. 球状弾性表面波素子におけるすだれ状電極と取り出し電極の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the interdigital electrode and extraction electrode in a spherical surface acoustic wave element.

符号の説明Explanation of symbols

10……球状基材
30……回転手段
31……回転支持体
32……回転板
33……回転アーム
41……基材支持台
42、43……振り子型支持材
44……支持材
51……薬液供給用ノズル
61……薬液
62、63……薬液溜まり
64……被膜
DESCRIPTION OF SYMBOLS 10 ... Spherical base material 30 ... Rotating means 31 ... Rotating support body 32 ... Rotating plate 33 ... Rotating arm 41 ... Base material support base 42, 43 ... Pendulum type support material 44 ... Support material 51 ... ... Chemical solution supply nozzle 61 ... Chemical solution 62, 63 ... Chemical solution reservoir 64 ... Film

Claims (5)

少なくとも被塗布物である球状基材を回転支持体の回転軸から離間した箇所に固定して搭載する手段と、被膜の材料となる薬液を球状基材に滴下して、回転支持体を回転させる回転手段とを具備してなる球状基材への被膜形成装置。   A means for fixing and mounting at least a spherical base material, which is an object to be coated, at a location spaced from the rotation axis of the rotary support, and a chemical solution as a coating material is dropped on the spherical base to rotate the rotary support. An apparatus for forming a coating on a spherical base material comprising a rotating means. 遠心力によって薬液を球形表面に沿って泳動することによって、球状基材表面に被膜を形成する方法において、
少なくとも被塗布物である球状基材を回転支持体の回転軸から離間した箇所に固定して搭載する工程と、被膜の材料となる薬液を球状基材に滴下する工程と、回転支持体を回転させる工程とを具備することを特徴とする球状基材への被膜形成方法。
In a method of forming a film on the surface of a spherical substrate by migrating a chemical solution along the spherical surface by centrifugal force,
Fixing and mounting at least a spherical base material, which is an object to be coated, at a position away from the rotation axis of the rotary support, dropping a chemical solution as a coating material onto the spherical base, and rotating the rotary support A method of forming a film on a spherical base material.
前記薬液が微細パターン形成に用いる感光性レジスト材料であることを特徴とする請求項2記載の球状基材への被膜形成方法。   3. The method for forming a film on a spherical substrate according to claim 2, wherein the chemical solution is a photosensitive resist material used for forming a fine pattern. 前記薬液を球状基材に滴下する工程は、前記球状基材の最大外周線の中心軸を中心に前記球状基材を回転させながら行うことを特徴とする請求項2または3に記載の球状基材への被膜形成方法。   4. The spherical base according to claim 2, wherein the step of dripping the chemical solution onto the spherical base material is performed while rotating the spherical base material about a central axis of a maximum outer peripheral line of the spherical base material. A method for forming a film on a material. 前記球状基材の最大外周線を含む円環領域に弾性表面波を励起/検出する電気音響変換手段が形成されてなる弾性表面波素子を、前記球状基材の最大外周線の中心線が回転支持体の回転軸に垂直に交差する配置に固定し、感応膜の材料である薬液を滴下し、回転支持体を回転することにより、前記円環領域に、周囲の環境変化に従って弾性表面波の伝搬状態を変化させる感応膜を形成することを特徴とする弾性表面波素子の製造方法。   A surface acoustic wave element in which electroacoustic conversion means for exciting / detecting surface acoustic waves is formed in an annular region including the maximum outer peripheral line of the spherical base material, and the center line of the maximum outer peripheral line of the spherical base material rotates. Fixing the substrate perpendicularly to the rotation axis of the support, dropping the chemical solution, which is the material of the sensitive film, and rotating the rotation support, the surface area wave of the surface wave is applied to the annular region according to the surrounding environment change. A method of manufacturing a surface acoustic wave device, comprising forming a sensitive film that changes a propagation state.
JP2004315415A 2004-10-29 2004-10-29 Film forming apparatus and method for manufacturing spherical surface acoustic wave element Active JP4552598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004315415A JP4552598B2 (en) 2004-10-29 2004-10-29 Film forming apparatus and method for manufacturing spherical surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004315415A JP4552598B2 (en) 2004-10-29 2004-10-29 Film forming apparatus and method for manufacturing spherical surface acoustic wave element

Publications (2)

Publication Number Publication Date
JP2006129126A true JP2006129126A (en) 2006-05-18
JP4552598B2 JP4552598B2 (en) 2010-09-29

Family

ID=36723316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004315415A Active JP4552598B2 (en) 2004-10-29 2004-10-29 Film forming apparatus and method for manufacturing spherical surface acoustic wave element

Country Status (1)

Country Link
JP (1) JP4552598B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315778A (en) * 2006-05-23 2007-12-06 Tohoku Univ Direction measuring method for anisotropic spherical material, direction measuring device for anisotropic spherical material, and manufacturing method of spherical acoustic surface wave element
JP2008128855A (en) * 2006-11-22 2008-06-05 Toppan Printing Co Ltd Direction measuring method of anisotropy spherical material, and manufacturing method of spherical surface acoustic wave device
JP2010098506A (en) * 2008-10-16 2010-04-30 Toppan Printing Co Ltd Method of manufacturing spherical surface acoustic wave element, and exposure mask
JP2011199517A (en) * 2010-03-18 2011-10-06 Toppan Printing Co Ltd Method for manufacturing spherical surface acoustic wave device
KR101343386B1 (en) * 2012-04-25 2013-12-19 (주)쓰리이 Coating apparatus for global body
KR101390241B1 (en) * 2012-08-23 2014-04-30 한국에너지기술연구원 Swing coating apparatus for board and method for swing coating using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045255A1 (en) * 1999-12-17 2001-06-21 Toppan Printing Co., Ltd. Saw device
JP2002141769A (en) * 2000-11-01 2002-05-17 Toppan Printing Co Ltd Spherical boundary wave element
JP2003115743A (en) * 2001-10-09 2003-04-18 Toppan Printing Co Ltd Surface acoustic wave element, electric signal processing apparatus employing surface acoustic wave element and environment assessment apparatus employing electric signal processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045255A1 (en) * 1999-12-17 2001-06-21 Toppan Printing Co., Ltd. Saw device
JP2002141769A (en) * 2000-11-01 2002-05-17 Toppan Printing Co Ltd Spherical boundary wave element
JP2003115743A (en) * 2001-10-09 2003-04-18 Toppan Printing Co Ltd Surface acoustic wave element, electric signal processing apparatus employing surface acoustic wave element and environment assessment apparatus employing electric signal processing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315778A (en) * 2006-05-23 2007-12-06 Tohoku Univ Direction measuring method for anisotropic spherical material, direction measuring device for anisotropic spherical material, and manufacturing method of spherical acoustic surface wave element
JP2008128855A (en) * 2006-11-22 2008-06-05 Toppan Printing Co Ltd Direction measuring method of anisotropy spherical material, and manufacturing method of spherical surface acoustic wave device
JP2010098506A (en) * 2008-10-16 2010-04-30 Toppan Printing Co Ltd Method of manufacturing spherical surface acoustic wave element, and exposure mask
JP2011199517A (en) * 2010-03-18 2011-10-06 Toppan Printing Co Ltd Method for manufacturing spherical surface acoustic wave device
KR101343386B1 (en) * 2012-04-25 2013-12-19 (주)쓰리이 Coating apparatus for global body
KR101390241B1 (en) * 2012-08-23 2014-04-30 한국에너지기술연구원 Swing coating apparatus for board and method for swing coating using the same

Also Published As

Publication number Publication date
JP4552598B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4552598B2 (en) Film forming apparatus and method for manufacturing spherical surface acoustic wave element
JP2004219889A (en) Oscillation mirror, method of manufacturing oscillation mirror, optical scanning device, optical write device and image forming apparatus
JP2010057155A (en) High frequency surface acoustic wave device
JP2012175672A (en) Spin chuck, device for manufacturing piezoelectric vibration piece equipped with spin chuck, method for manufacturing piezoelectric vibration piece, piezoelectric vibration piece, and piezoelectric vibrator
Li et al. A miniaturized biconvex quartz-crystal microbalance with large-radius spherical thickness distribution
JP2007036670A (en) Manufacturing method of surface acoustic wave element, and the surface acoustic wave element
JP2012004235A (en) Method for forming resin film and method for forming pattern
JP2008055268A (en) Method for applying photosensitizer, method for manufacturing piezoelectric vibrating reed, method for manufacturing piezoelectric device, piezoelectric vibrating reed and piezoelectric device
Mittal et al. Fabrication of high frequency surface acoustic wave (SAW) devices for real time detection of highly toxic chemical vapors
JP5070816B2 (en) Method for measuring direction of anisotropic spherical material and method for manufacturing spherical surface acoustic wave element
JP2001349816A (en) Method and apparatus for evaluating thin film
JP5169716B2 (en) Spherical surface acoustic wave device manufacturing method and exposure mask
JP2007192650A (en) Qcm sensor and qcm sensor device
JP2010147963A (en) Method of manufacturing crystal oscillator, and device using same
JP3998515B2 (en) Vibrating piece, vibrator, vibrating gyroscope, and method of manufacturing the vibrating piece
JP7348873B2 (en) Sensor element and gas sensor
JP3843745B2 (en) Manufacturing method of surface acoustic wave device
JP2006084316A (en) Mounting structure of piezoelectric vibrator for qcm sensor
JP5418339B2 (en) Manufacturing method of spherical surface acoustic wave device
CN117619685A (en) Spin coater and method for manufacturing semiconductor device by using the same
JP2021131315A (en) Vibration detection element and manufacturing method of the same
Sim et al. Spherical/spl phi/1 mm SAW device based on Ball Semiconductor/MEMS technology
JP2005006013A (en) Photolithographic method, method of manufacturing piezoelectric oscillating piece, method of manufacturing piezoelectric device, piezoelectric oscillating piece, semiconductor device, electronic part, piezoelectric device, electronic apparatus and portable telephone
JP2015159437A (en) Manufacturing method of piezoelectric transducer
JP2004320736A (en) Manufacturing of small quartz resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4552598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250