JP2001349816A - Method and apparatus for evaluating thin film - Google Patents

Method and apparatus for evaluating thin film

Info

Publication number
JP2001349816A
JP2001349816A JP2000169977A JP2000169977A JP2001349816A JP 2001349816 A JP2001349816 A JP 2001349816A JP 2000169977 A JP2000169977 A JP 2000169977A JP 2000169977 A JP2000169977 A JP 2000169977A JP 2001349816 A JP2001349816 A JP 2001349816A
Authority
JP
Japan
Prior art keywords
thin film
measured
exposure
thin
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000169977A
Other languages
Japanese (ja)
Other versions
JP3416618B2 (en
Inventor
Minoru Chokai
実 鳥海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Leading Edge Technologies Inc
Original Assignee
Semiconductor Leading Edge Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Leading Edge Technologies Inc filed Critical Semiconductor Leading Edge Technologies Inc
Priority to JP2000169977A priority Critical patent/JP3416618B2/en
Publication of JP2001349816A publication Critical patent/JP2001349816A/en
Application granted granted Critical
Publication of JP3416618B2 publication Critical patent/JP3416618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To evaluate the developing characteristics of a resist by measuring the dissolving speed of the resist at a high speed in the development. SOLUTION: A quartz vibrator 1, having a plurality of electrodes 2 each having a resist membrane 3 formed thereon, is connected to a resonance circuit 4, and the resonance frequencies of the respective electrodes are measured by a frequency mater 6 to be fetched in a calculator 7. The quartz vibrator is dipped in the developing liquid in a developing liquid tank 5, and the developing speeds of the resist in the respective electrode regions are measured from a change in the resonance frequencies which corresponds to the development of the resist at the respective electrode ports to evaluate the developing characteristics of the resist.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄膜評価技術に係
り、特にリソグラフィ・プロセスにおけるレジスト特性
の評価方法及び評価装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film evaluation technique, and more particularly to a method and an apparatus for evaluating resist characteristics in a lithography process.

【0002】[0002]

【従来の技術】LSIの高集積化にともない素子は微細化
し、露光波長の限界に迫る勢いである。この微細化を支
えているリソグラフィ・プロセスでは、キー・マテリア
ルであるレジストが高い解像性を達成するようにプロセ
ス条件の最適化が行われている。この最適化のときに、
考慮すべき重要な因子に、レジストの現像速度などの現
像特性がある。
2. Description of the Related Art As LSIs become more highly integrated, devices are becoming finer and approaching the limit of the exposure wavelength. In a lithography process that supports this miniaturization, process conditions are optimized so that a resist, which is a key material, achieves high resolution. During this optimization,
Important factors to consider include development characteristics such as resist development speed.

【0003】従来、レジストの現像特性の評価は光学的
手段や水晶振動子を用いたマイクロバランス法で行われ
ていた。例えば、光学的手法ではレジスト薄膜に光を照
射し、薄膜干渉を利用して、現像時の膜厚変化を測定す
る手法である。しかし、最近ではレジスト薄膜の膜厚が
光源の波長より短くなり、十分な精度で膜厚変化を測定
するのが難しいという本質的な問題がある。一方、マイ
クロバランス法は、数nmの膜厚でも測定できるという
高い感度を有するが、1枚の水晶振動子で1種類の露光条
件の現像速度しか測定できないために、レジストの現像
特性を調べるためには10種類以上の異なる露光量でそ
れぞれの水晶振動子上のレジストを照射し、溶解速度を
測定しなければならず、異なる露光量の枚数分だけ測定
を繰り返すために処理速度が遅いという実用上、大きな
問題がある。
Hitherto, the evaluation of the development characteristics of a resist has been performed by a microbalance method using an optical means or a quartz oscillator. For example, in an optical method, a resist thin film is irradiated with light, and a change in film thickness during development is measured using thin film interference. However, recently, there is an essential problem that the thickness of the resist thin film becomes shorter than the wavelength of the light source, and it is difficult to measure a change in the film thickness with sufficient accuracy. On the other hand, the microbalance method has high sensitivity that can measure even a film thickness of several nanometers, but since it can measure only one type of exposure condition with one crystal oscillator, it is necessary to examine the development characteristics of resist. In practice, the resist on each crystal unit must be irradiated with 10 or more different exposure doses, and the dissolution rate must be measured. Since the measurement is repeated for the number of different exposure doses, the processing speed is slow. Above, there is a big problem.

【0004】[0004]

【発明が解決しようとする課題】そこで、解決しようと
する課題はレジストの現像特性を高速に測定して、レジ
ストの現像特性を評価する方法およびこの方法に基づく
測定装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for measuring the development characteristics of a resist at a high speed to evaluate the development characteristics of the resist, and a measuring apparatus based on the method.

【0005】上記の課題を解決するために、複数の電極
を有する水晶振動子からなるマイクロバランスを用い
て、この水晶振動子上にレジスト膜を塗布し、この複数
の電極領域上のレジストを種々の露光量で照射し、現像
時のレジストの現像速度を個々の電極毎に測定する。マ
イクロバランス法とは水晶振動子の電極上の物質の質量
変化が共振周波数の変化に比例することを利用した質量
測定法であり、微量天秤としても公知である。
In order to solve the above-mentioned problems, a resist film is applied on a quartz oscillator using a microbalance composed of a quartz oscillator having a plurality of electrodes, and various resists on the plurality of electrode regions are formed. And the developing speed of the resist during development is measured for each electrode. The microbalance method is a mass measurement method utilizing a fact that a change in mass of a substance on an electrode of a quartz oscillator is proportional to a change in a resonance frequency, and is also known as a microbalance.

【0006】[0006]

【課題を解決するための手段】請求項1の発明にかかる
薄膜評価方法は、水晶振動子の表面電極の上に被測定薄
膜を形成して溶媒に浸漬し、前記薄膜の重量変化を測定
するマイクロバランス法において、前記水晶振動子の表
面電極を互いに分離して複数個設け、それぞれの表面電
極の上の前記被測定薄膜の重量変化を測定することを特
徴とするものである。
According to the thin film evaluation method of the present invention, a thin film to be measured is formed on a surface electrode of a quartz oscillator, immersed in a solvent, and a change in weight of the thin film is measured. In the microbalance method, a plurality of surface electrodes of the crystal unit are provided separately from each other, and a change in weight of the thin film to be measured on each surface electrode is measured.

【0007】請求項2の発明にかかる薄膜評価方法は、
請求項1に記載の方法において、前記複数個の表面電極
を、前記水晶振動子の表面におけるマイクロバランス法
の等感度の領域に設けたことを特徴とするものである。
The thin film evaluation method according to the second aspect of the present invention
2. The method according to claim 1, wherein the plurality of surface electrodes are provided on a surface of the crystal unit in a region of equal sensitivity by a microbalance method.

【0008】請求項3の発明にかかる薄膜評価方法は、
請求項1または2に記載の方法において、前記被測定薄
膜を、水晶振動子の表面に形成した後に所定の露光をし
てから前記溶媒に浸漬することを特徴とするものであ
る。
According to a third aspect of the present invention, there is provided a thin film evaluation method comprising:
3. The method according to claim 1, wherein the thin film to be measured is formed on a surface of a quartz oscillator, exposed to a predetermined light, and then immersed in the solvent.

【0009】請求項4の発明にかかる薄膜評価方法は、
請求項3に記載の方法において、前記複数の表面電極の
それぞれの領域において、その上に形成された前記被測
定薄膜に対して、それぞれ個別に制御された露光量で露
光することを特徴とするものである。
A thin film evaluation method according to a fourth aspect of the present invention
4. The method according to claim 3, wherein in each of the plurality of surface electrodes, the thin film to be measured formed thereon is exposed at an individually controlled exposure amount. Things.

【0010】請求項5の発明にかかる薄膜評価方法は、
請求項3または4に記載の方法において、前記複数の表
面電極を、前記露光による前記被測定薄膜の重量変化の
少ない領域では相対的に大きくし、重量変化の大きい領
域では相対的に小さく形成することを特徴とするもので
ある。
According to a fifth aspect of the present invention, there is provided a thin film evaluation method comprising:
5. The method according to claim 3, wherein the plurality of surface electrodes are formed relatively large in an area where the weight change of the thin film to be measured by the exposure is small, and relatively small in an area where the weight change is large. 6. It is characterized by the following.

【0011】請求項6の発明にかかる薄膜評価方法は、
請求項3または4に記載の方法において、前記露光は、
前記被測定薄膜の重量変化が少ない露光を前記水晶振動
子の相対的に感度の高い領域で行い、重量変化が大きい
露光を前記水晶振動子の相対的に感度の低い領域で行う
ことを特徴とするものである。
[0011] The thin film evaluation method according to the invention of claim 6 comprises:
The method according to claim 3, wherein the exposing is:
Exposure with a small change in weight of the thin film to be measured is performed in a relatively sensitive region of the crystal unit, and exposure with a large change in weight is performed in a relatively low sensitivity region of the crystal unit. Is what you do.

【0012】請求項7の発明にかかる薄膜評価装置は、
水晶振動子の表面電極の上に形成された被測定薄膜を溶
媒に浸漬し、前記薄膜の重量変化を測定する薄膜評価装
置(マイクロバランス装置)において、前記水晶振動子
の表面電極を互いに分離して複数個設けたことを特徴と
するものである。
According to a seventh aspect of the present invention, there is provided a thin film evaluation apparatus comprising:
The thin film to be measured formed on the surface electrode of the crystal unit is immersed in a solvent, and the surface electrodes of the crystal unit are separated from each other in a thin film evaluation device (micro balance device) for measuring the weight change of the thin film. It is characterized in that a plurality are provided.

【0013】請求項8の発明にかかる薄膜評価方法は、
請求項7に記載の装置において、前記複数個の表面電極
を、前記水晶振動子の表面におけるマイクロバランス法
の等感度の領域に設けたことを特徴とするものである。
[0013] The thin film evaluation method according to the invention of claim 8 comprises:
8. The device according to claim 7, wherein the plurality of surface electrodes are provided on a surface of the crystal unit in a region of equal sensitivity by a microbalance method.

【0014】請求項9の発明にかかる薄膜評価装置は、
請求項7に記載の装置において、前記複数個の表面電極
を、前記水晶振動子の表面におけるマイクロバランス法
の高感度の領域では相対的に小さくし、低感度の領域で
は相対的に大きく形成したことを特徴とするものであ
る。
According to a ninth aspect of the present invention, there is provided a thin film evaluation apparatus comprising:
8. The device according to claim 7, wherein the plurality of surface electrodes are formed relatively small in a high-sensitivity region of the microbalance method on the surface of the crystal unit and relatively large in a low-sensitivity region. It is characterized by the following.

【0015】請求項10の発明にかかる薄膜評価装置
は、請求項7〜9のいずれかに記載の装置において、前
記複数の表面電極の領域に対して、それぞれ個別に制御
された露光量で露光する露光手段を備えたことを特徴と
するものである。
According to a tenth aspect of the present invention, in the thin film evaluation apparatus according to any one of the seventh to ninth aspects, the plurality of surface electrode regions are exposed with individually controlled exposure amounts. The exposure means is provided.

【0016】請求項11の発明にかかる薄膜評価装置
は、請求項10に記載の装置において、前記露光手段
は、露光光源として光、電子線、X線、イオン線の少な
くともいずれかの光源を含むことを特徴とするものであ
る。
According to an eleventh aspect of the present invention, in the thin film evaluation apparatus according to the tenth aspect, the exposure means includes at least one of a light source, an electron beam, an X-ray, and an ion beam as an exposure light source. It is characterized by the following.

【0017】請求項12の発明にかかる薄膜評価装置
は、請求項10または11に記載の装置において、前記
複数個の表面電極を、前記被測定薄膜に対する露光量の
大きい領域では相対的に小さくし、露光量の小さい領域
では相対的に大きく形成したことを特徴とするものであ
る。
According to a twelfth aspect of the present invention, in the thin film evaluation apparatus according to the tenth or eleventh aspect, the plurality of surface electrodes are made relatively small in a region where the amount of exposure to the thin film to be measured is large. It is characterized in that it is formed relatively large in a region where the exposure amount is small.

【0018】請求項13の発明にかかる薄膜評価装置
は、請求項7〜12のいずれかに記載の装置において、
前記複数の表面電極がそれぞれ個別に接続された共振回
路と、この共振回路の共振周波数を検知する周波数計と
を備え、前記共振周波数の変化により前記複数の表面電
極の上に形成される前記被測定薄膜のそれぞれの重量変
化を測定することを特徴とするものである。
According to a thirteenth aspect of the present invention, in the thin film evaluation apparatus according to any one of the seventh to twelfth aspects,
A resonance circuit to which the plurality of surface electrodes are individually connected, and a frequency meter for detecting a resonance frequency of the resonance circuit; It is characterized in that the weight change of each of the measurement thin films is measured.

【0019】[0019]

【発明の実施の形態】以下に、この発明の実施の形態に
ついて図面を参照して説明する。図1および図2は、本
発明の一実施の形態による薄膜評価装置(マイクロバラ
ンス装置)および薄膜評価方法を説明するための図であ
る。図1は被測定試料としてのレジスト薄膜を塗布する
水晶振動子を示す平面図で、1は水晶振動子、2は水晶
振動子1の表面に互いに分離して形成された複数個の表
面電極を示す。この例では、表面電極2は、水晶振動子
1の同一円周上に12個形成されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are diagrams for explaining a thin film evaluation device (microbalance device) and a thin film evaluation method according to one embodiment of the present invention. FIG. 1 is a plan view showing a quartz oscillator for applying a resist thin film as a sample to be measured. 1 is a quartz oscillator, and 2 is a plurality of surface electrodes formed separately on the surface of the quartz oscillator 1. Show. In this example, twelve surface electrodes 2 are formed on the same circumference of the crystal unit 1.

【0020】この水晶振動子1の電極2を含む表面上
に、特性評価の対象となるレジスト薄膜3を塗布する。
レジスト薄膜3の塗布方法には回転塗布、キャスト、真
空蒸着や電解重合などの手段を用いることができる。水
晶振動子1のレジスト塗布をしていない裏面は保護部材
を用いてレジスト現像液に触れないようにして防水対策
を施しても良い。
A resist thin film 3 whose characteristics are to be evaluated is applied to the surface of the crystal unit 1 including the electrodes 2.
As a method for applying the resist thin film 3, means such as spin coating, casting, vacuum deposition, and electrolytic polymerization can be used. The back surface of the quartz crystal unit 1 on which the resist is not applied may be provided with a waterproof member by using a protective member so as not to come into contact with the resist developing solution.

【0021】図2は薄膜評価装置の概略構成を示す図で
ある。図2において、1は水晶振動子、3はこの水晶振
動子1の表面に塗布された評価対象のレジスト薄膜であ
り、いずれも断面図を示している(電極2は薄いので図
示省略している)。4は現像液槽、5は共振回路、6は
周波数計、7は制御用計算機を示す。レジスト薄膜3が
塗布された水晶振動子1からなる検出部を現像液槽4中
の現像液に浸漬し、現像中のレジスト薄膜3の重量変化
を測定する。勿論、現像液槽4をフローセルにし、現像
液を流しながら測定しても良い。
FIG. 2 is a diagram showing a schematic configuration of the thin film evaluation apparatus. In FIG. 2, reference numeral 1 denotes a crystal oscillator, and reference numeral 3 denotes a resist thin film to be evaluated applied to the surface of the crystal oscillator 1, all of which are cross-sectional views (the electrode 2 is not shown because it is thin). ). 4 is a developer tank, 5 is a resonance circuit, 6 is a frequency meter, and 7 is a control computer. A detection unit composed of the quartz oscillator 1 coated with the resist thin film 3 is immersed in a developing solution in a developing solution tank 4, and a change in weight of the resist thin film 3 during development is measured. Of course, the measurement may be performed while the developer tank 4 is a flow cell and the developer is supplied.

【0022】水晶振動子1の各電極2をリード線で発振
回路4へ接続する。この発振回路4によりこの電極2上
のレジスト薄膜3と水晶振動子の質量の和に対応する共
振振動数が得られる。つまり、レジスト薄膜3の質量分
Δmだけ付加するとこの電極部分の水晶振動子の共振周
波数がΔωだけ変化する。レジストの重量と水晶振動子
の共振周波数の関係は次の式1で与えられている。
Each electrode 2 of the crystal unit 1 is connected to an oscillation circuit 4 by a lead wire. By the oscillation circuit 4, a resonance frequency corresponding to the sum of the masses of the resist thin film 3 on the electrode 2 and the quartz oscillator is obtained. That is, when the amount of mass Δm of the resist thin film 3 is added, the resonance frequency of the crystal oscillator at the electrode portion changes by Δω. The relationship between the weight of the resist and the resonance frequency of the crystal unit is given by the following equation (1).

【0023】[0023]

【数1】 (Equation 1)

【0024】ここでωは共振周波数、Nは振動数定数、
Aは水晶振動子上の電極の表面積、ρは水晶振動子1の
密度である。従って、レジスト薄膜3の重量(質量)あ
るいは重量変化からレジスト薄膜3の膜厚の情報が得ら
れる。例えば、9MHzの水晶振動子1の直径10mm
の電極上のレジスト薄膜3の膜厚が1nm変化すると1
Hzの変化量に対応する。このようにnmオーダーで高
精度に膜厚を測定できる。この共振周波数を周波数計6
で計測し、制御用計算機7にデータ保存する。このよう
な回路を各電極2毎に設けて一回の現像で複数の電極2
上のレジスト薄膜3の現像速度を独立に同時測定でき
る。
Where ω is the resonance frequency, N is the frequency constant,
A is the surface area of the electrode on the crystal unit, and ρ is the density of the crystal unit 1. Accordingly, information on the thickness of the resist thin film 3 can be obtained from the weight (mass) or the change in weight of the resist thin film 3. For example, the diameter of a 9-MHz crystal unit 1 is 10 mm.
When the thickness of the resist thin film 3 on the electrode changes by 1 nm, 1
Hz. As described above, the film thickness can be measured with high accuracy on the order of nm. This resonance frequency is measured with a frequency meter 6
And save the data in the control computer 7. Such a circuit is provided for each electrode 2 and a plurality of electrodes 2 are formed by one development.
The development speed of the upper resist thin film 3 can be measured independently and simultaneously.

【0025】各電極2上のレジスト薄膜3を異なる露光
量で照射しておけば、一回の現像で複数の露光量に対応
する現像速度の情報が得られ、レジストの現像特性が容
易に速やかに評価できる。本発明の特徴である、一つの
水晶振動子1上のレジスト薄膜3の複数の領域に露光す
る手段としては、公知の露光装置を使用することができ
る。例えば、半導体用の縮小投影露光装置、電子線露光
装置、X線露光装置、ガルバノミラーを搭載したレーザ
ー光源、ステップタブレットを搭載した光源などを用い
る事が出来る。
By irradiating the resist thin film 3 on each electrode 2 with different exposure amounts, information on the development speed corresponding to a plurality of exposure amounts can be obtained by one development, and the development characteristics of the resist can be easily and quickly increased. Can be evaluated. As a means of exposing a plurality of regions of the resist thin film 3 on one crystal unit 1 as a feature of the present invention, a known exposure apparatus can be used. For example, a reduction projection exposure apparatus for semiconductors, an electron beam exposure apparatus, an X-ray exposure apparatus, a laser light source equipped with a galvanomirror, a light source equipped with a step tablet, and the like can be used.

【0026】電極2の領域は水晶振動子1上であればど
こでも可能であるが、目的により最適な場所の設定があ
る。円形の水晶振動子を基準振動で測定する場合は、円
の中心が感度がもっとも高く、周辺に向かうにつれて低
感度になる。したがって、複数の露光条件の現像速度を
同等の精度で測定するのであれば、図1に示すように円
形水晶振動子の中心から等距離の円周上に等しい面積の
露光領域を設定すればよい。
The area of the electrode 2 can be anywhere on the crystal unit 1, but there is an optimum location setting depending on the purpose. In the case of measuring a circular quartz oscillator with reference oscillation, the center of the circle has the highest sensitivity, and the sensitivity decreases toward the periphery. Therefore, if the developing speeds under a plurality of exposure conditions are measured with the same accuracy, an exposure area having an equal area on the circumference equidistant from the center of the circular crystal oscillator may be set as shown in FIG. .

【0027】信号強度は電極面積に比例するから、電極
面積を変えることも有効な手段である。面積を変える事
により全ての電極で等感度測定可能になる。図3はその
ような一例である。水晶振動子1の一番感度の高い、円
の中心上の電極11は面積が小さく、一番感度の低い、
周辺上の電極12は面積が大きくしてある。この様にし
て、どの電極上でも同感度で測定する事が出来る。
Since the signal intensity is proportional to the electrode area, changing the electrode area is also an effective means. By changing the area, equal sensitivity measurement can be performed for all electrodes. FIG. 3 is one such example. The electrode 11 on the center of the circle, which has the highest sensitivity of the crystal unit 1, has a small area and the lowest sensitivity.
The electrode 12 on the periphery has a large area. In this way, measurement can be performed with the same sensitivity on any electrode.

【0028】また、現像速度の変化に合わせて測定感度
を変える事も有効な測定方法である。例えば、ポジ型レ
ジストを測定する場合では低露光量領域は現像速度が小
さいために、マイクロバランスの信号強度変化が小さく
なり、より高精度で溶解速度を測定する必要がある。従
って、この低露光量条件を精度良く測定するためには、
低露光量領域を円形水晶振動子1の中心に設置すればよ
い。図4は測定感度を変えた電極を有する水晶振動子1
の例である。電極21が水晶振動子1の中心に位置する
ために測定感度が一番高い。逆に、露光量が多く、溶解
速度の変化が大きい場合は測定感度が低くてもよいの
で、周辺の電極22で測定する。このようにして、どの
溶解速度でも高精度で測定する事が可能になる。
It is also an effective measuring method to change the measuring sensitivity according to the change in the developing speed. For example, when measuring a positive resist, since the development speed is low in the low exposure area, the change in the signal intensity of the micro balance is small, and it is necessary to measure the dissolution speed with higher accuracy. Therefore, in order to accurately measure this low exposure condition,
What is necessary is just to set a low exposure amount area | region at the center of the circular crystal resonator 1. FIG. 4 shows a quartz oscillator 1 having electrodes with different measurement sensitivities.
This is an example. Since the electrode 21 is located at the center of the crystal unit 1, the measurement sensitivity is highest. Conversely, when the exposure amount is large and the change in the dissolution rate is large, the measurement sensitivity may be low. In this way, it is possible to measure with high accuracy at any dissolution rate.

【0029】一枚の水晶振動子1上の複数の領域を異な
る露光量で露光されたレジスト薄膜3を一度に現像し
て、この水晶振動子の各電極部分における共振周波数の
変化を測定する場合は、各共振周波数測定は干渉しない
ように独立させた方が好ましい。勿論、周波数測定回路
や計算機を必要に応じて1台で兼用しても良い。その場
合には、各電極の信号を順番に検出するタイミング回路
を設けて、各電極の共振周波数を順番に計測すれば良
い。各電極上の露光量は同じ露光量にして、再現性を調
べたり、データ量を増やして、測定精度を向上させる事
も可能である。勿論、露光工程なしにレジスト以外の膜
の除去や堆積を測定することも可能である。
When a resist thin film 3 in which a plurality of areas on one crystal unit 1 are exposed at different exposure amounts is developed at a time, and a change in resonance frequency at each electrode portion of the crystal unit is measured. It is preferable that each resonance frequency measurement be independent so as not to interfere with each other. Of course, one frequency measurement circuit and one computer may be used as needed. In that case, a timing circuit for sequentially detecting the signal of each electrode may be provided, and the resonance frequency of each electrode may be measured in order. The exposure amount on each electrode can be set to the same exposure amount to check reproducibility or increase the data amount to improve the measurement accuracy. Of course, it is also possible to measure the removal and deposition of the film other than the resist without the exposure step.

【0030】上記電極は、水晶振動子の両面で同様な複
数の電極構造を設けてもよいし、片方だけ、複数の電極
構造を設けてもよい。一方だけ、複数の電極構造を有す
る場合には、他方は一枚の大きな共通電極として作用す
る。この場合には、共通電極側にレジストを塗布すると
平坦な基板上での回転塗布になるので平坦性のよい塗布
膜が得られるという利点がある。両面とも複数電極を設
ける場合には各振動の独立性が高いという利点がある。
共通電極の場合には、その反対面の複数電極同士の間隔
が水晶振動子の厚さよりも広いことが、各振動の独立性
を保つために必要であることは言うまでもない。
The electrodes may be provided with a plurality of similar electrode structures on both sides of the crystal unit, or a plurality of electrode structures may be provided on only one of the electrodes. If only one has a plurality of electrode structures, the other acts as one large common electrode. In this case, when the resist is applied to the common electrode side, the application is performed by spin coating on a flat substrate, so that there is an advantage that a coating film having good flatness can be obtained. When a plurality of electrodes are provided on both surfaces, there is an advantage that the independence of each vibration is high.
In the case of a common electrode, it is needless to say that the interval between the plurality of electrodes on the opposite surface is wider than the thickness of the crystal unit in order to maintain the independence of each vibration.

【0031】以上に説明した本発明の装置および方法で
は、一枚の水晶振動子1上に塗布された被測定試料であ
るレジスト薄膜3上に複数の露光領域があるので、一回
の測定で複数の露光条件のデータを測定する事ができ、
測定時間が短時間になる。また、本発明では各電極の感
度を変える事ができるので、被測定試料に合わせた最適
の条件で測定できる。また、本発明の方法では、水晶振
動子1上に被測定試料であるレジスト薄膜3を塗布する
が、この水晶振動子1上にSiO2、SiNx、TiO2
などを堆積したり、Al、Pt、Cuなどを電着するこ
とにより、種々の下地材質の上でのレジストの特性を手
軽に評価することができる。
In the apparatus and method of the present invention described above, since there are a plurality of exposure regions on the resist thin film 3, which is a sample to be measured, applied on one crystal unit 1, a single measurement can be performed. Data of multiple exposure conditions can be measured,
Short measurement time. Further, in the present invention, the sensitivity of each electrode can be changed, so that measurement can be performed under the optimum conditions according to the sample to be measured. Further, in the method of the present invention, a resist thin film 3 as a sample to be measured is applied on the quartz oscillator 1, and SiO 2 , SiN x , TiO 2 is applied on the quartz oscillator 1.
By depositing such as, or electrodepositing Al, Pt, Cu, or the like, the characteristics of the resist on various base materials can be easily evaluated.

【0032】また、水晶振動子上のレジスト薄膜をパタ
ーン露光して、パターニングが形成されていく現像過程
を直接測定できる。即ち、露光領域がアルカリ水溶液に
可溶になるポジ型レジストの場合には、露光領域が溶解
すれば、共振周波数が増大し、膨潤すれば共振周波数が
低下することから容易に微細パターンにおけるレジスト
の溶解特性を評価できる。
Further, the resist thin film on the quartz oscillator is subjected to pattern exposure, and the development process in which patterning is formed can be directly measured. That is, in the case of a positive resist in which the exposed area becomes soluble in an aqueous alkaline solution, the resonance frequency increases if the exposed area is dissolved, and the resonance frequency decreases if the exposed area swells. Dissolution characteristics can be evaluated.

【0033】[0033]

【実施例】(実施例1)ここでは一例として、ポジ型レ
ジストの現像過程を測定した。図1に示す配置で金電極
2を蒸着法により設け、基本共振周波数5MHzのAT
カット水晶振動子1を用いた。この水晶振動子1上に、
ポジ型レジストを回転塗布し、加熱乾燥し、厚さ500
nmのレジスト薄膜3を形成した。この水晶振動子1上
のレジスト薄膜3をArFエキシマーレーザーを用いて、
0.1〜100mJ/cm2の照射量で露光した。
EXAMPLES (Example 1) As an example, the development process of a positive resist was measured. The gold electrode 2 is provided by the vapor deposition method in the arrangement shown in FIG.
A cut crystal resonator 1 was used. On this crystal oscillator 1,
Spin-coat positive resist, heat dry, thickness 500
A resist thin film 3 of nm was formed. The resist thin film 3 on the crystal unit 1 is formed by using an ArF excimer laser.
Exposure was performed at a dose of 0.1 to 100 mJ / cm 2 .

【0034】この水晶振動子1の電極2にリード線を接
続し、水晶振動子1のレジストを塗布していない裏面お
よびリード線を、現像液に触れぬように保護した後、リ
ード線を共振回路5に接続した。この回路5の共振周波
数を周波数分解能1Hzの周波数計6で測定し、制御用
計算機7に測定値を保存した。制御用計算機7はデータ
取得以外に、水晶振動子1を現像液に浸漬するまでに測
定を開始するタイミング制御や、水晶振動子1からなる
検出部や現像液の温度を一定に保つ温度制御も行なっ
た。
A lead wire is connected to the electrode 2 of the crystal unit 1 and the back surface of the crystal unit 1 on which the resist is not applied and the lead line are protected from touching the developing solution. Connected to circuit 5. The resonance frequency of the circuit 5 was measured by a frequency meter 6 having a frequency resolution of 1 Hz, and the measured value was stored in a control computer 7. In addition to data acquisition, the control computer 7 also performs timing control for starting measurement before the crystal unit 1 is immersed in the developing solution, and temperature control for keeping the temperature of the detecting unit including the crystal unit 1 and the developing solution constant. Done.

【0035】この水晶振動子1を20℃の雰囲気下でア
ルカリ現像液に浸漬したところ、図5に示すようなレジ
スト膜厚の時間変化が得られた。数1を用いて図5の縦
軸は周波数をレジスト薄膜の厚さに換算してある。0.
1mJ/cm2の照射量では膜厚は一定で時間変化しない
が、露光量が増大するにつれて、膜厚の現像時間変化が
大きくなり、100mJ/cm2の照射量では数秒でレジ
スト薄膜3が溶解していることが分かる。このように膜
厚の現像時間変化が露光量に依存する事がわかる。図5
から現像速度を容易に求めることができ、レジストの現
像特性が評価できる。このようにマイクロバランス法を
用いてもレジストの現像特性を、1度の現像で評価でき
るのは、本発明の電極構成を用いて初めて可能になった
ものである。
When this crystal resonator 1 was immersed in an alkaline developer at 20 ° C., a change in the resist film thickness over time as shown in FIG. 5 was obtained. The frequency on the vertical axis in FIG. 5 is converted into the thickness of the resist thin film using Equation 1. 0.
At an irradiation dose of 1 mJ / cm 2 , the film thickness is constant and does not change with time, but as the exposure dose increases, the development time change of the film thickness increases, and at an irradiation dose of 100 mJ / cm 2 , the resist thin film 3 dissolves in a few seconds. You can see that it is doing. Thus, it can be seen that the change in the development time of the film thickness depends on the exposure amount. FIG.
The development speed can be easily obtained from the above, and the development characteristics of the resist can be evaluated. As described above, the development characteristics of the resist can be evaluated by one-time development even if the microbalance method is used, which is made possible only by using the electrode configuration of the present invention.

【0036】(実施例2)図3に示す配置で金電極1
1,12を設けたこと以外は実施例1と同様の操作を繰
り返した。その結果、実施例1の図5と同様な測定結果
が得られ、図3の電極構造を用いる事により等感度で測
定できる。
(Embodiment 2) The gold electrode 1 in the arrangement shown in FIG.
The same operation as in Example 1 was repeated, except that 1, 12 were provided. As a result, a measurement result similar to that of FIG. 5 of Example 1 is obtained, and measurement can be performed with equal sensitivity by using the electrode structure of FIG.

【0037】(実施例3)次にネガ型レジストを用い
て、異なる測定感度で現像速度を測定した一例を示す。
図4に示す配置で金電極21,22を蒸着法により設
け、基本共振周波数5MHzのATカット水晶振動子1
を用いた。この水晶振動子1上に、ネガ型レジストを回
転塗布し、加熱乾燥し、厚さ300nmのレジスト薄膜
3を形成した。この水晶振動子1上のレジストをArFエ
キシマーレーザーを用いて、0.1〜500mJ/cm2
の照射量で露光した。ただし、中心に近い電極ほど高照
射量で露光した。
Example 3 Next, an example in which the developing speed was measured at different measurement sensitivities using a negative resist will be described.
In the arrangement shown in FIG. 4, gold electrodes 21 and 22 are provided by a vapor deposition method, and an AT-cut crystal resonator 1 having a fundamental resonance frequency of 5 MHz is provided.
Was used. A negative resist was spin-coated on the quartz oscillator 1 and dried by heating to form a resist thin film 3 having a thickness of 300 nm. The resist on the crystal unit 1 is removed using an ArF excimer laser by 0.1 to 500 mJ / cm 2.
Exposure. However, the electrode closer to the center was exposed at a higher irradiation dose.

【0038】この水晶振動子1の電極21,22にリー
ド線を接続し、水晶振動子1のレジストを塗布していな
い裏面およびリード線が現像液に触れぬように保護した
後、リード線を共振回路5に接続した。この回路5の共
振周波数を周波数分解能1Hzの周波数計6で測定し、
制御用計算機7に測定値を保存した。制御用計算機はデ
ータ取得以外に、水晶振動子1を現像液に浸漬するまで
に測定を開始するタイミング制御や、水晶振動子からな
る検出部や現像液の温度を一定に保つ温度制御も行なっ
た。
A lead wire is connected to the electrodes 21 and 22 of the quartz oscillator 1 to protect the back surface of the quartz oscillator 1 on which the resist is not applied and the lead wire so as not to come into contact with the developing solution. It was connected to the resonance circuit 5. The resonance frequency of this circuit 5 is measured by a frequency meter 6 having a frequency resolution of 1 Hz,
The measured values were stored in the control computer 7. In addition to data acquisition, the control computer also performed timing control to start measurement before immersing the crystal unit 1 in the developing solution, and temperature control for keeping the temperature of the detecting unit composed of the crystal unit and the developing solution constant. .

【0039】この水晶振動子を20℃の雰囲気下でアル
カリ現像液に浸漬したところ、高照射量でレジストが不
溶化して、溶解速度が減少した電極部分でも良好な信号
強度で測定する事ができた。このように微小な膜厚変化
のレジスト現像特性でも測定できるのは、本発明の電極
構成を用いて初めて可能になったものである。
When this crystal oscillator was immersed in an alkali developing solution at 20 ° C., the resist was insolubilized at a high irradiation dose, and it was possible to measure with good signal intensity even at the electrode portion where the dissolution rate was reduced. Was. Such measurement of the resist development characteristics with a minute change in film thickness is only possible with the electrode configuration of the present invention.

【0040】(実施例4)実施例1でレジストを電子線
用レジストにし、ArFエキシマーレーザで露光する代わ
りに、電子線を用いて0.1〜100μC/cm2で露光
する事以外、同じ操作を繰り返した。その結果が、電子
線レジストの現像特性を良好に測定する事が出来た。
Example 4 The same operation as in Example 1 was carried out except that the resist was changed to an electron beam resist and exposed to 0.1 to 100 μC / cm 2 using an electron beam instead of exposing with an ArF excimer laser. Was repeated. As a result, the development characteristics of the electron beam resist were successfully measured.

【0041】[0041]

【発明の効果】以上説明したように、本発明の方法で
は、一回の現像で複数の露光量のレジストの溶解速度を
定量的に実時間測定して、レジストの現像特性を評価で
きるという利点がある。本発明では水晶振動子上の質量
を測定するのであるから、レジスト薄膜に限らず、無機
蒸着膜などでも同様に測定できる利点がある。
As described above, the method of the present invention has an advantage that the developing characteristics of a resist can be evaluated by quantitatively measuring the dissolution rate of a resist having a plurality of exposure amounts in a single development in real time. There is. In the present invention, since the mass on the quartz oscillator is measured, there is an advantage that the measurement can be similarly performed not only on the resist thin film but also on an inorganic vapor deposition film or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複数の電極を有する水晶振動子の図で
ある。
FIG. 1 is a diagram of a crystal resonator having a plurality of electrodes according to the present invention.

【図2】本発明の薄膜評価装置の概略構成を示す図であ
る。
FIG. 2 is a diagram showing a schematic configuration of a thin film evaluation apparatus of the present invention.

【図3】本発明の等感度の電極を有する水晶振動子の図
である。
FIG. 3 is a diagram of a crystal resonator having electrodes of equal sensitivity according to the present invention.

【図4】本発明の異なる感度の電極を有する水晶振動子
の図である。
FIG. 4 is a diagram of a quartz resonator having electrodes of different sensitivities according to the present invention.

【図5】ポジ型レジストの膜厚の現像時間変化を表す図
である。
FIG. 5 is a diagram illustrating a change in development time of the film thickness of a positive resist.

【符号の説明】[Explanation of symbols]

1 水晶振動子、 2 電極、 3 レジスト薄膜、 4 現像液槽、 5 共振回路、 6 周波数計、 7 制御用計算機。 1 crystal oscillator, 2 electrodes, 3 resist thin film, 4 developer tank, 5 resonance circuit, 6 frequency meter, 7 control computer.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 水晶振動子の表面電極の上に被測定薄膜
を形成して溶媒に浸漬し、前記薄膜の重量変化を測定す
るマイクロバランス法において、前記水晶振動子の表面
電極を互いに分離して複数個設け、それぞれの表面電極
の上の前記被測定薄膜の重量変化を測定することを特徴
とする薄膜評価方法。
In a microbalance method for forming a thin film to be measured on a surface electrode of a quartz oscillator and immersing the thin film in a solvent, and measuring a weight change of the thin film, the surface electrodes of the quartz oscillator are separated from each other. A thin film evaluation method comprising: measuring a weight change of the thin film to be measured on each surface electrode;
【請求項2】 前記複数個の表面電極を、前記水晶振動
子の表面におけるマイクロバランス法の等感度の領域に
設けたことを特徴とする請求項1に記載の薄膜評価方
法。
2. The thin-film evaluation method according to claim 1, wherein the plurality of surface electrodes are provided on a surface of the crystal unit at a region of equal sensitivity by a microbalance method.
【請求項3】 前記被測定薄膜を、水晶振動子の表面に
形成した後に所定の露光をしてから前記溶媒に浸漬する
ことを特徴とする請求項1または2に記載の薄膜評価方
法。
3. The method for evaluating a thin film according to claim 1, wherein the thin film to be measured is formed on the surface of a quartz oscillator, exposed to a predetermined light, and then immersed in the solvent.
【請求項4】 前記複数の表面電極のそれぞれの領域に
おいて、その上に形成された前記被測定薄膜に対して、
それぞれ個別に制御された露光量で露光することを特徴
とする請求項3に記載の薄膜評価方法。
4. In each region of the plurality of surface electrodes, the measured thin film formed thereon is
4. The thin film evaluation method according to claim 3, wherein the exposure is performed at an individually controlled exposure amount.
【請求項5】 前記複数の表面電極を、前記露光による
前記被測定薄膜の重量変化の少ない領域では相対的に大
きくし、重量変化の大きい領域では相対的に小さく形成
することを特徴とする請求項3または4に記載の薄膜評
価方法。
5. The method according to claim 1, wherein the plurality of surface electrodes are formed relatively large in a region where the weight change of the thin film to be measured due to the exposure is small, and relatively small in a region where the weight change is large. Item 5. The method for evaluating a thin film according to item 3 or 4.
【請求項6】 前記露光は、前記被測定薄膜の重量変化
が少ない露光を前記水晶振動子の相対的に感度の高い領
域で行い、重量変化が大きい露光を前記水晶振動子の相
対的に感度の低い領域で行うことを特徴とする請求項3
または4に記載の薄膜評価方法。
6. The exposure is performed in an area where the weight change of the thin film to be measured is small in a relatively sensitive region of the quartz oscillator, and an exposure in which the weight change is large is relatively sensitive to the quartz oscillator. 4. The method according to claim 3, wherein the step is performed in an area where the temperature is low.
Or the thin-film evaluation method according to 4.
【請求項7】 水晶振動子の表面電極の上に形成された
被測定薄膜を溶媒に浸漬し、前記薄膜の重量変化を測定
する薄膜評価装置において、前記水晶振動子の表面電極
を互いに分離して複数個設けたことを特徴とする薄膜評
価装置。
7. A thin film evaluation apparatus for immersing a thin film to be measured formed on a surface electrode of a quartz oscillator in a solvent and measuring a weight change of the thin film, separating the surface electrodes of the quartz oscillator from each other. A thin-film evaluation device, wherein a plurality of thin-film evaluation devices are provided.
【請求項8】 前記複数個の表面電極を、前記水晶振動
子の表面におけるマイクロバランス法の等感度の領域に
設けたことを特徴とする請求項7に記載の薄膜評価装
置。
8. The thin-film evaluation apparatus according to claim 7, wherein the plurality of surface electrodes are provided on a surface of the crystal unit in a region of equal sensitivity by a microbalance method.
【請求項9】 前記複数個の表面電極を、前記水晶振動
子の表面におけるマイクロバランス法の高感度の領域で
は相対的に小さくし、低感度の領域では相対的に大きく
形成したことを特徴とする請求項7に記載の薄膜評価装
置。
9. The method according to claim 1, wherein the plurality of surface electrodes are formed relatively small in a high sensitivity region of the microbalance method on the surface of the crystal unit, and formed relatively large in a low sensitivity region. The thin-film evaluation device according to claim 7.
【請求項10】 前記複数の表面電極の領域に対して、
それぞれ個別に制御された露光量で露光する露光手段を
備えたことを特徴とする請求項7〜9のいずれかに記載
の薄膜評価装置。
10. The method according to claim 10, wherein:
The thin film evaluation apparatus according to claim 7, further comprising an exposure unit configured to perform exposure with an individually controlled exposure amount.
【請求項11】 前記露光手段は、露光光源として光、
電子線、X線、イオン線の少なくともいずれかの光源を
含むことを特徴とする請求項10に記載の薄膜評価装
置。
11. The exposure means comprises: light as an exposure light source;
The thin-film evaluation apparatus according to claim 10, further comprising a light source of at least one of an electron beam, an X-ray, and an ion beam.
【請求項12】 前記複数個の表面電極を、前記被測定
薄膜に対する露光量の大きい領域では相対的に小さく
し、露光量の小さい領域では相対的に大きく形成したこ
とを特徴とする請求項10または11に記載の薄膜評価
装置。
12. The device according to claim 10, wherein the plurality of surface electrodes are formed relatively small in a region where the exposure amount of the thin film to be measured is large and relatively large in a region where the exposure amount is small. Or the thin-film evaluation device according to 11.
【請求項13】 前記複数の表面電極がそれぞれ個別に
接続された共振回路と、この共振回路の共振周波数を検
知する周波数計とを備え、前記共振周波数の変化により
前記複数の表面電極の上に形成される前記被測定薄膜の
それぞれの重量変化を測定することを特徴とする請求項
7〜12のいずれかに記載の薄膜評価装置。
13. A resonance circuit to which the plurality of surface electrodes are individually connected, and a frequency meter for detecting a resonance frequency of the resonance circuit, wherein a change in the resonance frequency causes a change in the resonance frequency on the plurality of surface electrodes. 13. The thin film evaluation apparatus according to claim 7, wherein a change in weight of each of the thin films to be measured is measured.
JP2000169977A 2000-06-07 2000-06-07 Thin film evaluation method and thin film evaluation apparatus Expired - Fee Related JP3416618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000169977A JP3416618B2 (en) 2000-06-07 2000-06-07 Thin film evaluation method and thin film evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000169977A JP3416618B2 (en) 2000-06-07 2000-06-07 Thin film evaluation method and thin film evaluation apparatus

Publications (2)

Publication Number Publication Date
JP2001349816A true JP2001349816A (en) 2001-12-21
JP3416618B2 JP3416618B2 (en) 2003-06-16

Family

ID=18672755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000169977A Expired - Fee Related JP3416618B2 (en) 2000-06-07 2000-06-07 Thin film evaluation method and thin film evaluation apparatus

Country Status (1)

Country Link
JP (1) JP3416618B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187485A (en) * 2006-01-11 2007-07-26 National Institute Of Advanced Industrial & Technology Detection sensor
SG133444A1 (en) * 2003-01-31 2007-07-30 Tokyo Ohka Kogyo Co Ltd Evaluation method of resist composition using immersion solvent
JP2007263564A (en) * 2006-03-01 2007-10-11 Risotetsuku Japan Kk Qcm device
EP2407683A2 (en) 2010-07-13 2012-01-18 Nihon Dempa Kogyo Co., Ltd. Brake mechanism, transport apparatus and industrial apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG133444A1 (en) * 2003-01-31 2007-07-30 Tokyo Ohka Kogyo Co Ltd Evaluation method of resist composition using immersion solvent
US7501220B2 (en) 2003-01-31 2009-03-10 Tokyo Ohka Kogyo Co., Ltd. Resist composition
US7527909B2 (en) 2003-01-31 2009-05-05 Tokyo Ohka Kogyo Co., Ltd. Resist composition
US7541138B2 (en) 2003-01-31 2009-06-02 Tokyo Ohka Kogyo Co., Ltd. Resist composition
US8198004B2 (en) 2003-01-31 2012-06-12 Tokyo Ohka Kogyo Co., Ltd. Resist composition
JP2007187485A (en) * 2006-01-11 2007-07-26 National Institute Of Advanced Industrial & Technology Detection sensor
JP2007263564A (en) * 2006-03-01 2007-10-11 Risotetsuku Japan Kk Qcm device
EP2407683A2 (en) 2010-07-13 2012-01-18 Nihon Dempa Kogyo Co., Ltd. Brake mechanism, transport apparatus and industrial apparatus
US8752909B2 (en) 2010-07-13 2014-06-17 Nihon Dempa Kogyo Co., Ltd. Brake mechanism, transport apparatus and industrial apparatus

Also Published As

Publication number Publication date
JP3416618B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JP3416618B2 (en) Thin film evaluation method and thin film evaluation apparatus
JP4476496B2 (en) High-frequency measurement circuit with intrinsic noise reduction for resonant chemical sensors
JPH0128373B2 (en)
JP2003101360A (en) Method of forming electrode pattern of surface acoustic wave-device
JP4552598B2 (en) Film forming apparatus and method for manufacturing spherical surface acoustic wave element
JP2004282495A (en) Piezoelectric vibrator for measuring mass, manufacturing method thereof and device for measuring mass
JP2000260845A (en) Evaluating method and micro balance system for swelling thin-film
JP4043949B2 (en) Manufacturing method and inspection apparatus for surface acoustic wave element
CN112129237B (en) Method for evaluating photoresist photoetching efficiency based on quartz crystal microbalance
JP2731914B2 (en) Inspection board and manufacturing method thereof
Sim et al. Spherical/spl phi/1 mm SAW device based on Ball Semiconductor/MEMS technology
JP3362860B2 (en) Method for manufacturing surface acoustic wave device
JP3998515B2 (en) Vibrating piece, vibrator, vibrating gyroscope, and method of manufacturing the vibrating piece
JPS63260019A (en) Method of forming resist pattern
JP2913988B2 (en) How to measure heat treatment effect
JPH1092789A (en) Etching speed evaluation method
JP2005147778A (en) Method for fixing receptor to quartz oscillator electrode surface, and receptor fixation quartz oscillator
Croux DUV Lithography for VHF resonators
JPS6216523A (en) Method and device for developing of resist pattern
JP2626234B2 (en) Method for manufacturing semiconductor device
JPH0465114A (en) Resist developing solution inspection device
Mueller Diffusion in polymers using quartz crystal microbalance techniques
JP2010098506A (en) Method of manufacturing spherical surface acoustic wave element, and exposure mask
JPH0661325A (en) Method for analyzing semiconductor device
JPH064576Y2 (en) Wafer edge exposure system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090404

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees