JP2006128180A - Method of manufacturing transparent sheet for electromagnetic wave shield - Google Patents

Method of manufacturing transparent sheet for electromagnetic wave shield Download PDF

Info

Publication number
JP2006128180A
JP2006128180A JP2004310830A JP2004310830A JP2006128180A JP 2006128180 A JP2006128180 A JP 2006128180A JP 2004310830 A JP2004310830 A JP 2004310830A JP 2004310830 A JP2004310830 A JP 2004310830A JP 2006128180 A JP2006128180 A JP 2006128180A
Authority
JP
Japan
Prior art keywords
metal layer
laminate
electromagnetic wave
transparent sheet
conductive pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004310830A
Other languages
Japanese (ja)
Other versions
JP4657676B2 (en
Inventor
Masaharu Seki
雅治 関
Tokihiro Umeda
旬宏 梅田
Soichi Matsuzaki
壮一 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2004310830A priority Critical patent/JP4657676B2/en
Publication of JP2006128180A publication Critical patent/JP2006128180A/en
Application granted granted Critical
Publication of JP4657676B2 publication Critical patent/JP4657676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a transparent sheet for an electromagnetic wave shield at a low cost in relation with the transparent sheet for the electromagnetic wave shield which intercepts a harmful electromagnetic wave generated from the display of a CRT, a liquid crystal, plasma, etc. <P>SOLUTION: As shown in Fig., high and low constitutions are provided on the front surface of the transparent sheet 1, and a metal layer 3 is laminated on the front surface of the transparent sheet 1. Next, the high part of the metal layer 3 is deleted, and thereby, a lattice-like conductive pattern is formed in a low part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,CRT、液晶、プラズマ等のデスプレーなどから発生する有害な電磁波を効果的に遮断する電磁波シールド用透明シートの製造方法に関するものである。特に、導電パターンを有する電磁波シールド用透明シートの製造方法に関するものである。   The present invention relates to a method for producing a transparent sheet for electromagnetic wave shielding that effectively blocks harmful electromagnetic waves generated from a display such as a CRT, liquid crystal, or plasma. In particular, the present invention relates to a method for producing a transparent sheet for electromagnetic wave shielding having a conductive pattern.

従来、CRT、液晶、プラズマ等のデスプレーなどから発生する有害な電磁波を遮断する電磁波シールド用透明シートには、透光性と電磁波の遮断効果を両立させるために、透明基板の表面に格子状の金属を設けていた(たとえば、特許文献1)。
特開平3−35284
Conventionally, a transparent sheet for electromagnetic wave shielding that blocks harmful electromagnetic waves generated from a display such as CRT, liquid crystal, plasma, etc. has a lattice-like shape on the surface of a transparent substrate in order to achieve both translucency and electromagnetic wave blocking effect. Metal was provided (for example, Patent Document 1).
JP-A-3-35284

しかしながら、透明基板の表面に格子状の金属を設けるには、透明基板の表面全面に金属層を箔、めっきまたは蒸着により形成後、レジストフィルム貼り付け−露光−現像−ケミカルエッチング−レジストフィルムはく離のフォトリソグラフィー工法を利用して細線加工製造することから、きわめてコスト高になっていた。   However, in order to provide a grid-like metal on the surface of the transparent substrate, a metal layer is formed on the entire surface of the transparent substrate by foil, plating or vapor deposition, and then a resist film is attached, exposed, developed, chemically etched, and the resist film is peeled off. Since the thin wire processing is performed using the photolithography method, the cost is extremely high.

本発明は上記の課題を解決するために、表面には高低を設けていてその表面には金属層が積層されている透明シートにあって、前記金属層の高部部分を削除することにより、前記金属層の低部部分に導電パターンを形成させる電磁波シールド用透明シートの製造方法を提供するものである。
そして、より具体的には、導電パターンを有する電磁波シールド用透明シートの製造方法において、透明基板上に、変形可能な積層体を設ける第1工程と、前記積層体上に金属層を設ける第2工程と、前記導電パターンに対応する凸部を設けた押し付け治具で、前記金属層側から前記積層体を押し付け、前記金属層に高低を設ける第3工程と、前記金属層の高部部分を削除する第4工程と、を有する電磁波シールド用透明シートの製造方法を提供するものである。
また、導電パターンを有する電磁波シールド用透明シートの製造方法において、透明基板上に、積層体を設ける第1工程と、前記積層体に、概ね前記導電パターンに対応するスリットまたは凹部を設ける第2工程と、前記積層体側から前記透明基板上に金属層を設ける第3工程と、前記金属層の高部部分を削除する第4工程と、を有する電磁波シールド用透明シートの製造方法を提供するものである。
また、導電パターンを有する電磁波シールド用透明シートの製造方法において、透明基板上に、概ね前記導電パターンになる以外の部分に印刷積層体を設ける第1工程と、前記積層体側から前記透明基板上に金属層を設ける第2工程と、前記金属層の高部部分を削除する第3工程と、を有する電磁波シールド用透明シートの製造方法を提供するものである。
In order to solve the above-mentioned problems, the present invention provides a transparent sheet in which a height is provided on the surface and a metal layer is laminated on the surface, and by removing a high portion of the metal layer, The present invention provides a method for producing a transparent sheet for electromagnetic wave shielding in which a conductive pattern is formed in the lower part of the metal layer.
More specifically, in the method for producing a transparent sheet for electromagnetic wave shielding having a conductive pattern, a first step of providing a deformable laminate on a transparent substrate, and a second step of providing a metal layer on the laminate. A step, a third step of pressing the laminate from the metal layer side with a pressing jig provided with a convex portion corresponding to the conductive pattern, and providing a height on the metal layer, and a high portion of the metal layer. The manufacturing method of the transparent sheet for electromagnetic wave shields which has the 4th process to delete is provided.
Moreover, in the method for producing a transparent sheet for electromagnetic wave shielding having a conductive pattern, a first step of providing a laminate on a transparent substrate, and a second step of providing a slit or a recess substantially corresponding to the conductive pattern on the laminate. And a third step of providing a metal layer on the transparent substrate from the laminate side, and a fourth step of removing a high portion of the metal layer, and a method for producing a transparent sheet for electromagnetic wave shielding. is there.
Moreover, in the method for producing a transparent sheet for electromagnetic wave shielding having a conductive pattern, a first step of providing a printed laminate on a transparent substrate on a portion other than the conductive pattern, and on the transparent substrate from the laminate side. The present invention provides a method for producing a transparent sheet for electromagnetic wave shielding, which includes a second step of providing a metal layer and a third step of removing a high portion of the metal layer.

以上の通り、本発明によれば、優れた透光性と優れた電磁波の遮蔽効果を有する電磁波シールド用透明シートを、簡易な方法でかつ低コストで製造することができる。
As described above, according to the present invention, a transparent sheet for electromagnetic wave shielding having excellent translucency and excellent electromagnetic wave shielding effect can be produced by a simple method and at low cost.

以下、本発明を詳細に説明する。
本発明でいう透明基板とは、主に、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル類、ポリエチレン、ポリプロピレン、ポリスチレン、EVAなどのポリオレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリサルホン、ポリエーテルサルホン、ポリカーボネート、ポリアミド、ポリイミド、アクリル樹脂などのプラスチックからなるフィルムで全可視光透過率が70%以上のものをいう。これらは本発明の目的を妨げない程度に着色していてもよく、さらに単層で使うこともできるが、2層以上を組み合わせた多層フィルムとして使ってもよい。このうち透明性、耐熱性、取り扱いやすさ、価格の点からポリエチレンテレフタレートフィルムが最も適している。
この透明プラスチック基材の厚みは、薄いと取り扱い性が悪く、厚いと可視光の透過率が低下するため5〜300μmが好ましい。さらに好ましくは、10〜200μmが、より好ましくは、25〜100μmである。また、同程度透明のガラス板、セラミック板でもかまわない。
Hereinafter, the present invention will be described in detail.
The transparent substrate referred to in the present invention mainly includes polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene, polypropylene, polystyrene and EVA, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polysulfone, A film made of plastic such as polyethersulfone, polycarbonate, polyamide, polyimide, acrylic resin, etc., having a total visible light transmittance of 70% or more. These may be colored to such an extent that they do not interfere with the object of the present invention, and can be used as a single layer, but may be used as a multilayer film in which two or more layers are combined. Of these, a polyethylene terephthalate film is most suitable in terms of transparency, heat resistance, ease of handling, and cost.
The thickness of the transparent plastic substrate is preferably 5 to 300 μm because the handleability is poor when it is thin, and the transmittance of visible light decreases when it is thick. More preferably, it is 10-200 micrometers, More preferably, it is 25-100 micrometers. Also, a glass plate or a ceramic plate that is equally transparent may be used.

本発明の金属層とは、主に、銅、アルミニウム、ニッケル、コバルト、鉄、金、銀、ステンレス、タングステン、クロム、チタン、タンタル、珪素、亜鉛、錫などの金属のうち、1種または2種以上を組み合わせた合金、層状体をいう。またリン、硼素などの添加物や、導電性が影響ない程度に有機物が混合されていてもかまわない。導電性、回路加工の容易さ、価格の点から銅、アルミニウムまたはニッケルが適しており、厚みが0.1μm〜10μmの金属であることが好ましい。より好ましくは、0.5μm〜5μmである。厚みが10μm以上では、ライン幅の形成が困難であったり、視野角が狭くなったりするためであり、厚みが0.1μm以下では、表面抵抗が大きくなり、シールド効果に劣るためである。金属層が、銅であり、少なくともその表面が黒化処理されたものであると、コントラストが高くなり好ましい。また、金属層が経時的に酸化され退色されることが防止できる。また、金属層が、常磁性金属であると、磁場シールド性に優れるために好ましい。
真空蒸着法、スパッタリング法、イオンプレート法、化学蒸着法、無電解・電気めっき法などの薄膜形成技術のうち、1または2個以上の方法を組み合わせることにより達成できる。特に、製膜時の回り込みの少ない真空蒸着法が好ましい。また、金属層が薄箔でもあってもよく、その場合、直接または接着剤等で透明シートに張り合わされる。
The metal layer of the present invention is mainly one or two of metals such as copper, aluminum, nickel, cobalt, iron, gold, silver, stainless steel, tungsten, chromium, titanium, tantalum, silicon, zinc, and tin. It refers to an alloy or layered body combining more than one species. Further, additives such as phosphorus and boron, and organic substances may be mixed to such an extent that conductivity is not affected. Copper, aluminum, or nickel is suitable from the viewpoint of conductivity, ease of circuit processing, and cost, and a metal having a thickness of 0.1 μm to 10 μm is preferable. More preferably, it is 0.5 μm to 5 μm. If the thickness is 10 μm or more, it is difficult to form the line width or the viewing angle becomes narrow. If the thickness is 0.1 μm or less, the surface resistance increases and the shielding effect is poor. It is preferable that the metal layer is copper and at least the surface thereof is blackened because the contrast becomes high. In addition, the metal layer can be prevented from being oxidized and faded over time. In addition, it is preferable that the metal layer is a paramagnetic metal because of excellent magnetic field shielding properties.
This can be achieved by combining one or more methods among thin film forming techniques such as vacuum deposition, sputtering, ion plate, chemical vapor deposition, and electroless / electroplating. In particular, a vacuum vapor deposition method with less wraparound during film formation is preferable. Further, the metal layer may be a thin foil, and in that case, the metal layer is laminated directly or with an adhesive or the like on the transparent sheet.

本発明中の導電パターンには特に限定はないが、正三角形、二等辺三角形、直角三角形などの三角形、正方形、長方形、ひし形、平行四辺形、台形などの四角形、(正)六角形、(正)八角形、(正)十二角形、(正)二十角形などの(正)n角形、円、だ円、星形などを組み合わせた模様も含まれ、これら単位の単独の繰り返しあるいは2種類以上の組み合わせで使うこともできる。
このような格子状導電パターンライン幅は、40μm以下、ライン間隔は200μm以上、の範囲が好ましい。また非視認性の観点からライン幅は25μm以下、可視光透過率の点からライン間隔は300μm以上がさらに好ましい。ライン間隔は、大きいほど可視光透過率は向上するが、この値が大きくなり過ぎると、EMIシールド性が低下するため、1mm以下とするのが好ましい。
ストライプ状導電パターンは、断線の問題もあり好ましくはないが、品質が向上すれば、採用してもかまわない。
The conductive pattern in the present invention is not particularly limited, but is a triangle such as a regular triangle, an isosceles triangle, a right triangle, a square such as a square, a rectangle, a rhombus, a parallelogram, a trapezoid, a (positive) hexagon, ) Also includes patterns that combine (positive) n-gons such as octagons, (positive) dodecagons, (positive) icosahedrons, circles, ellipses, stars, etc. These units can be repeated alone or in two types It can also be used in the above combinations.
Such a grid-like conductive pattern line width is preferably in a range of 40 μm or less and a line interval of 200 μm or more. Further, the line width is more preferably 25 μm or less from the viewpoint of invisibility, and the line interval is more preferably 300 μm or more from the viewpoint of visible light transmittance. The larger the line interval, the better the visible light transmittance. However, if this value becomes too large, the EMI shielding property is deteriorated, so that it is preferably 1 mm or less.
The stripe-shaped conductive pattern is not preferable because of the problem of disconnection, but may be adopted if the quality is improved.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、透明シートの表面に高低を設けた金属層の高部部分を削除する一方法を示している。
2は、積層体で、透明基板1の表面に設けると後工程がしやすく好ましい。積層体2の材質としては、透明基板1と同様な透明プラスチックで、単体、共重合体などで、変性された樹脂を含み、特に低架橋、低重合体を含み、機械的圧力により変形しやすいものや、変形後熱や光により架橋や重合が進むものも含まれる。また、導電性があってもかまわない。
透明基板1だけの場合は、透明基板表面に凹部加工をしたり、または、導電パターンに対応した凸部を底面に備えた容器に樹脂を流し込んで硬化させて透明基板1を作成したりして、透明基板1自体に凹部を設けておいてから金属層3を設ける。
積層体2を設けるものの場合は、積層体2にスリット加工または凹部加工をしておいてから金属層3を積層体2の表面に設けるか、または、金属層3を積層体2の表面に設けてから凹部加工を施す。マスク版や転写による印刷で、積層体2自体の積層時に凹部を設けてもよい。
凹部加工には、カッター、ルーター、またはレーザなどの切削加工や、導電パターンに対応した凸部を備えた押し付け治具によるプレス加工などが用いられる。スリット加工には、レーザエッチング加工などが用いられる。
金属層3を設ける下地に、金属層3がはく離しやすいようなもの、たとえば、フッ素系樹脂、シリコーン系樹脂などを蒸着しておいてもよい。
4は、粘着シートで、ポリエステル、ポリオレフィン類、またはポリ塩化ビニル系樹脂などからなるベースフィルム5に粘着剤6が剤塗布されたもので、粘着剤シートと透明シートを上下の挟み込みロール7で挟み込んで、金属層3の高部部分を削除する一方法を図1は示している。
また、接着剤付きフィルムを金属層面に貼り付け、接着剤を硬化被着させてから接着剤付きフィルムを引きはがし、金属層の高部部分を削除してもかまわない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a method for removing a high portion of a metal layer having a height on the surface of a transparent sheet.
2 is a laminate, and is preferably provided on the surface of the transparent substrate 1 so that the post-process can be easily performed. The material of the laminated body 2 is a transparent plastic similar to the transparent substrate 1, and is a simple substance, a copolymer, etc., including a modified resin, particularly including a low cross-linkage, a low polymer, and easily deformed by mechanical pressure. And those which undergo crosslinking or polymerization by heat or light after deformation. Further, it may be conductive.
In the case of only the transparent substrate 1, the concave substrate is processed on the surface of the transparent substrate, or the transparent substrate 1 is formed by pouring resin into a container having a convex portion corresponding to the conductive pattern on the bottom and curing it. The metal layer 3 is provided after providing a recess in the transparent substrate 1 itself.
In the case where the laminate 2 is provided, the metal layer 3 is provided on the surface of the laminate 2 after slitting or recessing the laminate 2, or the metal layer 3 is provided on the surface of the laminate 2. After that, the recess is processed. You may provide a recessed part at the time of lamination | stacking of laminated body 2 itself by the printing by a mask plate or transcription | transfer.
For the recess processing, cutting with a cutter, router, laser, or the like, press processing with a pressing jig provided with a convex portion corresponding to the conductive pattern, or the like is used. A laser etching process etc. are used for a slit process.
A base on which the metal layer 3 is provided may be vapor-deposited such that the metal layer 3 is easily peeled off, for example, a fluorine-based resin or a silicone-based resin.
4 is a pressure-sensitive adhesive sheet in which a pressure-sensitive adhesive 6 is applied to a base film 5 made of polyester, polyolefin, or polyvinyl chloride resin, and the pressure-sensitive adhesive sheet and the transparent sheet are sandwiched between upper and lower sandwiching rolls 7. FIG. 1 shows one method for removing the high portion of the metal layer 3.
Alternatively, the adhesive film may be attached to the metal layer surface, the adhesive film may be cured and deposited, and then the adhesive film may be peeled off to remove the high portion of the metal layer.

図2は、本発明の請求項2に係る製造の工程図を示している。
まず、透明基板1の表面に積層体2を設け、次に、積層体2の表面に金属層3を全面に設ける((2a)工程)。この場合の積層体2は、特に変形可能な樹脂で、低架橋、低重合体を含み、機械的圧力により変形しやすいものや、変形後熱や光により架橋や重合が進むものの含まれる。金属層3厚さは、積層体2のより薄い方が好ましい。
8は、導電パターンに対応した凸部9を設けた押し付け板または回転体の押し付け治具で、その凸部を金属層3の表面から押し付け、導電パターンに対応した金属層3の部分を変形可能な積層体2内部に押し込み、金属層3に段差を設ける((2b)−(2c)−(2d)工程)。押し付け治具8の凸部9の高さは、金属層3の厚さより高い方が好ましい。
次に、段差になった金属層3の上層部をはく離器具10等で積層体2から引きはがす((2e)工程)。
追加工程として、表面に透明な平坦化樹脂11をコートする((2f)工程)。
FIG. 2 shows a manufacturing process diagram according to claim 2 of the present invention.
First, the laminate 2 is provided on the surface of the transparent substrate 1, and then the metal layer 3 is provided on the entire surface of the laminate 2 (step (2a)). The laminate 2 in this case is a particularly deformable resin, including a low-crosslinking, low-polymer, and easily deformable by mechanical pressure, and those that undergo crosslinking and polymerization by heat and light after deformation. The metal layer 3 is preferably thinner than the laminate 2.
8 is a pressing plate or a rotating body pressing jig provided with a convex portion 9 corresponding to the conductive pattern, and the convex portion can be pressed from the surface of the metal layer 3 to deform the portion of the metal layer 3 corresponding to the conductive pattern. Is pushed into the laminated body 2 to provide a step in the metal layer 3 (step (2b)-(2c)-(2d)). The height of the convex portion 9 of the pressing jig 8 is preferably higher than the thickness of the metal layer 3.
Next, the upper layer part of the metal layer 3 that has become a step is peeled off from the laminate 2 with the peeling tool 10 or the like (step (2e)).
As an additional step, the surface is coated with a transparent planarizing resin 11 (step (2f)).

図3は、本発明の請求項3に係る製造の工程図を示している。
透明基板1の表面に積層体2を設け((3a)工程)、導電パターンに対応した凸部9を設けた押し付け治具8で積層体2に凹部を設け((3b)−(3c)工程)、金属層3を設け((3d)工程)、金属層3の上層部を積層体2から引きはがし((3e)工程)、表面に透明な平坦化樹脂11をコートする((3f)工程)ことを逐次行う。
図2の工程との違いは、押し付け治具8で、変形可能な積層体2に凹部を設けておいてから、金属層3を設けることである。
FIG. 3 shows a manufacturing process diagram according to claim 3 of the present invention.
The laminated body 2 is provided on the surface of the transparent substrate 1 ((3a) step), and the concave portion is provided in the laminated body 2 with the pressing jig 8 provided with the convex portion 9 corresponding to the conductive pattern ((3b)-(3c) step. ), Providing the metal layer 3 (step (3d)), peeling off the upper layer of the metal layer 3 from the laminate 2 (step (3e)), and coating the surface with the transparent planarizing resin 11 (step (3f)) ) Do things sequentially.
The difference from the step of FIG. 2 is that the metal layer 3 is provided after the concave portion is provided in the deformable laminate 2 with the pressing jig 8.

図4は、本発明の請求項3に係る製造の別の工程図を示している。
透明基板1の表面に積層体2を設け((4a)工程)、フォトマスク12で保護しながらプラズマやレーザ等でのエッチングにより積層体2に凹部を設け((4b)−(4c)工程)、金属層3を設け((4d)工程)、金属層3の上層部を積層体2から引きはがし((4e)工程)、表面に透明な平坦化樹脂11をコートする((4f)工程)ことを逐次行う。エッチング時、積層体2は透明基板1よりのエッチングしやすいたとえば硬化度の進んでいない材料または材料状態が選ばれる。
また、逆に、スリット加工部にフォトマスクを設け、赤外線レーザや紫外線露光でスリット加工部以外の積層体2を硬化させ、溶融温度の差を利用して、加熱しながら未硬化部分であるスリット加工部を不織布などで吸収除去することもできる。その他、粘着力、接着力、溶解力等の差を利用しても除去できる。
図3の工程との違いは、機械的ではなく、積層体2にマスクを設け、スリット加工または凹部加工をしておいてから金属層3を設けることである。レーザ場合で、ライン幅の加工であればマスクは必要ない場合もある。
FIG. 4 shows another process diagram for manufacturing according to claim 3 of the present invention.
A laminate 2 is provided on the surface of the transparent substrate 1 (step (4a)), and a concave portion is provided in the laminate 2 by etching with plasma or laser while being protected by the photomask 12 (steps (4b)-(4c)). The metal layer 3 is provided (step (4d)), the upper layer of the metal layer 3 is peeled off from the laminate 2 (step (4e)), and the surface is coated with a transparent planarizing resin 11 (step (4f)). Do things sequentially. At the time of etching, the laminated body 2 is selected from a material or a material state that is easy to etch from the transparent substrate 1, for example, the degree of curing is not advanced.
On the other hand, a slit that is an uncured portion is provided while a photomask is provided in the slit processed portion, the laminate 2 other than the slit processed portion is cured by infrared laser or ultraviolet exposure, and the difference in melting temperature is used to heat the laminate. The processed part can also be absorbed and removed with a nonwoven fabric or the like. In addition, it can be removed by utilizing differences in adhesive strength, adhesive strength, dissolving power, and the like.
The difference from the process of FIG. 3 is that the metal layer 3 is provided after a mask is provided on the laminate 2 and slit processing or recess processing is performed, not mechanical. In the case of a laser, a mask may not be necessary if the line width is processed.

図5は、本発明の請求項4に係る製造の工程図を示している。
透明基板1の上に、導電パターンに対応した版マスク13で、スキージ14による版印刷により凹部付きの積層体2を設け((5a)−(5b)工程)、金属層3を設け((5c)工程)、金属層3の上層部を積層体2から引きはがし((5d)工程)、表面に透明な平坦化樹脂11をコートする((5e)工程)ことを逐次行う。
図4の工程との違いは、透明基板1の上に導電パターンに対応した版マスク10で、スキージ11による版印刷により凹部付きの積層体2を設けておいてから金属層3を設けることである。
FIG. 5 shows a manufacturing process diagram according to claim 4 of the present invention.
On the transparent substrate 1, a laminate 2 with a recess is provided by plate printing with a squeegee 14 using a plate mask 13 corresponding to a conductive pattern (step (5a)-(5b)), and a metal layer 3 is provided ((5c Step), the upper layer of the metal layer 3 is peeled off from the laminate 2 (step (5d)), and the surface is coated with the transparent planarizing resin 11 (step (5e)).
The difference from the process of FIG. 4 is that the metal mask 3 is provided on the transparent substrate 1 with the plate mask 10 corresponding to the conductive pattern, and the laminated body 2 with the recesses is provided by plate printing with the squeegee 11. is there.

図6は、本発明の請求項4に係る製造の印刷により凹部付きの積層体2設ける別装置の一例示している。
図5の工程との違いは、フィルム状の透明基板1を搬送しながら、樹脂供給ロール16により、導電パターンに対応した凸部を表面に加工した版ロール15に樹脂を転写し、次に透明基板1に転写して、凹部付きの積層体2を設けてから金属層3を設けることである。積層体2になる樹脂は、透明基板1に転写する直前に、ある程度乾燥または硬化させることによる粘度を上げておくと、積層体2の凹部壁面がシャープに形成されやすい。
FIG. 6 shows an example of another apparatus for providing a laminate 2 with a recess by printing according to the fourth aspect of the present invention.
The difference from the process of FIG. 5 is that while the film-like transparent substrate 1 is being transported, the resin is transferred to the plate roll 15 whose convex portions corresponding to the conductive pattern are processed on the surface by the resin supply roll 16 and then transparent. Transferring to the substrate 1 and providing the metal layer 3 after providing the laminated body 2 with the recesses. If the viscosity of the resin that becomes the laminate 2 is increased by drying or curing to some extent immediately before being transferred to the transparent substrate 1, the concave wall surface of the laminate 2 is likely to be formed sharply.

金属層の高部部分を削除する一方法を示している。Fig. 4 illustrates one method of removing the high portion of the metal layer. 本発明の請求項2に係る製造の工程図を示している。The manufacturing process figure which concerns on Claim 2 of this invention is shown. 本発明の請求項3に係る製造の工程図を示している。The manufacturing process figure which concerns on Claim 3 of this invention is shown. 本発明の請求項3に係る製造の別工程図を示している。The another process figure of manufacture which concerns on Claim 3 of this invention is shown. 本発明の請求項4に係る製造の工程図を示している。The manufacturing process figure which concerns on Claim 4 of this invention is shown. 本発明の請求項4に係る別製造の装置の一例を示している。An example of the apparatus of another manufacture concerning Claim 4 of the present invention is shown.

符号の説明Explanation of symbols

1…透明基板、2…積層体、3…金属層、4…粘着シート、5…ベースフィルム、6…粘着剤、7…挟み込みロール、8…押し付け治具、9…凸部、10…はく離器具、11…平坦化樹脂、12…フォトマスク、13…版マスク、14…スキージ、15…版ロール、16…樹脂供給ロール、17…圧ロール。   DESCRIPTION OF SYMBOLS 1 ... Transparent substrate, 2 ... Laminate body, 3 ... Metal layer, 4 ... Adhesive sheet, 5 ... Base film, 6 ... Adhesive, 7 ... Interposing roll, 8 ... Pressing jig, 9 ... Convex part, 10 ... Stripping tool 11 ... Planarizing resin, 12 ... Photomask, 13 ... Plate mask, 14 ... Squeegee, 15 ... Plate roll, 16 ... Resin supply roll, 17 ... Pressure roll.

Claims (4)

表面には高低を設けていてその表面には金属層が積層されている透明シートにあって、前記金属層の高部部分を削除することにより、前記金属層の低部部分に導電パターンを形成させる電磁波シールド用透明シートの製造方法。
A transparent sheet is provided with a height on the surface and a metal layer is laminated on the surface. By removing the high portion of the metal layer, a conductive pattern is formed on the low portion of the metal layer. A method for producing a transparent sheet for electromagnetic wave shielding.
導電パターンを有する電磁波シールド用透明シートの製造方法において、
透明基板上に、変形可能な積層体を設ける第1工程と、
前記積層体上に金属層を設ける第2工程と、
前記導電パターンに対応する凸部を設けた押し付け治具で、前記金属層側から前記積層体を押し付け、前記金属層に高低を設ける第3工程と、
前記金属層の高部部分を削除する第4工程と、
を有する電磁波シールド用透明シートの製造方法。
In the method for producing a transparent sheet for electromagnetic wave shielding having a conductive pattern,
A first step of providing a deformable laminate on a transparent substrate;
A second step of providing a metal layer on the laminate;
A third step of pressing the laminate from the metal layer side with a pressing jig provided with a convex portion corresponding to the conductive pattern, and providing the metal layer with a height; and
A fourth step of removing the high portion of the metal layer;
The manufacturing method of the transparent sheet for electromagnetic wave shields which has this.
導電パターンを有する電磁波シールド用透明シートの製造方法において、
透明基板上に、積層体を設ける第1工程と、
前記積層体に、概ね前記導電パターンに対応するスリットまたは凹部を設ける第2工程と、
前記積層体側から前記透明基板上に金属層を設ける第3工程と、
前記金属層の高部部分を削除する第4工程と、
を有する電磁波シールド用透明シートの製造方法。
In the method for producing a transparent sheet for electromagnetic wave shielding having a conductive pattern,
A first step of providing a laminate on a transparent substrate;
A second step of providing a slit or a recess substantially corresponding to the conductive pattern in the laminate;
A third step of providing a metal layer on the transparent substrate from the laminate side;
A fourth step of removing the high portion of the metal layer;
The manufacturing method of the transparent sheet for electromagnetic wave shields which has this.
導電パターンを有する電磁波シールド用透明シートの製造方法において、
透明基板上に、概ね前記導電パターンになる以外の部分に印刷積層体を設ける第1工程と、
前記積層体側から前記透明基板上に金属層を設ける第2工程と、
前記金属層の高部部分を削除する第3工程と、
を有する電磁波シールド用透明シートの製造方法。
In the method for producing a transparent sheet for electromagnetic wave shielding having a conductive pattern,
A first step of providing a printed laminate on a portion of the transparent substrate other than the conductive pattern,
A second step of providing a metal layer on the transparent substrate from the laminate side;
A third step of removing the high portion of the metal layer;
The manufacturing method of the transparent sheet for electromagnetic wave shields which has this.
JP2004310830A 2004-10-26 2004-10-26 Method for producing transparent sheet for electromagnetic wave shield Expired - Fee Related JP4657676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004310830A JP4657676B2 (en) 2004-10-26 2004-10-26 Method for producing transparent sheet for electromagnetic wave shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004310830A JP4657676B2 (en) 2004-10-26 2004-10-26 Method for producing transparent sheet for electromagnetic wave shield

Publications (2)

Publication Number Publication Date
JP2006128180A true JP2006128180A (en) 2006-05-18
JP4657676B2 JP4657676B2 (en) 2011-03-23

Family

ID=36722606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004310830A Expired - Fee Related JP4657676B2 (en) 2004-10-26 2004-10-26 Method for producing transparent sheet for electromagnetic wave shield

Country Status (1)

Country Link
JP (1) JP4657676B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261289A (en) * 1998-03-11 1999-09-24 Lintec Corp Manufacture of radio wave shielding member
JP2000277977A (en) * 1999-03-26 2000-10-06 Dainippon Printing Co Ltd Electromagnetic wave shield member, manufacture thereof, and display device
JP2001284879A (en) * 2000-03-28 2001-10-12 Hitachi Chem Co Ltd Electromagnetic wave shielding material, its manufacturing method and its utilization
JP2002258789A (en) * 2001-03-05 2002-09-11 Seiko Epson Corp Panel drive controller, wristwatch type information device, portable device, and panel drive control method
JP2003198182A (en) * 2001-12-25 2003-07-11 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet and its manufacturing method
JP2003198184A (en) * 2001-12-25 2003-07-11 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261289A (en) * 1998-03-11 1999-09-24 Lintec Corp Manufacture of radio wave shielding member
JP2000277977A (en) * 1999-03-26 2000-10-06 Dainippon Printing Co Ltd Electromagnetic wave shield member, manufacture thereof, and display device
JP2001284879A (en) * 2000-03-28 2001-10-12 Hitachi Chem Co Ltd Electromagnetic wave shielding material, its manufacturing method and its utilization
JP2002258789A (en) * 2001-03-05 2002-09-11 Seiko Epson Corp Panel drive controller, wristwatch type information device, portable device, and panel drive control method
JP2003198182A (en) * 2001-12-25 2003-07-11 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet and its manufacturing method
JP2003198184A (en) * 2001-12-25 2003-07-11 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP4657676B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
TWI287802B (en) Thin sheet for shielding electromagnetic wave
JP3998975B2 (en) Electromagnetic wave shielding sheet
JP5046495B2 (en) Transparent conductive film and method for producing the same
TW200303557A (en) Electromagnetic shielding sheet and method of producing the same
JP5720278B2 (en) Conductive element and manufacturing method thereof, information input device, display device, and electronic apparatus
JP2011059772A (en) Net-like conductive pattern, base material with conductive layer and touch panel member
CN106538072B (en) metal microstructure having reduced visibility and method of manufacturing the same
TW201342155A (en) Touch panel and display apparatus comprising the same
TWI728095B (en) Conductive substrate and manufacturing method of conductive substrate
JP6070675B2 (en) Method for producing transparent conductive substrate and touch panel sensor
JP2020074114A (en) Conductive film, touch panel sensor, and touch panel
JP4423547B2 (en) Conductor layer pattern and method of manufacturing electromagnetic wave shield
WO2018155088A1 (en) Conductive film manufacturing method and conductive film
JP4872957B2 (en) Manufacturing method of electronic parts
JP2015173060A (en) Thin metallic wire electrode and production method thereof
JP2006128180A (en) Method of manufacturing transparent sheet for electromagnetic wave shield
JP4924132B2 (en) Method for forming EMI shield member
JP2006165306A (en) Electromagnetic wave shield film
JP2008124299A (en) Manufacturing method of emi shield member and the emi shield member, and image display device
JP2013205420A (en) Manufacturing method of display device member, conveyance substrate and display device member laminate
KR102303722B1 (en) Transparent film structure for stealth and method of manufacturing the same
US20240077964A1 (en) Conductive film, touch sensor film, and image display apparatus
JP2011071201A (en) Partial lamination method of function layer in electromagnetic wave shielding material
TW201814730A (en) Conductive film, touch panel, photomask, imprint template, laminate for forming a conductive film, method for producing a conductive film, and method for manufacturing an electronic device
KR20170078046A (en) Method for manufacturing mold, and method for manufacturing electrode film and electrode film using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees