JP2006128109A - 燃料電池スタックの冷却板モジュール - Google Patents

燃料電池スタックの冷却板モジュール Download PDF

Info

Publication number
JP2006128109A
JP2006128109A JP2005311440A JP2005311440A JP2006128109A JP 2006128109 A JP2006128109 A JP 2006128109A JP 2005311440 A JP2005311440 A JP 2005311440A JP 2005311440 A JP2005311440 A JP 2005311440A JP 2006128109 A JP2006128109 A JP 2006128109A
Authority
JP
Japan
Prior art keywords
cooling
packing
adhesive
plate
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005311440A
Other languages
English (en)
Inventor
Alwin Mueller
ミュラー アルヴィン
Pertti Kauranen
カウラネン ペルティ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Carbon SE
Original Assignee
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGL Carbon SE filed Critical SGL Carbon SE
Publication of JP2006128109A publication Critical patent/JP2006128109A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49114Electric battery cell making including adhesively bonding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】相接する表面が互いに電気的に接触しており、かつ冷却材分配構造が緊密に囲んでいるアノード側およびカソード側の極板からなる冷却板モジュールの極板の接合を、導電性に関する要件を満たす必要のない接着剤で実現した冷却板モジュールを提供する。
【解決手段】アノード側とカソード側の極板(7a、7b)から成り、それらの相接する表面を、パッキング(21)により囲み、かつ冷却材により貫流される溝(19)より成る冷却材分配構造で緊密に囲み、かくしてこの構造の範囲内で直接互いに電気的に接触する極板間を接着剤により接合するが、その際カソード側極板とアノード側極板のパッキングで囲まれた冷却材分配構造の外側の冷却面にのみ接着剤を塗布し、冷却材モジュールの冷却材と接着剤とが互いに全く接触しない燃料電池用冷却材モジュールとする。

Description

本発明は、互いに接合された2つの極板より成り、該両極板を冷却材分配構造が緊密に囲む燃料電池スタックの冷却板モジュールに関する。
燃料電池は、直接化学エネルギーを電気エネルギーに変換する装置である。単一の燃料電池1(図1)は、アノード2と、カソード3との間に、例えば陽子伝導膜4のような電解質層を持つ2つの電極を内包している。この結合を膜−電極一体構造(MEA)5と呼ぶ。例えば水素やメタノール等の燃料の酸化が、陽子及び電子の放出下に起る。放出された電子は、電気的作業を行う外部の電流回路を経てカソード3に流れる。放出された陽子は、膜4を通してカソード3に運ばれる。そこで電子と陽子を受容し、酸化剤、例えば酸素を還元する。アノード2又はカソード3と、電解質層4との界面は、各電極反応を促進させる触媒6で被覆されている。
実用的には、大抵、必要な出力を獲得するため、多くの燃料電池を端板により境界付けた1つのスタックに組立てる。第1の電池の前と、最後の電池の後に集電器が設置されている。堆積された電池は縦方向にねじ締め、クランプ締め或いは他の適切な手段で(図1には示さず)互いに圧縮され、固定される。
通常それら電池は、スタック内で直列に、但し媒質の溝に関しては並列に接続される。隣接する電池間の電気的接触をバイポーラ板(BPP)7、7’が行う。連続して重なり合うBPP7とMEA5は、燃料導入8と燃料導出9並びに酸化剤導入10と酸化剤導出11用の一列に配置された通路孔を有する。これら一列に配置された通路孔は、分配・集合管(マニホルド)を形成し、それらは堆積方向に対しスタックを横断し、反応媒質を個々の電池に導入し又は電池から導出する。
個々の電極への反応媒質の導入は、バイポーラ板7の表面内に設けた分配構造を経て行われる。該分配構造は、反応媒質の均等な分配のため、電極面の表面に適切に配置された流路、例えば溝17より成る。突出した要素、例えば溝17間の細路16は、隣接する電極2、3への電気的接触を生じさせる。バイポーラ板7のアノード側面上の分配構造12は、アノード2の表面を介して燃料を、カソード側面上の分配構造13は、酸化剤の分配をカソード3の表面を介して行う役目をする。これら分配構造12、13は、対応する媒質導入管8、10及び媒質導出管9、11の通路孔と接続されている。これら接続部分を図1に14、15で示す。接触路を介して電気的に接触し、かつ媒質分配構造を介して隣接する電極と物質を交換するバイポーラ板の表面の範囲を、以後「活性面」と呼ぶ。通路孔8、9、10、11は、活性面の外側にある。図1の分配構造12、13は、単に一例を示すに過ぎない。それらを特定の分配構造に制限し或いは特定の分配構造に限定しようとするものでもない。
一列に並んだ通路孔8、9、10、11によりスタック構成部材(内部の分配集合管)内に形成される媒質導入管及び媒質導出管を持つ構造方式の他に、バイポーラ板及びMEAの表面の外側に配置された媒質導入管と導出管(外部の分配・集合管)を備えたスタックも公知である。その際媒質の導入及び導出は、各極板表面上の媒質分配構造と接合し、スタックの側方に取り付けた分配集合管を介して行われる。
異なる反応媒質が漏出し、混ざり合うのを避けねばならない。そのため、一方で各バイポーラ板7のアノード側を酸化剤搬送用通路孔10、11、他方でカソード側を燃料搬送用通路孔8、9に対し密閉する。更にそれら極板表面内に設けた分配構造12、13を反応媒質がバイポーラ板とMEAの界面に漏出するのを阻止すべくパッキング18で囲む。
電極反応時に発熱が起る。これは、電池の加熱を回避すべく排除せねばならない。そのため冷却材、例えば脱イオン水や熱媒油をスタックに流す。公知のスタック(図2)では2つの膜−電極一体構造5、5’間に、1個のバイポーラ板7に代えて冷却材分配構造を囲む2つの極板7a、7bより成る一対のバイポーラ板を設ける。該極板7a、7bの相接する表面を以後冷却面と呼ぶ。冷却材分配構造は、反応媒質の分配構造12、13と類似の構成を持ち、冷却面の少なくとも1つに冷却材が流れる溝19を持ち、隣接する冷却面間に電気的接触を生じさせ、電流が極板7aの活性面から、極板7bの活性面へと流れるのを可能とし、かつこの溝を境界付ける、細路20等の突出した構成要素からなる。
冷却材の導入と導出用に、スタックを横断する更なる搬送路を設けるには、冷却材と反応媒質の搬送路を相互に密閉せねばならない。更に極板の冷却面7a、7b間に、冷却材が冷却材分配構造から漏出するのを阻止するパッキング21を必要とする。該パッキング21を、極板7a、7bの冷却面内にはめ込んだパッキング溝22a、22bで取り込む。
図1と図2に示すように、アノード側極板7bのMEA5’のアノード2’に面する表面内に燃料が平面的に広がって分布するように溝構造12を設けている。MEA5のカソード側極板7aのカソード3に面する表面には、酸化剤を平面的に分配すべく、溝構造13を通している。別の変形例では、極板の電極に面する表面は平坦であり、反応媒質分配構造を、各電極の極板に面する表面内にはめ込む。
1つのスタックの部材数を低減すべく、かつ組立てを容易にすべく、各構造部材を構造群(モジュール)に予め組立てておくとよい。例えば特許文献1は、アノード側極板とカソード側極板より成る組合せを開示する。該極板は、例えば金属、グラファイト又はプラスチックと、炭素又はグラファイトとから成る複合材料の耐食性の導電性材料とでできている。前記極板の冷却面内には冷却材の流れる溝があり、該溝を突出した細路が境界付けている。その第1の極板の冷却面上の細路の表面は、第2の極板の冷却面上の細路の表面と相接している。その接触面は極板間に電気的接触を生じさせる。
アノード側及びカソード側極板は、導電性接着剤で互いに導電接合されている。この接着剤はポリマー母材、例えばエポキシ樹脂と、例えば銀、金、白金、ニッケル又はグラファイトを分散させた耐食性の導電性粒子とを含む。接着剤中の導電性粒子の質量比は20〜40%である。接着剤の電気抵抗率は1Ω・cmを越えてはならない。
他の変形例では、例えば金属薄板の導電性の平面要素を極板の冷却面間に配置し、導電性接着剤により冷却面と接合する。この金属薄板は、第1の極板の冷却面上の冷却溝を第2の極板の冷却面上の冷却溝と分離するか、第1の極板の冷却面上の冷却溝を、第2の極板の冷却面上のそれと連絡する穿孔を備える。
特許文献1に開示されたコンセプトは、全て導電性接着剤の使用に関連している。接着剤を冷却面間に電気的接触を生じさせるべき全箇所に塗布せねばならず、それ故、例えば冷却材分配構造内の全ての細路の表面上に塗布する必要がある。冷却面の外側の範囲と通路孔の縁だけに、非導電性材料、例えばシリコーンで形成したパッキング用ビードを施す。
隣接する極板に電気的接続を生じさせるこの接着剤で被覆された冷却面上の細路は、冷却材により貫流される溝と直接境を接する。それ故この接着剤は、必然的に冷却材と接触することになる。このため、他の接着剤に不可欠の要件は、加熱した冷却材に耐え得ることである。その際ある一定の適用例のため、冷却材に、凍結防止剤及び/又は他の助剤を添加するが、接着剤がそれらに反応しないよう注意を要する。そのために、かつ経済的理由からも、冷却板接合中の導電性接着剤の広範な使用は避けるべきである。
特許文献1:欧州特許出願第1009051号明細書
本発明の課題は、相接する表面(冷却面)が互いに電気的接触しており、かつ冷却材分配構造が緊密に囲んでいるアノード側及びカソード側の極板から成り、極板の接合を、導電性に関する特別な要件を満たす必要のない接着剤により実現した冷却板モジュールを提供することにある。
更に本発明の課題は、この冷却板モジュール内での、接着剤と冷却材との接触を回避することにある。
この課題は、アノード側とカソード側の極板より成り、それらの互いに接して向い合う表面が冷却面として冷却材分配構造を含み、該構造をパッキングで囲み、外部に対し密閉し、その際少なくとも1つの冷却面上のパッキングで囲まれた範囲の外側のみに接着剤を塗布して極板を互いにその位置に固定し、かつ互いに接合した冷却板モジュールにより解決される。
本発明では、接着剤を専ら冷却面の冷却材分配構造の外側範囲に塗布する。冷却材分配構造の突出している構成要素の表面は、図2では細路20として例示しており、接着剤を塗布しない儘であり、そこでは隣接する冷却面間の直接の電気的接触が可能である。極板の活性面間に直接の電気的接触を必要とする冷却面の範囲内に接着剤を塗布しないので、接着剤自体が導電性である必要はない。
本発明では、接着面がパッキング21で囲まれた冷却材分配構造の外側にあり、接着剤が冷却材と接触することはない。それ故この接着剤が、冷却材及び場合によっては冷却材に添加された助剤に耐える必要はない。
本発明による冷却板モジュール内では、接着剤自体も、冷却面間の界面がパッキング21により密閉されているので、密閉機能を果たす必要はない。パッキング21は冷却面の冷却溝19を設けた範囲を囲んでおり、こうして冷却材の漏出を阻止できる。
本発明のその他の利点及び特性を、実施例に基づき以下に詳述する。
本発明による冷却板モジュールは、カソード側極板7aとアノード側極板7bとから成る。それらの相接する表面は、冷却面として冷却材分配構造と、極板の冷却面間の界面を密閉するパッキング21を含む。それらの冷却面の少なくとも一方は、冷却材を平面的に分配する溝19を備えている。
図3は、冷却材分配構造と、パッキングの概略を示す極板7aの冷却面との平面図である。内部媒質導入管と導出管(内部の分岐管で集配するマニホルド)を持つスタック内において、冷却材の導入を通路孔23、導出を通路孔24で行う。スタックの全てのMEA(膜−電極一体構造)と極板は、各々同じ箇所に通路孔を有する。MEAと極板を1つのスタックに堆積する際、該通路孔を、スタックを横断する搬送路が生ずるよう一直線に並べる。冷却材は通路孔23を経て導入管から、冷却面上の冷却溝19に入り、この冷却溝19を貫流し、通路孔24を経て冷却溝19から冷却材導出管に流出する。
冷却溝の経路は本発明にとって重要ではないので、図3では、見易さのためこれを省略している。専門家には多数の適切な溝構造は周知であり、本発明は特定の溝構造に限定されない。冷却材を分配する溝構造は、例えば共通の導入管から冷却材を供給され、共通の集合管に流し込む、例えば並列する複数の溝或いは単数又は複数の蛇行した溝からなる。
しばしば2枚の相接する冷却面の一方に溝構造を設けるだけで十分な場合もある。その際は、もう一方の平坦な冷却面で第1の冷却面上の溝を覆う。本発明による冷却板の接合のもう1つの変形例(図2)では、両極板7a、7bの冷却面に、各々溝構造19a、19bを設け、第2の極板7bの冷却面上の溝構造19bを、第1の極板7a上の溝構造19aと鏡面対称にする。該冷却面を重ね合わせると、第1の極板の冷却面内の溝が、第2の極板の冷却面の溝で補われ、パッキング21で囲まれ、結合した冷却材分配構造となる。
「内部の分岐管で集配する」構造形式の場合、各極板は更にスタックの燃料導入用通路孔8、燃料導出用通路孔9、酸化剤導入用通路孔10及び酸化剤導出用通路孔11を備える。該通路孔は冷却材分配構造に接続していない。カソード側極板7aとアノード側極板7bとの間にパッキング21がある。図3に示す如く、パッキング溝22a内のパッキング21は、冷却材導入及び導出用通路孔23、24も含めて、冷却溝と接合した冷却材分配構造を囲む。このパッキング21は両極板7a、7bの冷却面間の界面を密閉し、冷却材の漏出を防ぐ。パッキング21の外側にある冷却面の範囲を、以後周辺部と呼ぶ。
図3の如く、反応媒質が冷却材分配構造内に浸入しないよう、通路孔8、9、10、11を、パッキング21から分岐したパッキング溝21a、21b、21c、21dで囲み得る。代わりに、通路孔8、9、10、11を、別のパッキングで囲んでもよい。
冷却面上のパッキングは、面又は立体形パッキングやOリングとして形成できる。極板7a、7bの冷却面内に、図2の如く、パッキングを入れる溝22a、22bを設けてもよい。
図3に示す極板7aと共に本発明による冷却板モジュールに組立てた第2の極板7bの冷却面は、対応する箇所に補充のパッキング溝22bを含み、該パッキング溝は第1の極板7aの冷却面上のパッキング溝22aと共に機能を果たしパッキング21を囲む。
図3は、例として媒質導入と導出用通路孔を持つ極板、即ち内部の分岐管で集配する構造形式の極板を示す、本発明は、このスタックの実施形に限定されず、外部媒質用導入及び導出管(外部の分岐管で集配する)を持つスタックにも使える。本発明では、パッキング21で囲んだ冷却面上の冷却材分配構造の外側に接着剤を塗布する点が重要である。
本発明によるバイポーラの冷却板モジュールを構成する極板は、導電性で耐食性の、非透過性材料、例えばグラファイト、金属又はプラスチック及び導電性粒子でできた複合材料より成る。耐食性の十分でない金属は、腐食を低減すべく合金し及び/又は例えば貴金属から成る耐食性の導電性被覆を設ける必要がある。
グラファイトは種々の形で使用できる。合成グラファイトの単体ブロックから、かんな加工により極板を製造できる。或いは、圧縮した膨張グラファイトから適切に構造化した金属箔を極板として使用してもよい。
プラスチックと導電性粒子より成る複合材料で極板を製造すると、例えば射出成形法やその改良法等のプラスチック技術で公知の造形法を使用でき、特に好ましい。ポリプロピレン、ポリフッ化ビニリデン、ビニルエステル又はフェノール樹脂又はエポキシ樹脂等の従来の絶縁性プラスチック中に、例えば合成又は天然グラファイト、膨張グラファイト、煤から成る粒子等の導電性粒子、炭素繊維、金属片、金属繊維又はこれらの複数の導電性粒子類を組合せたものを添加して導電性を得られる。導電性細路が貫通する網状組織を構成するプラスチック母材中の導電性粒子の濃度は、浸透限界値を越える程十分高くなければならない。但しそれに必要な導電性粒子の高い質量比(60%以上)は、プラスチックの流れ性を低下させる故、公知のプラスチック法で加工する際、適切な予防措置を講ずる必要がある。なお、当該措置は専門家に周知である。代案として、プラスチックと導電性粒子から成る複合材料製の極板を、適切に構造化した成形工具内で形成できる。
好適なシール材として、例えば熱可塑性エラストマ(TPE)、熱可塑性ウレタン(TPU)、液体シリコーンゴム(LSR)、エチレン−プロピレン−ジエンエラストマ(EPDM)、ポリテトラフルオロエチレン(PTFE)、フルオロエラストマ又はシリコーンがある。パッキング18と21は面や立体形パッキング又はO−リングとして形成し得る。パッキングを例えば公知方法でシール材料から予め仕上げておき、双方の接合すべき極板の一方のパッキング溝内に入れ、又は貼り付ける。パッキング、例えば面パッキングをシール材料より成る平面状の半製品から、型抜きや打抜き又は噴射カットにより切り抜く製造方法は公知である。O−リングや立体形パッキングを製造する技術も、専門家に周知である。それに代えて、シール材を直接本発明による冷却板モジュールの極板の一方の冷却面上のパッキング溝内に、例えば配量ロボットや射出成形で塗布してもよい。
接着剤は、本発明の場合、冷却材に対する導電性及び耐久性に関し何ら特別な要件を満たす必要はない。従って本発明による冷却板モジュールを製造すべく、両極板間を接合するのに適した全ての接着剤を使用できる。市販の種々の接着剤が使える。プラスチックとグラファイトの複合材料から成る極板の接合には、例えばエポキシ樹脂やアクリル酸シアンをベースとする接着剤が適している。
接着面として、専らパッキング21により囲まれた冷却材分配構造の外側、即ち冷却面の周辺(図3参照)にある冷却面の範囲が使用される。当該範囲を図3内にハッチングで示す。例えば接着剤は、パッキング21で囲んだ範囲の外側にある通路孔8、9、10、11の周囲や冷却面の最外縁に塗布される。
非導電性又は極く僅かに導電性の接着剤を冷却面の活性面の裏側の箇所に施さないことが、本発明にとり重要ある。それは、第1の極板の活性面の電流が、隣の極板の活性面の、主に該極板を横断した最短の経路を流れ、該活性面の裏側にある冷却面の範囲が、第2の極板への電気的接触に必要だからである。パッキングで囲んだ冷却材分配構造は、通常活性面の裏側に存在するよう配置する。それに反し冷却面の周辺は、直接電流が流れるのに必要な範囲の外側にあり、接着面として使用できる。該面内に、接着剤を点又は面状に塗布する。図3は、例として活性面の外側に塗布した接着剤の点25を幾つか示す。
この点状の塗布は、接着効果が十分に得られるなら経済的理由から好ましい。接着剤を互いに接着すべき双方の面の一方又は両方に塗布する。接着剤層が冷却面間の間隔保持部として働き、この結果電気的接触に影響が及ぶのを防止すべく、接着剤塗布用に設けた表面範囲を電気的に接触する範囲内に比べ、若干奥行きを深くしておくとよい。この状況を図4に示す。接着剤塗布部25の範囲では、極板7bの冷却面側の表面は、接着剤を塗布する範囲と比べて若干深くしてある。
前記窪みは、例えば既に構造化した極板の冷却面内にフライス盤で設けても、射出成形又は成形プレス工具内で極板を仕上げる際に、直接相応する窪みを設けてもよい。該窪みは、接着面を互いに接着するのに十分な厚さの接着剤層を受容できるように形成する。他方、窪みは、挿入した接着剤層が、第2の極板の接着面に接触しないような深さ、即ち接着面の互いの接合に、無用な厚い接着剤層を必要とするような深さであってはならない。
接着剤を加圧下で、必要なら加熱して硬化させる。そのため、冷却板モジュールをプレス機内で、パッキングに密閉効果が得られる程度に圧縮する圧力を加える。TPE(熱可塑性エラストマ)から成るシール材料では、圧力は、例えば0.5〜8MPaである。効率よく硬化させるには複数の冷却板モジュールを上下に堆積してプレス機に容れる。
本発明による冷却板モジュールは組立て済みの状態にあり、公知方法で膜−電極一体構造と燃料電池スタックに組立てられる。接着剤の機能は、基本的に両極板を、容易にスタックに組立て可能とすべく、それらの位置に互いに固定し、モジュールとして接合することにある。接着による接合自体は、本発明で冷却面間にパッキングを設けているため、緊密である必要はない。従って接着剤が永続的な耐久性を持つ必要はない。原則として組立て中の一時的接着効果、即ちスタックの固定だけで十分である。その後の接着力は、スタック部材が所定の位置に固定されるので、必要不可欠ではない。従って本発明では接着剤として、その効力を時間的に制限し、少なくともスタック組立て継続中保ち得るものを使用できる。ごく一時的に作用する接着剤でまとめられる冷却板モジュールを使用した、このスタックの組立ては以下の基本的工程により行う。その際その接着剤の接着効力を、原則として組立てプロセスの継続期間中のみに止めておく。
アノード側及びカソード側極板、パッキング及びMEA(膜−電極一体構造)を所望の数だけ準備し、
パッキング21を極板の冷却面間にはめ込み、
極板の冷却面を、少なくとも一方の接合すべき冷却面の周辺上に接着剤を塗布して接合することにより、冷却板モジュールを製造し、
各冷却板モジュールのアノード板上にMEAのアノードが、かつ冷却板モジュールのカソード板上にMEAのカソードが来るよう、冷却板モジュールとMEAを交互に堆積し、その際MEAと極板との界面を専門家に周知の適切な方法で密閉し、
第1のMEAの前と、最後のMEAの後に集電器を取付け、
場合によっては、外部のマニホルドその他の付属部材を装着し、しかる後
端板間でスタックを固定する。
本発明で使用する冷却材は、特定のものに限定されない。即ち接着剤と冷却材が互いに接触しないため、冷却材の選択は、燃料電池スタックの所望の操作温度に合せるだけでよい。典型的には、使用する冷却材は水であり、特に脱イオン水、場合によっては脱イオン水に凍結防止剤や熱媒油を添加したものである。
必要に応じ、冷却面の接着部材間の接触抵抗を低減すべく、例えば金属薄板、金属箔、グラファイト箔又は炭素繊維やグラファイト繊維より成るフェルト、フリース、繊維束又は紙を含む面状の導電性素子を入れる。これを図4の下部に示す。面状の導電性素子26は、最大限でもパッキング21で囲まれた冷却面間の接触に必要な冷却面内の細路20のある範囲の上方迄延びるに過ぎない。両方の冷却面が溝19a、19bを備える場合、面状の導電性素子が、第1の極板の冷却面上の冷却溝を、第2の極板の冷却面上の冷却溝から分離する。代わりに、第1の極板の冷却面上の冷却溝を第2の極板の冷却面上の冷却溝と接合する穿孔を備えた導電性素子を使用する。但しこの変形は、穿孔を厳密に溝の配置に適合させる必要があり、組立て費用が嵩む故、左程有利とは言えない。冷却材分配構造間の電気的接触の改善に、グラファイト箔は、該箔が隣接する表面に極めて良く適合し、それら極板の平行度に、場合により起る偏差を調整できる利点がある。
(実施例)
(例 1)
グラファイトと熱可塑性物質の複合材料から成り、厚さ3mmの射出成形による極板を使用した。極板7aには、カソード側の酸化剤分配構造と、その冷却面上に冷却材分解構造を設けた。極板7bには、アノード側の燃料分配構造と、冷却面上に、極板7aの冷却面上の冷却材分配構造と鏡面対称の冷却材分配構造を設けた。
パッキング21はエチレン・プロピレン・ジエンエラストマからなり、それらをパッキング溝内に塗り込めた。
2つの冷却板モジュール製造した。一方のモジュールには、冷却面間にパッキング21で囲まれた冷却面の範囲上に延びる、グラファイト箔製の面状素子26を設けた。
モジュールの製造前に、通過抵抗、即ち板面に対し垂直方向の抵抗と、平行度、即ち板上に均等に配分した4つの測定点での厚さ測定値からの差の最大値と最小値を測定した。
冷却面の接合にエポキシ樹脂接着剤を用いた。接着剤は図3の如くの塗布した。接着接合部を硬化すべく、冷却板モジュールを1時間、室温で1.3MPaの圧力で押圧した。
こうして製造した接合体の平行度と通過抵抗を測定した。結果を表1に示す。
Figure 2006128109
個々の構成部材で測定した通過抵抗は、極板と測定電極の両界面の抵抗をも含む。接合した極板間の接触抵抗が、極板と測定電極の接触抵抗の2倍以下であるなら、接合体の通過抵抗は、それら構成部材の通過抵抗の合計より低い。はめ込まれたグラファイト箔の接触面に対する適合性のため、接合体の通過抵抗は両方の構造部材の通過抵抗の合計よりも低くなる程度に低下した。但し、冷却面間の接触箇所の高い接触抵抗により、グラファイト箔を挿入しないモジュールの通過抵抗は、個別の極板の抵抗の合計より高くなった。その場合は、先に述べた接着面の窪みにより更に改善できる。
このモジュールの平行度は、個々の極板の平行度の合計よりも常に優っていた。この接合状態で、個々の極板のずれは、少なくとも部分的に補正できる。即ち、場合により起る極板の平行度のずれを調整すべく、板間に必ずしもグラファイト箔を入れる必要がない。
単一の燃料電池を分解した状態で示す斜視図。 極板間に冷却材分配構造を持つ燃料電池スタックの断面図。 本発明による燃料電池スタックの平面図。 本発明による冷却板モジュールを持つ燃料電池スタックの断面図。
符号の説明
1 燃料電池、2 アノード、3 カソード、4 陽子伝導膜、5、5′ 膜・電極一体構造、6 触媒、7、7′ バイポーラ板、7a、7b 側極板、8 燃料導入通路孔、9 燃料導出通路孔、10 酸化剤導入通路孔、11 酸化剤導出通路孔、12、13 反応媒質の分配構造、14、15 導出管と通路孔の接続部分、16 溝間の細路、17 溝、19 冷却溝、19a、19b 冷却材分配構造、18、21 パッキング、20 細路、21a、21b、21c、21d、パッキングから分岐した溝、22a、22b パッキングを入れる溝、23 冷却材導入用通路孔、24 冷却材導出用通路孔、25 点状接着剤、26 導電性素子

Claims (11)

  1. カソード側及びアノード側の極板(7a、7b)より成り、該極板の相接する冷却面としての表面をパッキング(21)で囲み、かつ冷却材により貫流される溝(19)より成る冷却材分配構造で緊密に囲み、この冷却材分配構造の範囲内で直接互いに電気的に接触させた燃料電池スタック用冷却板モジュールにおいて、
    カソード側の極板(7a)とアノード側の極板(7b)が互いに接着剤で接合されており、しかも前記接着剤が、少なくとも1方の冷却面上のパッキング(21)により囲まれた範囲の外側のみに施されたことを特徴とするモジュール。
  2. 前記接着剤が非導電性であることを特徴とする請求項1記載のモジュール。
  3. 接着剤が、アクリル酸シアン又はエポキシ樹脂をベースとする接着剤であることを特徴とする請求項1又は2記載のモジュール。
  4. 前記両極板(7a、7b)の一方の冷却面内のみに、冷却材分配構造を作る冷却溝(19)がはめ込まれており、該溝を他方の極板の平坦な冷却面により覆ったことを特徴とする請求項1から3の1つに記載のモジュール。
  5. 両極板(7a、7b)の冷却面が冷却材分配構造を持ち、第2の極板(7b)の冷却面上の冷却材分配構造(19b)が、第1の極板(7a)の冷却面上の冷却材分配構造(19a)と鏡面対称であることを特徴とする請求項1から4の1つに記載のモジュール。
  6. 前記冷却面間に、パッキング(21)により囲まれた冷却面の範囲内のみに延びる面状の導電性素子(26)が存在することを特徴とする請求項1から5の1つに記載のモジュール。
  7. 面状の導電性素子(26)が、グラファイ箔か、グラファイト又は炭素繊維より成るフリース、フェルト、繊維束或いは紙を含むことを特徴とする請求項6記載のモジュール。
  8. パッキング(21)により囲まれた範囲の外側の少なくとも1つの接合すべき冷却面上に、冷却材を収容する窪みが存在することを特徴とする請求項1から7の1つに記載のモジュール。
  9. 以下に記載する各工程より成る燃料電池スタックの組立て方法において、前記接着剤の作用を、基本的に組立てプロセスの継続期間中のみに止めることを特徴とする方法。
    カソード側及びアノード側の極板(7a、7b)、パッキング(18、21)及び膜−電極一体構造(5、5’)を所望の数だけ、かつ他の必要な全ての構成部材を準備し、
    パッキング(21)を極板の冷却面間にはめ込み、
    該パッキング(21)により囲まれた冷却材分配構造の外側の少なくとも一方の冷却面の接合すべき面上に接着剤を塗布して、極板(7a、7b)の冷却面の接合により冷却板モジュールを製造し、
    冷却板モジュールのアノード板上にMEA(膜−電極一体構造)のアノードが、かつ冷却板モジュールのカソード板上にMEAのカソードがそれぞれ来るように、冷却板モジュールとMEAを交互に堆積して、MEAと極板との界面を密閉し、
    第1のMEAの前と最後のMEAの後に集電器を取付け、
    内部媒質導入管及び導出管を備えていない場合は、外部媒質導入管及び−導出管を設置し、しかる後
    端板間にスタックを固定する。
  10. 前記冷却面間に、面状の導電性素子(26)を、パッキング(21)により囲まれた冷却面の範囲内のみに延びるようにはめ込むことを特徴とする請求項9記載の方法。
  11. 面状の導電性素子(26)が、グラファイト箔か、グラファイト繊維又は炭素繊維より成るフリース、フェルト、繊維束又は紙を含むことを特徴とする請求10記載の方法。

JP2005311440A 2004-10-29 2005-10-26 燃料電池スタックの冷却板モジュール Pending JP2006128109A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04025726A EP1653537A1 (de) 2004-10-29 2004-10-29 Kühlplattenmodul für einen Brennstoffzellenstack

Publications (1)

Publication Number Publication Date
JP2006128109A true JP2006128109A (ja) 2006-05-18

Family

ID=34927160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311440A Pending JP2006128109A (ja) 2004-10-29 2005-10-26 燃料電池スタックの冷却板モジュール

Country Status (5)

Country Link
US (1) US20060090330A1 (ja)
EP (1) EP1653537A1 (ja)
JP (1) JP2006128109A (ja)
KR (1) KR20060052331A (ja)
CA (1) CA2524972A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073637A (ja) * 2008-09-22 2010-04-02 Honda Motor Co Ltd 固体高分子型燃料電池用膜−電極構造体
JP2019071263A (ja) * 2017-10-11 2019-05-09 トヨタ自動車株式会社 燃料電池の単セルの製造方法
JP2021057282A (ja) * 2019-10-01 2021-04-08 本田技研工業株式会社 発電セル及び発電セルの製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005060616A1 (de) * 2005-12-19 2007-06-21 Volkswagen Ag Bipolarplatte sowie Brennstoffzelle mit einer Bipolarplatte
KR100803195B1 (ko) * 2006-08-01 2008-02-14 삼성에스디아이 주식회사 연료전지 스택의 냉각판의 실링 부재
EP2325937B1 (de) * 2009-11-18 2014-01-15 Carl Freudenberg KG Steckstück
JP5477241B2 (ja) * 2010-09-21 2014-04-23 株式会社デンソー 電池パック
GB201200660D0 (en) * 2012-01-16 2012-02-29 Afc Energy Plc Fuel cell stacks
WO2013132860A1 (en) * 2012-03-09 2013-09-12 Nissan Motor Co., Ltd. Fuel cell stack and seal plate used for the same
US9705139B2 (en) * 2014-07-30 2017-07-11 GM Global Technology Operations LLC Printed multi-function seals for fuel cells
JP6657974B2 (ja) * 2016-01-12 2020-03-04 トヨタ紡織株式会社 金属樹脂一体成形品及びその製造方法
JP6957391B2 (ja) * 2018-03-15 2021-11-02 本田技研工業株式会社 燃料電池用セパレータ、燃料電池用接合セパレータ及び発電セル
US20200227794A1 (en) * 2019-01-10 2020-07-16 GM Global Technology Operations LLC Adhesively joined cooling plate
KR20210079750A (ko) 2019-12-20 2021-06-30 삼성전자주식회사 냉각 구조체 및 이를 포함하는 배터리 시스템
EP4338225A1 (en) * 2021-05-13 2024-03-20 Magna International Inc Cooling plate assembly for a battery tray and method of manufacturing same
KR102651444B1 (ko) * 2021-11-29 2024-03-27 (주)세원물산 전기차 배터리 팩 케이스

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1902392C3 (de) * 1969-01-18 1975-07-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zur Herstellung von mit Kunststoff vergossenen Brennstoffelementen
US4456645A (en) * 1981-10-22 1984-06-26 Energy Research Corporation Method of making an integral carbonized cooler assembly
GB2348047B (en) * 1997-03-29 2001-04-11 Ballard Power Systems Electrochemical cells
EP1009051A2 (en) * 1998-12-08 2000-06-14 General Motors Corporation Liquid cooled bipolar plate consisting of glued plates for PEM fuel cells
US6316137B1 (en) * 1999-08-27 2001-11-13 Plug Power Inc. Cooling a fuel cell stack
CN1416604B (zh) * 2000-03-07 2010-09-01 松下电器产业株式会社 高分子电解质型燃料电池及其制造方法
CA2345852C (en) * 2000-05-02 2008-11-18 Honda Giken Kogyo Kabushiki Kaisha Fuel cell having sealant for sealing a solid polymer electrolyte membrane
DE10216306B4 (de) * 2002-04-14 2008-06-12 Sgl Carbon Ag Verfahren zur Herstellung einer Kontaktplatte für eine elektrochemische Zelle sowie deren Verwendungen
US20040062974A1 (en) * 2002-07-09 2004-04-01 Abd Elhamid Mahmoud H. Separator plate for PEM fuel cell
JP3951841B2 (ja) * 2002-07-19 2007-08-01 トヨタ自動車株式会社 燃料電池のシール構造とその製造方法
JP4047265B2 (ja) * 2003-11-19 2008-02-13 株式会社日立製作所 燃料電池及びそれに用いられる冷却用セパレータ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073637A (ja) * 2008-09-22 2010-04-02 Honda Motor Co Ltd 固体高分子型燃料電池用膜−電極構造体
JP2019071263A (ja) * 2017-10-11 2019-05-09 トヨタ自動車株式会社 燃料電池の単セルの製造方法
US10957917B2 (en) 2017-10-11 2021-03-23 Toyota Jidosha Kabushiki Kaisha Manufacturing method of unit cell of fuel cell
JP2021057282A (ja) * 2019-10-01 2021-04-08 本田技研工業株式会社 発電セル及び発電セルの製造方法
JP7114542B2 (ja) 2019-10-01 2022-08-08 本田技研工業株式会社 発電セル及び発電セルの製造方法

Also Published As

Publication number Publication date
CA2524972A1 (en) 2006-04-29
EP1653537A1 (de) 2006-05-03
KR20060052331A (ko) 2006-05-19
US20060090330A1 (en) 2006-05-04

Similar Documents

Publication Publication Date Title
JP2006128109A (ja) 燃料電池スタックの冷却板モジュール
CA2516765C (en) Externally manifolded membrane based electrochemical cell stacks
JP4096027B2 (ja) 固体高分子電解質型燃料電池
JP4305568B2 (ja) 高分子電解質型燃料電池および燃料電池
KR100322927B1 (ko) 고체 고분자 전해질형 연료전지 및 그 제조법
JP4105421B2 (ja) 固体高分子型燃料電池用電極及びそれを用いた固体高分子型燃料電池並びに発電システム
JP4799866B2 (ja) 膜ベース電気化学電池スタック
JP4856006B2 (ja) 改善された燃料電池設計のためのシール支持用の拡散媒体
JP4077509B2 (ja) 固体高分子型燃料電池
US10826083B2 (en) Fuel cell assemblies with improved reactant flow
US20080050639A1 (en) Bipolar flow field plate assembly and method of making the same
EP3357118B1 (en) Fuel cell sub-assembly
US20110171562A1 (en) Process for forming a membrane-subgasket assembly using vacuum sealing
IL202894A (en) Fuel cell chains and methods
JP2019106344A (ja) 燃料電池の製造方法
CN102163730A (zh) 用于嵌入式燃料电池传感器的板互连方法
US20070292736A1 (en) Fuel cell separator plate and method of forming same
JP2019139993A (ja) 燃料電池モジュールおよびその製造方法
JP4647421B2 (ja) 固体高分子型燃料電池用セパレータとそのシール部材及びそれを用いた固体高分子型燃料電池並びに発電システム
CN118216023A (zh) 具有膜电极单元、扩散层和分布板的电化学电池和用于制造电化学电池的方法
KR101784053B1 (ko) 세퍼레이터 및 이를 포함하는 연료 전지 스택
JP2008218200A (ja) 燃料電池スタック、および、燃料電池スタックの製造方法