JP2006127890A - Separator for electrochemical element and electrochemical element comprising it - Google Patents

Separator for electrochemical element and electrochemical element comprising it Download PDF

Info

Publication number
JP2006127890A
JP2006127890A JP2004314080A JP2004314080A JP2006127890A JP 2006127890 A JP2006127890 A JP 2006127890A JP 2004314080 A JP2004314080 A JP 2004314080A JP 2004314080 A JP2004314080 A JP 2004314080A JP 2006127890 A JP2006127890 A JP 2006127890A
Authority
JP
Japan
Prior art keywords
separator
polymer
electrochemical element
nonwoven fabric
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004314080A
Other languages
Japanese (ja)
Inventor
Akihiro Suzuoka
章黄 鈴岡
Sumiyo Kato
純代 加藤
Hiroyuki Umetani
博之 梅谷
Shigeru Morioka
茂 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2004314080A priority Critical patent/JP2006127890A/en
Publication of JP2006127890A publication Critical patent/JP2006127890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for an electrochemical element and an electrochemical element comprising it excellent in liquid-retaining properties and moisture-releasing properties of electrolyte solution. <P>SOLUTION: The separator for an electrochemical element has a moisture-absorbing/releasing coefficient MR of 10 or more as expressed in formula; MR=(M<SB>1</SB>)-(M<SB>2</SB>) (1), where M<SB>1</SB>denotes a moisture-absorbing ratio (%) after a sample is left to stand for 360 minutes at 35°C under a 95% RH atmosphere, and M<SB>2</SB>denotes a moisture-absorbing ratio (%) after the sample is left to stand for 90 minutes at 20°C under a 65% RH atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電気化学素子(一次電池、二次電池、電解コンデンサ及び電気二重層キャパシタ等)用セパレータおよびそれよりなる電気化学素子に関する。更に詳しくは、電解液の保液性、及び放湿性に優れた、電気化学素子用セパレータおよびそれよりなる電気化学素子に関する。   The present invention relates to a separator for an electrochemical element (primary battery, secondary battery, electrolytic capacitor, electric double layer capacitor, etc.) and an electrochemical element comprising the same. More particularly, the present invention relates to an electrochemical element separator and an electrochemical element comprising the same, which are excellent in electrolyte retention and moisture release.

一次電池、二次電池、電解コンデンサ及び電気二重層キャパシタ等の電気化学素子に用いられるセパレータに要求される最も重要な特性として電解液の保持性を挙げることができる。
電解液の保持性が低い場合には、電気化学素子の内部抵抗が高くなってしまい、その結果、電気化学素子の容量不足、電圧低下、短寿命化などの問題が生じる。
The most important characteristic required for separators used in electrochemical elements such as primary batteries, secondary batteries, electrolytic capacitors, and electric double layer capacitors is retention of electrolyte.
When the retention of the electrolytic solution is low, the internal resistance of the electrochemical element increases, and as a result, problems such as insufficient capacity of the electrochemical element, voltage reduction, and shortening of the lifetime occur.

また、一次電池、二次電池、電解コンデンサ、電気二重層キャパシタなどの電気化学素子において、電解液またはゲル電解質として有機電解液や非水系ゲル電解質などが用いられる場合は、系内に水がわずかでも含まれていると、容量低下や短寿命化などの問題が生じるため、極力水分が混入しないよう細心の注意が払われており、乾燥効率を上げるため、乾燥温度をより高温にする傾向があるため、セパレータには耐熱性も要求されている。   In addition, in an electrochemical element such as a primary battery, a secondary battery, an electrolytic capacitor, or an electric double layer capacitor, when an organic electrolytic solution or a non-aqueous gel electrolyte is used as the electrolytic solution or gel electrolyte, there is little water in the system. However, if it is included, problems such as a decrease in capacity and a shortened service life will occur, so great care has been taken not to mix moisture as much as possible, and there is a tendency to increase the drying temperature to increase the drying efficiency. Therefore, the separator is also required to have heat resistance.

これらの問題を解決するために、少なくとも一部が繊維径1μm以下にフィブリル化された有機繊維を一種類以上含有し、且つフィブリル化されていない繊度0.5dtex以下の有機繊維を1種類以上含有してなる湿式不織布からなる電気化学素子用セパレータが提案されている(特許文献1参照)。   In order to solve these problems, at least one part contains at least one type of organic fiber fibrillated to a fiber diameter of 1 μm or less, and at least one type of organic fiber that is not fibrillated and has a fineness of 0.5 dtex or less The separator for electrochemical elements which consists of a wet nonwoven fabric formed by this is proposed (refer patent document 1).

しかしながら、この方法では、電解液保持性と耐熱性とを両立させるにあたり、少なくとも2種類の構成繊維を準備する必要があること、二種類の構成繊維を均一に混合させるのは非常に困難であり、均一性に欠けること、湿式不織布の製造工程として、不織布を構成する繊維を製造する工程と、不織布を製造する工程の二段階を踏む必要があり、生産効率に劣るという問題があった。
国際公開第01/093350号パンフレット
However, in this method, it is necessary to prepare at least two types of constituent fibers in order to achieve both electrolytic solution retention and heat resistance, and it is very difficult to uniformly mix the two types of constituent fibers. In addition, there is a problem that the production efficiency of the wet nonwoven fabric is inferior, and it is necessary to take two steps of a process for manufacturing a fiber constituting the nonwoven fabric and a process for manufacturing the nonwoven fabric, resulting in poor production efficiency.
International Publication No. 01/0935050 Pamphlet

本発明の目的は、電解液の保液性及び放湿性に優れた、電気化学素子用セパレータおよびそれよりなる電気化学素子を提供することにある。   An object of the present invention is to provide a separator for an electrochemical element and an electrochemical element comprising the same, which are excellent in liquid retention and moisture release of an electrolytic solution.

本発明者らは、上記従来技術において、電気化学素子に組み込む際のセパレータの乾燥工程において、水分除去のために乾燥温度を高める必要があるのは、セパレータの放湿性能が劣ることに起因することに着眼し、更に鋭意検討を重ねた結果、本発明を完成するに至った。   In the above prior art, the present inventors need to increase the drying temperature in order to remove water in the drying process of the separator when it is incorporated into an electrochemical element, because the moisture releasing performance of the separator is inferior. In particular, as a result of further intensive studies, the present invention has been completed.

すなわち本発明の目的は、
下記式(1)により表される吸放湿係数MRが10以上である、電気化学素子用セパレータ。
MR=(M)−(M) (1)
ここで、Mは試料を95%RH雰囲気下、35℃で360分放置した後の吸湿率(%)、また、Mは該試料を65%RH雰囲気下、20℃で90分放置した後の吸湿率(%)を表す。
That is, the object of the present invention is to
The separator for electrochemical devices whose moisture absorption-release coefficient MR represented by following formula (1) is 10 or more.
MR = (M 1 ) − (M 2 ) (1)
Here, M 1 is the moisture absorption rate (%) after leaving the sample in a 95% RH atmosphere at 35 ° C. for 360 minutes, and M 2 is the sample being left in a 65% RH atmosphere at 20 ° C. for 90 minutes. It represents the subsequent moisture absorption rate (%).

更に本発明の他の目的は負極、正極、セパレータおよび電解質を備える電気化学素子であって、該セパレーターとして、請求項1記載のセパレータを用いることを特徴とする、電気化学素子によって達成される。   Still another object of the present invention is achieved by an electrochemical element comprising a negative electrode, a positive electrode, a separator and an electrolyte, wherein the separator according to claim 1 is used as the separator.

本発明によれば、電解液の保液性及び放湿性に優れた、電気化学素子用セパレータおよびそれよりなる電気化学素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the separator for electrochemical elements excellent in the liquid retention property and moisture release of an electrolyte solution, and an electrochemical element consisting thereof can be provided.

以下、本発明について詳細に説明する。
本発明の電気化学素子用セパレータは、吸放湿係数MRが10以上であることが必要である。該MRが10以上であるときには、電気化学素子に組み込む際、乾燥工程においては低温でも効率よく水分を除去することができ、電解液は十分に保液するものとなる。
Hereinafter, the present invention will be described in detail.
The separator for electrochemical devices of the present invention needs to have a moisture absorption / release coefficient MR of 10 or more. When the MR is 10 or more, when incorporated in an electrochemical device, moisture can be efficiently removed even at low temperatures in the drying step, and the electrolyte can be sufficiently retained.

このような特性を有するものであれば、いずれを用いてもよいが、アルキレンテレフタレートを主たる繰り返し単位とし、下記式(I)で示される有機スルホン酸金属塩(A)と下記式(II)で示されるポリアルキレングリコール(B)とが共重合されたポリエステルポリマーを使用すれば、本願の効果が顕著に発現するので好ましい。   Any one may be used as long as it has such characteristics, and the main repeating unit is alkylene terephthalate, and the organic sulfonic acid metal salt (A) represented by the following formula (I) and the following formula (II) Use of a polyester polymer copolymerized with the polyalkylene glycol (B) shown is preferable because the effects of the present application are remarkably exhibited.

Figure 2006127890
Figure 2006127890

Figure 2006127890
Figure 2006127890

ここで、アルキレンテレフタレート単位を「主たる」繰り返し単位とするポリエステルとは、アルキレンテレフタレート単位以外の繰り返し単位を、ポリエステルを構成する全繰り返し単位を基準として、20モル%以下、好ましくは15モル%以下、特に好ましくは10モル%以下の共重合成分として含有していてもよいことを意味する。なお、アルキレンテレフタレート単位のグリコール成分としては、炭素数2〜4のアルキレングリコールが好ましく、エチレングリコール、トリメチレングリコール、テトラメチレングリコールなどを例示することができる。   Here, the polyester having an alkylene terephthalate unit as a “main” repeating unit is a repeating unit other than an alkylene terephthalate unit, based on all repeating units constituting the polyester, 20 mol% or less, preferably 15 mol% or less, Particularly preferably, it means that it may be contained as a copolymer component of 10 mol% or less. In addition, as a glycol component of an alkylene terephthalate unit, a C2-C4 alkylene glycol is preferable, and ethylene glycol, trimethylene glycol, tetramethylene glycol etc. can be illustrated.

共重合し得るテレフタル酸以外の二官能性カルボン酸成分としては、例えばイソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸、β−ヒドロキシエトキシ安息香酸、P−オキシ安息香酸、アジピン酸、セバシン酸、1,4−シクロヘキサンジカルボン酸のような芳香族、脂環族、脂肪族の二官能性カルボン酸を挙げることができる。   Examples of the bifunctional carboxylic acid component other than terephthalic acid that can be copolymerized include isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, β-hydroxyethoxybenzoic acid, P-oxybenzoic acid, and adipic acid. And aromatic, alicyclic and aliphatic bifunctional carboxylic acids such as sebacic acid and 1,4-cyclohexanedicarboxylic acid.

また、共重合し得るアルキレングリコール以外のジオール成分としては、例えば、シクロヘキサン−1,4−ジメタノール、ネオペンチルグリコール、ビスフェノールA、ビスフェノールSのような脂肪族、脂環族、芳香族のジオール化合物を挙げることができる。   Examples of diol components other than alkylene glycol that can be copolymerized include, for example, aliphatic, alicyclic, and aromatic diol compounds such as cyclohexane-1,4-dimethanol, neopentyl glycol, bisphenol A, and bisphenol S. Can be mentioned.

さらに、本発明の目的の達成が実質的に損なわれない範囲内であれば、トリメリット酸、ピロメリット酸のような三官能性以上のポリカルボン酸、グリセリン、トリメチロールプロパン、ペンタエリスリトールのような三官能性以上のポリオールを共重合成分として用いてもよい。   Furthermore, as long as the achievement of the object of the present invention is not substantially impaired, a tricarboxylic acid or more polycarboxylic acid such as trimellitic acid or pyromellitic acid, glycerin, trimethylolpropane, pentaerythritol, etc. A trifunctional or higher functional polyol may be used as a copolymerization component.

上記ポリエステルに共重合される成分(A)は前記式(I)で示される有機スルホン酸金属塩であり、式中、Rは芳香族炭化水素基又は脂肪族炭化水素基、Xはエステル形成性の官能基、Xはエステル形成性官能基又は水素原子である。ここでいうエステル形成性の官能基とは、反応してエステル結合を介してポリエステルに結合され得る官能基であり、一般にはヒドロキシル基、カルボキシル基又はそれらのエステルである。Mは、Na、K、Liなどのアルカリ金属又はMg、Caなどのアルカリ土類金属であり、なかでもNa、Kが好ましい。このような有機スルホン酸金属塩は、1種でも2種以上の混合物としても使用でき、好ましい具体例としては、5−ナトリムスルホイソフタル酸ジメチル、5−カリウムスルホイソフタル酸ジメチル、5−リチウムスルホイソフタル酸ジメチル、5−ナトリウムスルホイソフタル酸ビス(β−ヒドロキシエチル)エステル、5−カリウムスルホイソフタル酸ビス(β−ヒドロキシエチル)エステル、5−リチウムスルホイソフタル酸ビス(β−ヒドロキシエチル)エステル等を挙げることができる。 The component (A) copolymerized with the polyester is an organic sulfonic acid metal salt represented by the formula (I), wherein R 1 is an aromatic hydrocarbon group or an aliphatic hydrocarbon group, and X 1 is an ester. A formable functional group, X 2 is an ester-forming functional group or a hydrogen atom. The ester-forming functional group here is a functional group that can be reacted and bonded to the polyester via an ester bond, and is generally a hydroxyl group, a carboxyl group, or an ester thereof. M is an alkali metal such as Na, K or Li, or an alkaline earth metal such as Mg or Ca, and Na or K is particularly preferable. Such an organic sulfonic acid metal salt can be used alone or as a mixture of two or more thereof, and preferred specific examples thereof include 5-dimethylsulfoisophthalate dimethyl, 5-potassium sulfoisophthalate dimethyl, 5-lithium sulfoisophthalate. Dimethyl acid, 5-sodium sulfoisophthalic acid bis (β-hydroxyethyl) ester, 5-potassium sulfoisophthalic acid bis (β-hydroxyethyl) ester, 5-lithium sulfoisophthalic acid bis (β-hydroxyethyl) ester, etc. be able to.

有機スルホン酸金属塩のポリエステルへの共重合量は、ポリエステルを構成する全ジカルボン酸成分を基準として、0.1〜30モル%であることが好ましく、特に0.1〜10モル%であることが好ましい。   The copolymerization amount of the organic sulfonic acid metal salt to the polyester is preferably 0.1 to 30 mol%, particularly 0.1 to 10 mol%, based on all dicarboxylic acid components constituting the polyester. Is preferred.

次に、上記式(II)で示される成分(B)としてのポリアルキレングリコールは、ポリエステルの吸放湿性能を向上させる目的で共重合させるが、ポリエステルを構成する全ジカルボン酸成分を基準として、0.1〜60重量%共重合することが好ましく、特に好ましくは0.2〜15重量%である。   Next, the polyalkylene glycol as the component (B) represented by the above formula (II) is copolymerized for the purpose of improving the moisture absorption / release performance of the polyester, but based on all dicarboxylic acid components constituting the polyester, The copolymerization is preferably 0.1 to 60% by weight, particularly preferably 0.2 to 15% by weight.

かかるポリアルキレングリコールとしては、トリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール、ポリエチレングリコール(分子量1000、2000、4000、8000、20000、50000)などを例示することができ、特に分子量が1000〜8000のポリエチレングリコールが好ましい。   Examples of such polyalkylene glycols include triethylene glycol, tetraethylene glycol, tripropylene glycol, polyethylene glycol (molecular weight 1000, 2000, 4000, 8000, 20000, 50000), and the like, particularly those having a molecular weight of 1000 to 8000. Polyethylene glycol is preferred.

次に、上記共重合ポリエステル中には、下記式(III)で示される成分(C)としての有機カルボン酸金属塩を配合することが好ましい。

Figure 2006127890
Next, it is preferable to mix | blend the organic carboxylic acid metal salt as a component (C) shown by following formula (III) in the said copolyester.
Figure 2006127890

該有機カルボン酸金属塩としては、安息香酸ナトリウム、安息香酸カリウム、安息香酸マグネシウム、安息香酸リチウム、安息香酸亜鉛、トルイル酸ナトリウム、トルイル酸カリウム、トルイル酸リチウムなどが挙げられる。このうち、安息香酸ナトリウム、安息香酸カリウム、安息香酸マグネシウムが特に好ましく、該有機カルボン酸金属塩は、1種でも2種以上併用してもよい。また、該有機カルボン酸金属塩の配合量は、ポリエステル組成物中に0.01〜5重量%占めるように配合することが好ましく、さらに好ましくは0.05〜3重量%である。   Examples of the organic carboxylic acid metal salt include sodium benzoate, potassium benzoate, magnesium benzoate, lithium benzoate, zinc benzoate, sodium toluate, potassium toluate, lithium toluate and the like. Among these, sodium benzoate, potassium benzoate, and magnesium benzoate are particularly preferable, and the organic carboxylic acid metal salt may be used alone or in combination of two or more. Moreover, it is preferable to mix | blend the compounding quantity of this organic carboxylic acid metal salt so that it may occupy 0.01 to 5 weight% in a polyester composition, More preferably, it is 0.05 to 3 weight%.

上記ポリマーの固有粘度は通常0.2〜1.5の範囲、特に0.4〜1.0の範囲が好適である。固有粘度が0.2未満であると、物性低下が起こりやすく、一方、固有粘度が1.5を越えると、生産性が悪化するとともに、成形性が低下しやすい。   The intrinsic viscosity of the polymer is usually in the range of 0.2 to 1.5, particularly preferably in the range of 0.4 to 1.0. When the intrinsic viscosity is less than 0.2, the physical properties are likely to be lowered. On the other hand, when the intrinsic viscosity is more than 1.5, the productivity is deteriorated and the moldability is easily lowered.

また、本発明のポリマーには、本発明の目的を奏する範囲内であれば他のポリマーをブレンドしてもよく、ブレンドしてよいポリマーとして例えば、固有粘度等の異なる本発明のポリマーや、他のポリエステル、ポリアミド、アクリル(メチルメタアクリレート)等を挙げることができる。   In addition, the polymer of the present invention may be blended with other polymers as long as the object of the present invention is achieved. Examples of the polymer that may be blended include the polymers of the present invention having different intrinsic viscosities, etc. Polyester, polyamide, acrylic (methyl methacrylate), and the like.

次に、上記ポリマーの製造方法につき、エチレンテレフタレート単位を主たる繰返し単位とするポリエステルを例として、以下に説明する。
先ず、テレフタル酸ジメチルとエチレングリコールとを、エステル交換触媒の存在下のエステル交換反応させるか、テレフタル酸とエチレングリコールとを直接エステル化反応させるか又はテレフタル酸とエチレンオキサイドとを反応させるかして、ビス(β−ヒドロキシエチル)テレフタレ−ト及び/又はそのオリゴマ−を形成させ、その後、重縮合触媒及び安定剤の存在下で高温減圧下に溶融重縮合を行って、ポリエチレンテレフタレートを得るにあたり、下記(I)、(II)及び所望により(III)成分をポリエステルの合成が完了する以前の任意の段階で反応系内に添加することによって達成される。好ましくは、(I)及び(II)成分はビス(β−ヒドロキシエチル)テレフタレ−ト及び/又はそのオリゴマ−を形成させる前の段階、(III)成分を配合する場合には重縮合反応中に添加するのが好ましい。
Next, the method for producing the polymer will be described below by taking polyester having ethylene terephthalate units as the main repeating unit as an example.
First, dimethyl terephthalate and ethylene glycol are transesterified in the presence of a transesterification catalyst, terephthalic acid and ethylene glycol are directly esterified, or terephthalic acid and ethylene oxide are reacted. Bis (β-hydroxyethyl) terephthalate and / or its oligomer, and then melt polycondensation under high temperature and reduced pressure in the presence of a polycondensation catalyst and a stabilizer to obtain polyethylene terephthalate. This is achieved by adding the following components (I), (II) and optionally (III) into the reaction system at any stage before the synthesis of the polyester is completed. Preferably, the components (I) and (II) are used before the formation of bis (β-hydroxyethyl) terephthalate and / or its oligomer, and during the polycondensation reaction when component (III) is added. It is preferable to add.

Figure 2006127890
Figure 2006127890

Figure 2006127890
Figure 2006127890

Figure 2006127890
Figure 2006127890

これらの反応には必要に応じて任意の触媒を使用することができるが、なかでもエステル交換反応させる際に用いる触媒としては、マグネシウム、カルシウム等のアルカリ土類金属塩、チタン、亜鉛、マンガン等の金属化合物を使用するのが好ましく、重縮合触媒としては、ゲルマニウム化合物、アンチモン化合物、チタン化合物、コバルト化合物、錫化合物を使用するのが好ましい。
触媒の使用量は、エステル交換反応、重縮合反応を進行させるために必要な量であるならば特に限定されるものではなく、また、複数の触媒を併用することも可能である。
Any catalyst can be used for these reactions as required, and among them, as the catalyst used for the transesterification reaction, alkaline earth metal salts such as magnesium and calcium, titanium, zinc, manganese, etc. These metal compounds are preferably used, and germanium compounds, antimony compounds, titanium compounds, cobalt compounds, and tin compounds are preferably used as the polycondensation catalyst.
The amount of the catalyst used is not particularly limited as long as it is a necessary amount for proceeding the transesterification reaction and polycondensation reaction, and a plurality of catalysts can be used in combination.

また、安定剤としては、トリメチルホスフェート、トリエチルホスフェート、トリフェニルホスフェート等のリン酸エステル類、トリフェニルホスファイト、トリスドデシルホスファイト等の亜リン酸エステル類、メチルアシッドホスフェート、ジブチルホスフェート、モノブチルホスフェート酸性リン酸エステル、リン酸、亜リン酸、次亜リン酸、ポリリン酸等のリン化合物を用いることが好ましい。   In addition, as stabilizers, phosphate esters such as trimethyl phosphate, triethyl phosphate and triphenyl phosphate, phosphites such as triphenyl phosphate and trisdodecyl phosphate, methyl acid phosphate, dibutyl phosphate, monobutyl phosphate It is preferable to use a phosphorus compound such as acidic phosphoric acid ester, phosphoric acid, phosphorous acid, hypophosphorous acid, or polyphosphoric acid.

エステル交換反応触媒の供給は、原料調製時の他、エステル交換反応の初期の段階において行うことができる。また、安定剤の供給は、重縮合反応初期までに行うことができるが、エステル交換反応終了時に添加することが好ましい。さらに、重縮合触媒は重縮合反応工程の初期までに供給することができる。   The transesterification reaction catalyst can be supplied at the initial stage of the transesterification reaction in addition to the preparation of the raw material. The stabilizer can be supplied before the beginning of the polycondensation reaction, but it is preferably added at the end of the transesterification reaction. Furthermore, the polycondensation catalyst can be supplied by the early stage of the polycondensation reaction step.

エステル交換反応時の反応温度は、通常200〜260℃であり、反応圧力は常圧〜0.3MPaである。また、重縮合時の反応温度は、通常250〜300℃であり、反応圧力は通常50〜200Paである。この様なエステル交換反応及び重縮合反応は、一段で行っても、複数段階に分けて行ってもよい。   The reaction temperature during the transesterification reaction is usually 200 to 260 ° C., and the reaction pressure is normal pressure to 0.3 MPa. The reaction temperature during polycondensation is usually 250 to 300 ° C., and the reaction pressure is usually 50 to 200 Pa. Such a transesterification reaction and polycondensation reaction may be performed in one stage or in multiple stages.

上記ポリマーは、次いで常法により繊維化し不織布とするか、製膜してフィルム形状とする。
ここで、不織布としては、エレクトロスピン法を含む、従来公知の任意の方法で製造されたものが挙げられるが、中でも、メルトブロー法により得られた不織布が好ましく例示される。
The above polymer is then fiberized by a conventional method to form a nonwoven fabric or formed into a film shape.
Here, as a nonwoven fabric, what was manufactured by the conventionally well-known arbitrary methods including the electrospin method is mentioned, Among these, the nonwoven fabric obtained by the melt blow method is illustrated preferably.

メルトブロー法は、溶融ポリマーを通常、T−ダイのような口金の幅方向に多数並設した紡糸孔から吐出すると同時に、口金の両側面に隣接して設けられたスリットから高温高速の気体流を噴射して吐出されたポリマーを細化することによって形成される極細繊維群を、移動している空気透過性の補集面上に堆積してシート状物を得る方法である。
この方法では細径の繊維を容易に得ることが出来るうえ、溶融ポリマーを直接的にシート化することが可能なため、不織布を最も好適に得ることができる。
In the melt-blowing method, a molten polymer is usually discharged from a plurality of spinning holes arranged side by side in the width direction of the die such as a T-die, and at the same time, a high-temperature and high-speed gas flow is generated from slits provided adjacent to both sides of the die. This is a method for obtaining a sheet-like material by depositing ultrafine fibers formed by thinning a polymer discharged by jetting on a moving air-permeable collecting surface.
In this method, a fine fiber can be easily obtained, and a molten polymer can be directly formed into a sheet, so that a nonwoven fabric can be most suitably obtained.

さらに製糸条件について詳述すると、ポリマーの溶融粘度としては、100ポイズ以上3000ポイズ以下が好ましく、より好ましくは500ポイズ以上2000ポイズ以下である。溶融粘度が低すぎると、糸切れしやすく同時にポリマー玉も発生しやすくなり、また繊維径の均一性も悪くなる。一方溶融粘度が高すぎると繊維径を細くすることが困難となる。   Further, the spinning conditions will be described in detail. The polymer melt viscosity is preferably 100 poise or more and 3000 poise or less, and more preferably 500 poise or more and 2000 poise or less. If the melt viscosity is too low, yarn breakage tends to occur, and polymer balls tend to be generated at the same time, and the uniformity of the fiber diameter also deteriorates. On the other hand, if the melt viscosity is too high, it is difficult to reduce the fiber diameter.

ポリマーの紡糸温度は、ポリマーの融点+[10℃以上100℃以下]が好ましく、ポリマーが熱分解しない範囲および工程調子が安定な範囲でできるだけ高い温度で粘度を下げることが好ましい。温度が高すぎると溶融粘度が高くなって好ましくなく、高すぎると熱分解しやすくなるため長時間の操業安定性が低下する。   The spinning temperature of the polymer is preferably the melting point of the polymer + [10 ° C. or higher and 100 ° C. or lower], and it is preferable to lower the viscosity at a temperature as high as possible within the range where the polymer is not thermally decomposed and the process condition is stable. If the temperature is too high, the melt viscosity becomes high, which is not preferable. If the temperature is too high, thermal decomposition tends to occur, and long-term operation stability decreases.

吐出されたポリマーを牽引細化する高温高圧気体は空気または水蒸気が好適である。牽引気体の温度が、ポリマーの紡糸温度とあまり離れていると吐出ポリマーの温度に影響を及ぼすため、[ポリマーの紡糸(溶融)温度−10℃]以上で[ポリマーの融点+100℃]以下、より好ましくは[ポリマーの紡糸温度+(10〜50℃)]である。また、気体流量は目的とする繊維径や吐出量、接着状態によって適宜決定すればよい。このとき、気体流の噴出スリット幅にもよるが、好ましい流量は口金幅1cm当たり0.01〜0.2Nm/分である。該流量が0.01Nm/分より小さいと細化が十分進まず、得られる不織布の斑も大きくなり、一方、該流量が0.2Nm/分を越えるとスリットの幅および吐出量によっては繊維切れが過大に起こり好ましくない。 The high-temperature and high-pressure gas that pulls and thins the discharged polymer is preferably air or water vapor. If the temperature of the traction gas is too far from the spinning temperature of the polymer, the temperature of the discharged polymer will be affected. Therefore, the [polymer spinning (melting) temperature −10 ° C.] or higher and the [polymer melting point + 100 ° C.] or lower [Spinning temperature of polymer + (10 to 50 ° C.)] is preferable. Moreover, what is necessary is just to determine a gas flow rate suitably with the target fiber diameter, discharge amount, and an adhesion state. At this time, although depending on the ejection slit width of the gas flow, a preferable flow rate is 0.01 to 0.2 Nm 3 / min per 1 cm of the base width. If the flow rate is less than 0.01 Nm 3 / min, the thinning does not proceed sufficiently, and the resulting non-woven fabric spots also increase. On the other hand, if the flow rate exceeds 0.2 Nm 3 / min, depending on the slit width and discharge amount, The fiber breakage is excessive and undesirable.

紡糸孔から吐出され、高温高圧気体により牽引細化された繊維群は、サクションを有するネットなどの補集面上に堆積され、シート状物すなわち不織布として得られる。この場合、口金下面〜補集面間の距離は繊維が固化する位置より下方にすることによって繊維同士が必要以上に接着せず、不織布風合いが粗硬にならないという点で好ましい。ただ補集面があまり下方に位置すると、噴出気体流や随伴流により繊維流が乱されることとなり、繊維同士が束状に絡まって不織布斑の原因となる。口金下面と補集面との好ましい距離は10〜80cmが適当である。   The fiber group discharged from the spinning hole and drawn and refined by the high-temperature and high-pressure gas is deposited on a collecting surface such as a net having suction, and is obtained as a sheet-like material, that is, a nonwoven fabric. In this case, the distance between the lower surface of the base and the collecting surface is preferably lower than the position where the fibers are solidified, so that the fibers do not adhere more than necessary and the nonwoven fabric texture does not become hard. However, if the collecting surface is located too low, the fiber flow is disturbed by the jet gas flow or the accompanying flow, and the fibers are entangled in a bundle to cause a non-woven fabric spot. A preferable distance between the lower surface of the base and the collecting surface is 10 to 80 cm.

上記不織布は、繊維同士が互いに少なくとも1ケ所で融着し、かつ該不織布の厚みが0.1μm〜1000μmが好ましく用いられる。更に好ましい厚みの範囲は0.5μm〜500μmであり、特に好ましくは、1〜250μmである。   The nonwoven fabric is preferably used in which the fibers are fused to each other at at least one location, and the thickness of the nonwoven fabric is 0.1 μm to 1000 μm. Furthermore, the range of preferable thickness is 0.5 micrometer-500 micrometers, Most preferably, it is 1-250 micrometers.

一方、フィルム形状は、前記ポリマーを溶融製膜または溶液製膜によって形成すればよく、具体的には、ルーダーなどの押し出し機を通して、Iダイ、Tダイ等のキャスティングダイから押し出し成形してフィルム状物を形成する方法や、溶媒に上記ポリマーを溶解して、板上に流延したのち、溶媒を蒸発乾燥させればよい。   On the other hand, the film shape may be formed by melt-forming or solution-casting the polymer. Specifically, the film is formed by extrusion from a casting die such as an I die or T die through an extruder such as a ruder. A method for forming a product or the above-described polymer may be dissolved in a solvent and cast on a plate, and then the solvent may be evaporated and dried.

また必要に応じて得られたフィルムは延伸を行ってもよく、更に、延伸の後に任意の張力をかけながらまたは張力をかけることなく熱処理を行ってもよい。
フィルムの厚み等は、0.1〜500μmが好ましく用いられる。
Moreover, the film obtained as needed may be stretched, and may be further subjected to heat treatment with or without applying any tension after stretching.
The thickness of the film is preferably 0.1 to 500 μm.

本発明の電気化学素子は、負極、正極、セパレータおよび電解質を備え、該セパレーターが、本発明の請求項1記載のセパレータを用いているものである。
ここで、電解質および負極、正極は従来の電気化学素子で通常用いることができるものをいずれも使用することができる。
The electrochemical element of the present invention includes a negative electrode, a positive electrode, a separator, and an electrolyte, and the separator uses the separator according to claim 1 of the present invention.
Here, as the electrolyte, the negative electrode, and the positive electrode, any of those that can be normally used in conventional electrochemical devices can be used.

本発明の電気化学素子の製造方法としては、特に限定はなく、公知の方法をいずれも採用することができる。
具体的には、本発明のセパレータを介して正極及び負極を接合させた接合体を外装内に入れ、電解質を注入した後、封じることにより製造する方法が一般的である。
このようにして得られる電気化学素子の形状には特に限定はなく、円筒形、角型のような扁平型及びボタン型などのあらゆる形状であってよい。
There is no limitation in particular as a manufacturing method of the electrochemical element of this invention, All well-known methods are employable.
Specifically, a method is generally used in which a joined body in which a positive electrode and a negative electrode are joined via a separator of the present invention is placed in an exterior, an electrolyte is injected, and then sealed.
The shape of the electrochemical element thus obtained is not particularly limited, and may be any shape such as a cylindrical shape, a flat shape such as a square shape, and a button shape.

また、必要に応じて、本発明のセパレータは微多孔膜、不織布等の膜状多孔性物質を支持体として積層、貼り合わせ等して用いることができ、このようにすることで、更に高い機械強度を有するセパレータとすることができる。この場合には支持体上の片面のみに本発明のセパレータを積層してもよいが、支持体の両面に積層することも好ましく実施される。また、電極をそのままセパレータの支持体として使用することもできる。
外装としては、スチール缶、アルミ間、アルミラミネートフィルムからなるパックが挙げられるが、特にこれらに限定されるものではない。
Further, if necessary, the separator of the present invention can be used by laminating, laminating, etc., with a film-like porous material such as a microporous membrane and a nonwoven fabric as a support. It can be set as the separator which has intensity | strength. In this case, the separator of the present invention may be laminated only on one side of the support, but lamination on both sides of the support is also preferably performed. Moreover, an electrode can also be used as a support body of a separator as it is.
Examples of the exterior include, but are not limited to, a steel can, a pack made of aluminum, and a pack made of an aluminum laminate film.

以下、実施例を挙げて本発明の構成および効果をさらに詳細に説明する。なお、実施例における物性は下記の方法で測定したものである。   Hereinafter, an example is given and the composition and effect of the present invention are explained in detail. In addition, the physical property in an Example is measured with the following method.

(1)吸放湿係数MR
不織布を95%RH雰囲気下、35℃で360分放置した後の吸湿率M(%)を測定した後、該試料を65%RH雰囲気下、20℃で90分放置した後の吸湿率M(%)を測定し、下記式(1)により吸放湿係数MRを算出する。
MR=(M)−(M) (1)
ここで、Mは試料を95%RH雰囲気下、35℃で360分放置した後の吸湿率(%)、また、Mは該試料を65%RH雰囲気下、20℃で90分放置した後の吸湿率(%)を表す。
(1) Moisture absorption / release coefficient MR
After measuring the moisture absorption M 1 (%) after leaving the nonwoven fabric in a 95% RH atmosphere at 35 ° C. for 360 minutes, the moisture absorption M after leaving the sample in a 65% RH atmosphere at 20 ° C. for 90 minutes. 2 (%) is measured, and the moisture absorption / release coefficient MR is calculated by the following formula (1).
MR = (M 1 ) − (M 2 ) (1)
Here, M 1 is the moisture absorption rate (%) after leaving the sample in a 95% RH atmosphere at 35 ° C. for 360 minutes, and M 2 is the sample being left in a 65% RH atmosphere at 20 ° C. for 90 minutes. It represents the subsequent moisture absorption rate (%).

(2)電解液の保持性
15cm×10cmの大きさに切り取った試料の質量を計測し、次いで電解液に1分間浸漬した後、ピンセットで該試料を取り出し、吊るした。電解液が垂れなくなったところで該試料の質量を計測し、浸漬前後の質量差より、セパレータの自重に対する電解液保液率(%)を求めた。電解液としては参考例3の操作で作製したものを用いた。
(2) Retainability of electrolyte solution The mass of a sample cut to a size of 15 cm x 10 cm was measured, and then immersed in the electrolyte solution for 1 minute, and then the sample was taken out and suspended with tweezers. When the electrolytic solution stopped dripping, the mass of the sample was measured, and the electrolytic solution retention rate (%) with respect to the weight of the separator was determined from the mass difference before and after the immersion. The electrolyte prepared by the operation of Reference Example 3 was used.

(3)電解液の吸液速度
幅20mm、長さ150mmの大きさに切り取った試料を吊るし、下端10mmを電解液に1分間浸したときの、試料中に吸い上がった電解液の高さを計測し、電解液の吸液速度(mm/min)とした。電解液としては参考例3の操作で作製したものを用いた。
(3) Liquid absorption speed of electrolyte solution The height of the electrolyte solution sucked into the sample when the sample cut to a size of 20 mm in width and 150 mm in length is hung and the lower end 10 mm is immersed in the electrolyte solution for 1 minute. Measurement was made to be the liquid absorption speed (mm / min) of the electrolytic solution. The electrolytic solution prepared by the operation of Reference Example 3 was used.

[実施例1]
(a)ポリマーの製造
テレフタル酸ジメチル90重量部、テトラメチレングリコール68重量部、エチレングリコ−ル20重量部、5−ナトリウムスルホイソフタル酸16重量部(成分(A))及びポリエチレングリコール(分子量:4000)106重量部(成分(B))を、エステル交換反応触媒として酢酸マンガン4水和塩を用い、副生するメタノールを系外に留去しつつ、エステル交換反応を実施した。
[Example 1]
(A) Production of polymer 90 parts by weight of dimethyl terephthalate, 68 parts by weight of tetramethylene glycol, 20 parts by weight of ethylene glycol, 16 parts by weight of 5-sodium sulfoisophthalic acid (component (A)) and polyethylene glycol (molecular weight: 4000) ) 106 parts by weight (component (B)) was used as a transesterification reaction catalyst, manganese acetate tetrahydrate, and by-produced methanol was distilled out of the system to carry out the transesterification reaction.

さらに、重合触媒として二酸化ゲルマニウムを添加したのちに、285℃まで加熱昇温しながらエステル交換反応させ、メタノールの留去がほぼ終了した段階で、安定剤として正リン酸、結晶化促進剤として安息香酸ナトリウム1重量%(成分(C))を添加して、エステル交換反応を終了させた。
次いで、反応生成物を高温高真空下で重縮合反応させて、固有粘度0.82、末端カルボキシル基濃度45eq/ton、溶融粘度180Pa・Sのポリエステルポリマーを得た。
Furthermore, after adding germanium dioxide as a polymerization catalyst, a transesterification reaction was carried out while heating to 285 ° C., and when methanol was almost completely distilled off, orthophosphoric acid as a stabilizer and benzoic acid as a crystallization accelerator. 1% by weight of sodium acid (component (C)) was added to complete the transesterification reaction.
Next, the reaction product was subjected to a polycondensation reaction under high temperature and high vacuum to obtain a polyester polymer having an intrinsic viscosity of 0.82, a terminal carboxyl group concentration of 45 eq / ton, and a melt viscosity of 180 Pa · S.

(b)セパレータとしての不織布の製造
上記ポリエステルポリマーを、130℃で23時間乾燥し、メルトブロー法により260℃で溶融させてから、パック温度245℃、パック圧力7.1MPa、ホットエアー185℃で吐出し延伸細化後、口金より20cm下方に設けられた補集ネット上に補集した。 得られた不織布を構成するポリエステル繊維を95%RH雰囲気下、35℃で360分放置した後の吸湿率は36%であった。また、得られた不織布の吸放湿係数MRは24であった。また電解液の保持性は200%であり、電解液の吸液速度は20mm/minであった。この不織布の厚みは201μmであった。
(B) Production of nonwoven fabric as separator The polyester polymer was dried at 130 ° C. for 23 hours, melted at 260 ° C. by a melt blow method, and then discharged at a pack temperature of 245 ° C., a pack pressure of 7.1 MPa, and hot air of 185 ° C. After stretching and thinning, the particles were collected on a collection net provided 20 cm below the base. The moisture absorption after the polyester fibers constituting the obtained nonwoven fabric were allowed to stand at 35 ° C. for 360 minutes in a 95% RH atmosphere was 36%. Moreover, the moisture absorption / release coefficient MR of the obtained nonwoven fabric was 24. Moreover, the retention property of electrolyte solution was 200%, and the liquid absorption rate of electrolyte solution was 20 mm / min. The nonwoven fabric had a thickness of 201 μm.

[比較例1]
実施例1において、ポリエチレングリコールを添加しなかったこと以外は実施例1と同様に実施し、不織布を得た。
得られた不織布を構成するポリエステル繊維を95%RH雰囲気下、35℃で360分放置した後の吸湿率は1.5%であった。また、得られた不織布の吸放湿係数MRは0.3であった。また電解液の保持性は40%であり、電解液の吸液速度は15mm/minであった。この不織布の厚みは200μmであった。
[Comparative Example 1]
In Example 1, except having not added polyethyleneglycol, it implemented like Example 1 and obtained the nonwoven fabric.
The moisture absorption after the polyester fibers constituting the obtained nonwoven fabric were allowed to stand at 35 ° C. for 360 minutes in a 95% RH atmosphere was 1.5%. Moreover, the moisture absorption / release coefficient MR of the obtained nonwoven fabric was 0.3. Further, the retention of the electrolytic solution was 40%, and the liquid absorption rate of the electrolytic solution was 15 mm / min. The nonwoven fabric had a thickness of 200 μm.

[参考例1]電極(正極)の作成:
コバルト酸リチウム(LiCoO 日本化学工業株式会社製)粉末89.5質量部とアセチレンブラック4.5質量部及び、PVdFの乾燥重量が6質量部となるように、6質量%のPVdFのN−メチル−ピロリドン(NMP)溶液を用い、正極剤ペーストを作製した。得られたペーストを厚さ20μmのアルミ箔上に塗布乾燥後プレスして厚さ97μmの正極を得た。
[Reference Example 1] Preparation of electrode (positive electrode):
The lithium cobalt oxide (LiCoO 2 manufactured by Nippon Chemical Industry Co., Ltd.) powder 89.5 parts by mass, acetylene black 4.5 parts by mass, and 6% by mass PVdF N- A positive electrode paste was prepared using a methyl-pyrrolidone (NMP) solution. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 97 μm.

[参考例2]電極(負極)の作成:
負極活物質としてメゾフェーズカーボンマイクロビーズ(大阪瓦斯化学株式会社製)粉末87質量部とアセチレンブラック3質量部及びPVdFの乾燥重量が10質量部となるように、6質量%のPVdFのNMP溶液を用い、負極剤ペーストを作製した。得られたペーストを厚さ18μmの銅箔状に塗布乾燥後プレスして、厚さ90μmの負極を得た。
[Reference Example 2] Preparation of electrode (negative electrode):
As a negative electrode active material, an NMP solution of 6% by mass of PVdF was used so that 87 parts by mass of mesophase carbon microbeads (manufactured by Osaka Gas Chemical Co., Ltd.), 3 parts by mass of acetylene black, and 10 parts by mass of PVdF were dried. A negative electrode paste was prepared. The obtained paste was applied to a 18 μm thick copper foil, dried and pressed to obtain a 90 μm thick negative electrode.

[参考例3]電解液の作成:
電解液はエチレンカーボネートとエチルメチルカーボネートとを3:7の重量比で混合した混合溶媒に1Mの濃度で六フッ化リン酸リチウムを溶解して作成した。
[Reference Example 3] Preparation of electrolyte solution:
The electrolytic solution was prepared by dissolving lithium hexafluorophosphate at a concentration of 1M in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a weight ratio of 3: 7.

[実施例2]
実施例1の操作で製造したセパレータ、上記参考例で作成した電極、電解液を用いてリチウムイオン二次電池を製造したところ当該電池は良好に作動した。
また、同様にして実施例1の操作で製造したセパレータを用いて、ニッケル水素電池、電気二重層キャパシタを製造したところ、いずれも良好に作動した。
[Example 2]
When a lithium ion secondary battery was manufactured using the separator manufactured by the operation of Example 1, the electrode prepared in the above reference example, and the electrolytic solution, the battery operated well.
Similarly, when a nickel-metal hydride battery and an electric double layer capacitor were manufactured using the separator manufactured by the operation of Example 1, both worked well.

Claims (8)

下記式(1)により表される吸放湿係数MRが10以上である、電気化学素子用セパレータ。
MR=(M)−(M) (1)
ここで、Mは試料を95%RH雰囲気下、35℃で360分放置した後の吸湿率(%)、また、Mは該試料を65%RH雰囲気下、20℃で90分放置した後の吸湿率(%)を表す。
The separator for electrochemical devices whose moisture absorption-release coefficient MR represented by following formula (1) is 10 or more.
MR = (M 1 ) − (M 2 ) (1)
Here, M 1 is the moisture absorption rate (%) after leaving the sample in a 95% RH atmosphere at 35 ° C. for 360 minutes, and M 2 is the sample being left in a 65% RH atmosphere at 20 ° C. for 90 minutes. It represents the subsequent moisture absorption rate (%).
アルキレンテレフタレートを主たる繰り返し単位とし、下記式(I)で示される有機スルホン酸金属塩(A)と下記式(II)で示されるポリアルキレングリコール(B)とが共重合されたポリエステルポリマーから形成される、請求項1記載のセパレータ。
Figure 2006127890
Figure 2006127890
It is formed from a polyester polymer in which an alkylene terephthalate is a main repeating unit and an organic sulfonic acid metal salt (A) represented by the following formula (I) and a polyalkylene glycol (B) represented by the following formula (II) are copolymerized. The separator according to claim 1.
Figure 2006127890
Figure 2006127890
前記ポリマーに、更に下記式(III)で示される有機カルボン酸金属塩(C)が配合されてなるポリマーから形成される、請求項2記載のセパレータ。
Figure 2006127890
The separator of Claim 2 formed from the polymer by which the organic carboxylic acid metal salt (C) shown by following formula (III) is further mix | blended with the said polymer.
Figure 2006127890
請求項2または3記載の前記ポリマーが繊維形状である、請求項2または3記載のセパレータ。   The separator according to claim 2 or 3, wherein the polymer according to claim 2 or 3 has a fiber shape. 請求項2または3記載の前記ポリマーが不織布形状である、請求項4記載のセパレータ。   The separator according to claim 4, wherein the polymer according to claim 2 or 3 is in the form of a nonwoven fabric. 請求項2または3記載の前記不織布が、メルトブロー法によって製造される、請求項5記載のセパレータ。   The separator according to claim 5, wherein the nonwoven fabric according to claim 2 or 3 is produced by a melt blow method. 請求項2または3記載の前記ポリマーがフィルム形状である、請求項2または3記載のセパレータ。   The separator according to claim 2 or 3, wherein the polymer according to claim 2 or 3 is in the form of a film. 負極、正極、セパレータおよび電解質を備える電気化学素子であって、該セパレーターとして、請求項1記載のセパレータを用いることを特徴とする、電気化学素子。   An electrochemical element comprising a negative electrode, a positive electrode, a separator and an electrolyte, wherein the separator according to claim 1 is used as the separator.
JP2004314080A 2004-10-28 2004-10-28 Separator for electrochemical element and electrochemical element comprising it Pending JP2006127890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314080A JP2006127890A (en) 2004-10-28 2004-10-28 Separator for electrochemical element and electrochemical element comprising it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314080A JP2006127890A (en) 2004-10-28 2004-10-28 Separator for electrochemical element and electrochemical element comprising it

Publications (1)

Publication Number Publication Date
JP2006127890A true JP2006127890A (en) 2006-05-18

Family

ID=36722403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314080A Pending JP2006127890A (en) 2004-10-28 2004-10-28 Separator for electrochemical element and electrochemical element comprising it

Country Status (1)

Country Link
JP (1) JP2006127890A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2630683A4 (en) * 2010-10-21 2016-09-28 Eastman Chem Co Battery separator
JP2018081922A (en) * 2013-02-05 2018-05-24 三菱製紙株式会社 Non-woven fabric base material for lithium ion secondary battery separator and lithium ion secondary battery separator
JP2022544630A (en) * 2019-09-30 2022-10-19 デュポン テイジン フィルムス ユーエス リミテッド パートナーシップ Copolyester film for use as a separator in lithium ion wet cell batteries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2630683A4 (en) * 2010-10-21 2016-09-28 Eastman Chem Co Battery separator
JP2018081922A (en) * 2013-02-05 2018-05-24 三菱製紙株式会社 Non-woven fabric base material for lithium ion secondary battery separator and lithium ion secondary battery separator
US10230087B2 (en) 2013-02-05 2019-03-12 Mitsubishi Paper Mills Limited Non-woven fabric base material for lithium ion secondary battery separator and lithium ion secondary battery separator
JP2022544630A (en) * 2019-09-30 2022-10-19 デュポン テイジン フィルムス ユーエス リミテッド パートナーシップ Copolyester film for use as a separator in lithium ion wet cell batteries

Similar Documents

Publication Publication Date Title
Li et al. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries
Waqas et al. Recent development in separators for high‐temperature lithium‐ion batteries
Cui et al. Composite of polyvinylidene fluoride–cellulose acetate with Al (OH) 3 as a separator for high-performance lithium ion battery
TW463410B (en) Composite suitable for use in electrochemical cells
JP5189459B2 (en) Lithium battery separator and lithium battery using the same
US20160351876A1 (en) Heat resisting separator having ultrafine fibrous layer and secondary battery having the same
Dai et al. Research progress on high-temperature resistant polymer separators for lithium-ion batteries
KR101255494B1 (en) Process for producing aromatic polyamide porous film
EP2835843B1 (en) Separator
KR101293276B1 (en) Fibrous Current Collector Made of Polymer Web and Method of Manufacturing the Same
EP2634838B1 (en) Separator for non-aqueous batteries and non-aqueous battery equipped with same, and process for manufacturing separator for non-aqueous batteries
US20150372273A1 (en) Hybrid nonwoven separator having inverted structure
KR101432862B1 (en) Porous support and method for manufacturing the same
KR20120080596A (en) Separator for non-aqueous batteries, non-aqueous battery using same, and production method for separator for non-aqueous batteries
EP2052426A1 (en) Heat resisting ultrafine fibrous separator and secondary battery using the same
US10106923B2 (en) Extra-fine fiber sheet
JP2013522855A (en) Electrochemical element separator, method for producing the same, and electrochemical element provided with the same
JP5664022B2 (en) Aromatic polyamide porous membrane, porous film and battery separator
JP2012045815A (en) Composite film
JP2006127890A (en) Separator for electrochemical element and electrochemical element comprising it
JP5049092B2 (en) Capacitor separator and capacitor
CN114613953A (en) Fiber material with core-shell structure, negative electrode plate comprising fiber material, electrochemical device and electronic device
JP2014170693A (en) Cell separator and process of manufacturing the same
JP2014063703A (en) Separator
KR101489429B1 (en) Highly dispersible Polyester binder fiber for thin paper and synthetic paper comprising thereof