JP2006127776A - Circuit connection material, connection structure of circuit terminal and connection method - Google Patents

Circuit connection material, connection structure of circuit terminal and connection method Download PDF

Info

Publication number
JP2006127776A
JP2006127776A JP2004310574A JP2004310574A JP2006127776A JP 2006127776 A JP2006127776 A JP 2006127776A JP 2004310574 A JP2004310574 A JP 2004310574A JP 2004310574 A JP2004310574 A JP 2004310574A JP 2006127776 A JP2006127776 A JP 2006127776A
Authority
JP
Japan
Prior art keywords
circuit
connection
connection terminal
terminal
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004310574A
Other languages
Japanese (ja)
Other versions
JP4534716B2 (en
Inventor
Takashi Nakazawa
孝 中澤
Masanori Fujii
正規 藤井
Tomomi Yokosumi
友美 横住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004310574A priority Critical patent/JP4534716B2/en
Publication of JP2006127776A publication Critical patent/JP2006127776A/en
Application granted granted Critical
Publication of JP4534716B2 publication Critical patent/JP4534716B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit connection material hardly causing warpage as compared with a conventional cation/epoxy-cured system, in low-temperature connection, for instance, at 160&deg;C for 10 sec. <P>SOLUTION: This circuit connection material 4 is interlaid between circuit electrodes 1a and 2a facing each other for electrically connecting the electrodes 1a and 2a by heating and pressing the circuit electrodes 1a and 2a facing each other only in the pressurized direction. The circuit connection material contains the following constituents (1)-(4): (1) a radical polymerizing substance; (2) a polymerization initiator generating an uncombined radical by heating; (3) an epoxy resin; and (4) a cation polymerizing initiator. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、相対向する回路電極間に介在され、相対向する回路電極を加熱加圧し加圧方向の電極間のみを電気的に接続する回路接続材料と、回路端子の接続構造体及び接続方法とに関する。   The present invention relates to a circuit connection material that is interposed between circuit electrodes facing each other, heats and presses the circuit electrodes facing each other, and electrically connects only the electrodes in the pressurizing direction, a circuit terminal connection structure, and a connection method And about.

エポキシ樹脂系接着剤は、高い接着強度が得られ、耐水性や耐熱性に優れること等から、電気・電子・建築・自動車・航空機等の各種用途に多用されている。
中でも一液型エポキシ樹脂系接着剤は、主剤と硬化剤との混合が不必要であり使用が簡便なことから、フィルム状、ペースト状、粉体状の形態で使用されている。
しかしながら、エポキシ樹脂系接着剤を用いて、半導体チップをガラス基板に接続するとき、ガラス基板が反るという問題があった。
Epoxy resin adhesives are widely used in various applications such as electricity, electronics, architecture, automobiles and airplanes because of their high adhesive strength and excellent water resistance and heat resistance.
Among them, the one-pack type epoxy resin adhesive is used in the form of a film, a paste, or a powder because it is not necessary to mix the main agent and the curing agent and is easy to use.
However, when an epoxy resin adhesive is used to connect the semiconductor chip to the glass substrate, there is a problem that the glass substrate is warped.

一方、低温速硬化性の接着剤として、ラジカル重合性接着剤が知られている(例えば、特許文献1)。エポキシ樹脂系接着剤とラジカル重合系接着剤は、通常異なる重合タイプの接着剤として別々に使用されていた。
WO98/44067パンフレット
On the other hand, a radical polymerizable adhesive is known as a low-temperature fast-curing adhesive (for example, Patent Document 1). Epoxy resin adhesives and radical polymerization adhesives are usually used separately as different polymerization type adhesives.
WO98 / 44067 brochure

本発明の目的は、反りの少ない回路接続材料を提供することである。   An object of the present invention is to provide a circuit connecting material with less warpage.

本発明者らは、上記課題に鑑み、鋭意研究した結果、カチオン重合性エポキシ樹脂接着剤と、ラジカル重合性接着剤とを組み合わせたハイブリッド硬化により、反りを減らせることを見い出し、本発明を完成させた。
本発明によれば、以下の回路接続材料等が提供される。
1.相対向する回路電極間に介在され、相対向する回路電極を加熱加圧し、加圧方向の電極間のみを電気的に接続する回路接続材料であって、下記(1)〜(4)の成分を含有する回路接続材料。
(1)ラジカル重合性物質
(2)加熱により遊離ラジカルを発生する重合開始剤
(3)エポキシ樹脂
(4)カチオン重合性開始剤
2.0℃から300℃の範囲のDSC測定において、発熱曲線の頂点の温度が200℃以上となるピークを除いた残りのピークの発熱量が、全体の発熱量の60%以上である1記載の回路接続材料。
3.0℃から300℃の範囲のDSC測定において、発熱曲線の頂点の温度が200℃以上となるピークを除いた残りのピークの発熱開始温度が60℃以上、かつそのピークの発熱終了温度が180℃以下である1又は2記載の回路接続材料。
4.前記ラジカル重合性物質(1)が(メタ)アクリレート化合物であり、この(メタ)アクリレート化合物の(メタ)アクリレート当量が、前記エポキシ樹脂(3)のエポキシ当量よりも大きい1〜3のいずれか記載の回路接続材料。
5.前記(メタ)アクリレート化合物が、骨格にエチレンオキサイド及び/又はプロピレンオキサイドを6以上含有し、かつ(メタ)アクリロイル基を2個以上有する4記載の回路接続材料。
6.第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とが、第一の接続端子と第二の接続端子を対向して配置されており、前記対向配置した第一の接続端子と第二の接続端子の間に1〜5のいずれか記載の回路接続材料が介在されており、前記対向配置した第一の接続端子と第二の接続端子のみが電気的に接続されている回路端子の接続構造体。
7.第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とを、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に1〜5のいずれか記載の回路接続材料を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子のみを電気的に接続させる回路端子の接続方法。
As a result of diligent research in view of the above problems, the present inventors have found that warpage can be reduced by hybrid curing combining a cationic polymerizable epoxy resin adhesive and a radical polymerizable adhesive, and the present invention has been completed. I let you.
According to the present invention, the following circuit connection materials and the like are provided.
1. A circuit connecting material that is interposed between opposing circuit electrodes, heats and presses the opposing circuit electrodes, and electrically connects only the electrodes in the pressing direction, and includes the following components (1) to (4) A circuit connecting material containing.
(1) Radical polymerizable substance (2) Polymerization initiator that generates free radicals upon heating (3) Epoxy resin (4) Cationic polymerizable initiator In DSC measurement in the range of 2.0 ° C to 300 ° C, the exothermic curve 2. The circuit connecting material according to 1, wherein a calorific value of the remaining peaks excluding a peak at which the peak temperature is 200 ° C. or higher is 60% or more of the total calorific value.
In DSC measurement in the range of 3.0 ° C. to 300 ° C., the exothermic start temperature of the remaining peaks excluding the peak where the temperature at the top of the exothermic curve is 200 ° C. or higher is 60 ° C. or higher, and the exothermic end temperature of the peak is 3. The circuit connection material according to 1 or 2, which is 180 ° C. or lower.
4). The radical polymerizable substance (1) is a (meth) acrylate compound, and the (meth) acrylate equivalent of the (meth) acrylate compound is any one of 1 to 3 greater than the epoxy equivalent of the epoxy resin (3). Circuit connection material.
5. 5. The circuit connection material according to 4, wherein the (meth) acrylate compound contains 6 or more ethylene oxide and / or propylene oxide in the skeleton, and has 2 or more (meth) acryloyl groups.
6). The first circuit member having the first connection terminal and the second circuit member having the second connection terminal are arranged to face the first connection terminal and the second connection terminal, and The circuit connection material according to any one of 1 to 5 is interposed between the first connection terminal and the second connection terminal that are arranged to face each other, and only the first connection terminal and the second connection terminal that are arranged to face each other. A circuit terminal connection structure in which is electrically connected.
7). A first circuit member having a first connection terminal and a second circuit member having a second connection terminal are disposed so that the first connection terminal and the second connection terminal are opposed to each other, and the opposed arrangement is performed. The circuit connection material according to any one of 1 to 5 is interposed between the first connection terminal and the second connection terminal, and only the first connection terminal and the second connection terminal that are arranged to face each other by heating and pressing. Circuit terminal connection method for electrically connecting the terminals.

本発明によれば、反りの少ない回路接続材料を提供できる。
本発明の回路接続材料は、例えば160℃10秒の低温接続において、従来のカチオン/エポキシ硬化系よりも反り量が少ない。
According to the present invention, a circuit connection material with less warpage can be provided.
The circuit connection material of the present invention has less warpage than a conventional cation / epoxy curing system, for example, at a low temperature connection of 160 ° C. for 10 seconds.

本発明で用いるラジカル重合性物質(1)としては、ラジカルにより重合する官能基を有する物質であり、アクリレート、メタクリレート、マレイミド化合物等が挙げられる。ラジカル重合性物質はモノマー、オリゴマーいずれの状態で用いることが可能であり、モノマーとオリゴマーを併用することも可能である。(メタ)アクリレートの具体例としては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス〔4−(アクリロキシメトキシ)フェニル〕プロパン、2,2−ビス〔4−(アクリロキシポリエトキシ)フェニル〕プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロイロキシエチル)イソシアヌレート及びこれらの対応するメタアクリレート等がある。これらの中で、特に、骨格にエチレンオキサイド(EO)及び/又はプロピレンオキサイド(PO)を6以上含有し、かつ(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物が好ましい。
これらは単独又は併用して用いることができ、必要によっては、ハイドロキノン、メチルエーテルハイドロキノン類等の重合禁止剤を適宜用いてもよい。
また、ジシクロペンテニル基及び/又はトリシクロデカニル基及び/又はトリアジン環を有する場合は、耐熱性が向上するので好ましい。
The radically polymerizable substance (1) used in the present invention is a substance having a functional group that is polymerized by radicals, and examples thereof include acrylates, methacrylates, and maleimide compounds. The radical polymerizable substance can be used in either a monomer or oligomer state, and the monomer and oligomer can be used in combination. Specific examples of (meth) acrylate include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, tetramethylol methane tetraacrylate, 2-hydroxy-1,3 -Diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclodecanyl Acrylate, tris (acryloyloxyethyl) isocyanurate and their corresponding methacrylates. Among these, a (meth) acrylate compound containing 6 or more ethylene oxide (EO) and / or propylene oxide (PO) in the skeleton and having 2 or more (meth) acryloyl groups is particularly preferable.
These can be used alone or in combination. If necessary, a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be appropriately used.
Moreover, when it has a dicyclopentenyl group and / or a tricyclodecanyl group and / or a triazine ring, since heat resistance improves, it is preferable.

マレイミド化合物としては、分子中にマレイミド基を少なくとも2個以上含有するもので、例えば、1−メチル−2,4−ビスマレイミドベンゼン、N,N’−m−フェニレンビスマレイミド、N,N’−p−フェニレンビスマレイミド、N,N’−m−トルイレンビスマレイミド、N,N’−4,4−ビフェニレンビスマレイミド、N,N’−4,4−(3,3’−ジメチル−ビフェニレン)ビスマレイミド、N,N’−4,4−(3,3’−ジメチルジフェニルメタン)ビスマレイミド、N,N’−4,4−(3,3’−ジエチルジフェニルメタン)ビスマレイミド、N,N’−4,4−ジフェニルメタンビスマレイミド、N,N’−4,4−ジフェニルプロパンビスマレイミド、N,N’−4,4−ジフェニルエーテルビスマレイミド、N,N’−3,3’−ジフェニルスルホンビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、2,2−ビス(3−s−ブチル−4−8(4−マレイミドフェノキシ)フェニル)プロパン、1,1−ビス(4−(4−マレイミドフェノキシ)フェニル)デカン、4,4’−シクロヘキシリデン−ビス(1−(4マレイミドフェノキシ)−2−シクロヘキシルベンゼン、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)ヘキサフルオロプロパン等を挙げることができる。これらは単独でもまた組み合わせても使用できる。   The maleimide compound contains at least two maleimide groups in the molecule. For example, 1-methyl-2,4-bismaleimidebenzene, N, N′-m-phenylenebismaleimide, N, N′— p-phenylene bismaleimide, N, N′-m-toluylene bismaleimide, N, N′-4,4-biphenylene bismaleimide, N, N′-4,4- (3,3′-dimethyl-biphenylene) Bismaleimide, N, N′-4,4- (3,3′-dimethyldiphenylmethane) bismaleimide, N, N′-4,4- (3,3′-diethyldiphenylmethane) bismaleimide, N, N′- 4,4-diphenylmethane bismaleimide, N, N′-4,4-diphenylpropane bismaleimide, N, N′-4,4-diphenyl ether bismaleimide N, N′-3,3′-diphenylsulfone bismaleimide, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-4-8 (4 -Maleimidophenoxy) phenyl) propane, 1,1-bis (4- (4-maleimidophenoxy) phenyl) decane, 4,4'-cyclohexylidene-bis (1- (4maleimidophenoxy) -2-cyclohexylbenzene, Examples include 2,2-bis (4- (4-maleimidophenoxy) phenyl) hexafluoropropane, etc. These can be used alone or in combination.

ラジカル重合性物質の配合量は、エポキシ樹脂とラジカル重合性物質の和100重量部に対し5〜95重量部用いるのが好ましく、10〜80重量部がより好ましく、20〜60重量部がさらに好ましい。   The blending amount of the radical polymerizable substance is preferably 5 to 95 parts by weight, more preferably 10 to 80 parts by weight, and still more preferably 20 to 60 parts by weight with respect to 100 parts by weight of the sum of the epoxy resin and the radical polymerizable substance. .

本発明に用いる加熱により遊離ラジカルを発生する重合開始剤(2)としては、過酸化化合物、アゾ系化合物等の加熱により分解して遊離ラジカルを発生するものであり、目的とする接続温度、接続時間、ポットライフ等により適宜選定されるが、高反応性とポットライフの点から、半減期10時間の分解温度が40℃以上、かつ半減期1分の分解温度が180℃以下の有機過酸化物が好ましく、半減期10時間の分解温度が60℃以上、かつ半減期1分の分解温度が170℃以下の有機過酸化物がさらに好ましく、半減期10時間の分解温度が70℃以上、かつ半減期1分の分解温度が150℃以下の有機過酸化物が最も好ましい。
接続時間を10秒以下とした場合、硬化剤の配合量は十分な反応率を得るためにラジカル重合性物質100重量部に対し0.5〜40重量部程度とするのが好ましく、1.0〜40重量部がより好ましい。
The polymerization initiator (2) that generates free radicals upon heating used in the present invention is one that decomposes by heating a peroxide compound, an azo compound or the like to generate free radicals. It is appropriately selected depending on the time, pot life, etc. From the viewpoint of high reactivity and pot life, the organic peroxidation has a decomposition temperature of 40 hours or more with a half-life of 10 hours and a decomposition temperature of 180 degrees or less with a half-life of 1 hour. Preferred are organic peroxides having a half-life of 10 hours of decomposition temperature of 60 ° C. or more and a half-life of 1 minute of decomposition temperature of 170 ° C. or less, a half-life of 10 hours of decomposition temperature of 70 ° C. or more, and Most preferred is an organic peroxide having a decomposition temperature of 150 ° C. or less with a half-life of 1 minute.
When the connection time is 10 seconds or less, the blending amount of the curing agent is preferably about 0.5 to 40 parts by weight with respect to 100 parts by weight of the radical polymerizable substance in order to obtain a sufficient reaction rate. -40 parts by weight is more preferred.

硬化剤は、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイド等から選定できる。また、回路部材の接続端子の腐食を抑えるために、硬化剤中に含有される塩素イオンや有機酸は5000ppm以下であることが好ましく、さらに、加熱分解後に発生する有機酸が少ないものがより好ましい。
具体的には、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイドから選定され、高反応性が得られるパーオキシエステルから選定されることがより好ましい。
The curing agent can be selected from diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, silyl peroxide, and the like. Further, in order to suppress corrosion of the connection terminals of the circuit member, the chlorine ions and organic acids contained in the curing agent are preferably 5000 ppm or less, and more preferably less organic acids generated after the thermal decomposition. .
Specifically, it is more preferably selected from peroxyesters, dialkyl peroxides, hydroperoxides, silyl peroxides, and peroxyesters that provide high reactivity.

パーオキシエステルとしては、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシノエデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノネート、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノネート、L−ヘキシルパーオキシ−2−エチルヘキサノネート、L−ブチルパーオキシ−2−エチルヘキサノネート、t−ブチルパーオキシイソブチレート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノネート、t−ブチルパーオキシラウレート、2,5−ジメチル−2,5−ジ(m−トルオイルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシアセテート等が使用できる。   Peroxyesters include cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxynoedecanoate, and t-hexyl. Peroxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di (2- Ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, L-hexylperoxy-2-ethylhexanoate, L-butylperoxy-2-ethylhexanoate Nate, t-butylperoxyisobutyrate, 1,1-bis (t-butylperoxy) cyclohexane, -Hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanonate, t-butylperoxylaurate, 2,5-dimethyl-2,5-di (m-toluoyl par Oxy) hexane, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxyacetate and the like can be used.

ジアルキルパーオキサイドとしては、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド等が使用できる。
ハイドロパーオキサイドとしては、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド等が使用できる。
Dialkyl peroxides include α, α′-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, and t-butyl. Cumyl peroxide can be used.
As the hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide and the like can be used.

ジアシルパーオキサイドとしては、イソブチルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイド等が使用できる。   Diacyl peroxide includes isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide, benzoyl Peroxytoluene, benzoyl peroxide, etc. can be used.

パーオキシジカーボネートとしては、ジ−n−ブロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシメトキシパーオキシジカーボネート、ジ(2−エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチルパーオキシ)ジカーボネート等が使用できる。   As peroxydicarbonate, di-n-bromoperoxydicarbonate, diisopropylperoxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethoxymethoxyperoxydicarbonate, (2-Ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate, di (3-methyl-3-methoxybutylperoxy) dicarbonate and the like can be used.

パーオキシケタールとしては、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1、1−(t−ブチルパーオキシ)シクロドデカン、2,2−ビス(t−ブチルパーオキシ)デカン等が使用できる。   Peroxyketals include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t- Butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane and the like can be used.

シリルパーオキサイドとしてはt−ブチルトリメチルシリルパーオキサイド、ビス(t−ブチル)ジメチルシリルパーオキサイド、t−ブチルトリビニルシリルパーオキサイド、ビス(t−ブチル)ジビニルシリルパーオキサイド、トリス(t−ブチル)ビニルシリルパーオキサイド、t−ブチルトリアリルシリルパーオキサイド、ビス(t−ブチル)ジアリルシリルパーオキサイド、トリス(t−ブチル)アリルシリルパーオキサイド等が使用できる。
これらの遊離ラジカルを発生する硬化剤は単独又は混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。
Examples of silyl peroxides include t-butyltrimethylsilyl peroxide, bis (t-butyl) dimethylsilyl peroxide, t-butyltrivinylsilyl peroxide, bis (t-butyl) divinylsilyl peroxide, and tris (t-butyl) vinyl. Silyl peroxide, t-butyltriallylsilyl peroxide, bis (t-butyl) diallylsilyl peroxide, tris (t-butyl) allylsilyl peroxide, and the like can be used.
These curing agents that generate free radicals can be used alone or in combination, and a decomposition accelerator, an inhibitor, or the like may be used in combination.

本発明に用いるエポキシ樹脂(3)は、例えばエピクロルヒドリンとビスフェノールAやF、D等から誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックから誘導されるエポキシノボラック樹脂が代表的であり、その他グリシジルアミン、グリシジルエステル、脂環式、複素環式等の1分子内に2個以上のオキシラン基を有する各種のエポキシ化合物が適用できる。これらは単独又は2種以上混合して用いることが可能である。これらエポキシ樹脂は、不純物イオン(Na+、Cl-等)や、加水分解性塩素等を300ppm以下に低減した高純度品を用いるとが、エレクトロンマイグレーション防止のために好ましい。 The epoxy resin (3) used in the present invention is typically a bisphenol type epoxy resin derived from epichlorohydrin and bisphenol A, F, D or the like, and an epoxy novolac resin derived from epichlorohydrin and phenol novolac or cresol novolac, In addition, various epoxy compounds having two or more oxirane groups in one molecule such as glycidylamine, glycidyl ester, alicyclic, and heterocyclic can be applied. These can be used alone or in admixture of two or more. For these epoxy resins, it is preferable to use a high-purity product in which impurity ions (Na + , Cl- and the like), hydrolyzable chlorine and the like are reduced to 300 ppm or less, in order to prevent electron migration.

上記したエポキシ樹脂の中では、ビスフェノール型エポキシ樹脂が分子量の異なるグレードが広く入手可能で、接着性や反応性等を任意に設定できることから好ましい。中でもビスフェノールF型エポキシ樹脂は、粘度が特に低いことからフェノキシ樹脂との組み合わせで流動性を広範囲に設定できることや、液状であり粘着性も得やすいことから特に好ましい。また、1分子内に3個以上のオキシラン基を有するいわゆる多官能エポキシ樹脂も、組成物の架橋密度を向上し耐熱性が向上するので好ましく、溶剤による補修性を保つために組成物中に占める多官能エポキシ樹脂の割合を30%以下として使用できる。   Among the above-mentioned epoxy resins, bisphenol type epoxy resins are preferable because grades having different molecular weights are widely available, and adhesiveness, reactivity, and the like can be arbitrarily set. Among them, the bisphenol F type epoxy resin is particularly preferable because it has a particularly low viscosity and can be set in a wide range of fluidity in combination with a phenoxy resin, or is liquid and easily obtains adhesiveness. A so-called polyfunctional epoxy resin having three or more oxirane groups in one molecule is also preferable because it improves the crosslink density of the composition and improves heat resistance, and occupies the composition in order to maintain repairability with a solvent. The ratio of the polyfunctional epoxy resin can be used as 30% or less.

エポキシ樹脂の配合量は、エポキシ樹脂とラジカル重合性物質の和100重量部に対し5〜95重量部用いるのが好ましく、20〜90重量部がより好ましく、40〜80重量部がさらに好ましい。   The compounding amount of the epoxy resin is preferably 5 to 95 parts by weight, more preferably 20 to 90 parts by weight, and further preferably 40 to 80 parts by weight with respect to 100 parts by weight of the sum of the epoxy resin and the radical polymerizable substance.

本発明に用いるカチオン重合性開始剤(4)としては、芳香族ジアゾニウム塩、スルホニウム塩、ヨードニウム塩、ホスホニウム塩、セレノニウム塩等のオニウム塩が好適に用いられる。特に、スルホニウム塩は、低温での反応性に優れながら、ポットライフが長く好適に用いられる。スルホニウム塩としては、一般式(1)で示されるスルホニウム塩が好適に用いられる。   As the cationic polymerizable initiator (4) used in the present invention, onium salts such as aromatic diazonium salts, sulfonium salts, iodonium salts, phosphonium salts, and selenonium salts are preferably used. In particular, the sulfonium salt is suitably used because it has excellent reactivity at low temperatures and has a long pot life. As the sulfonium salt, a sulfonium salt represented by the general formula (1) is preferably used.

Figure 2006127776
一般式(1)中、Rはニトロソ基、カルボニル基、カルボキシル基、シアノ基、トリアルキルアンモニウム基、フルオロメチル基、R及びRはアミノ基、水酸基、メチル基、Yは、ヘキサフルオロアルセネート、ヘキサフルオロアンチモネートである。
Figure 2006127776
In the general formula (1), R 1 is a nitroso group, a carbonyl group, a carboxyl group, a cyano group, a trialkylammonium group, a fluoromethyl group, R 2 and R 3 are an amino group, a hydroxyl group, a methyl group, and Y is a hexa Fluoroarsenate, hexafluoroantimonate.

スルホニウム塩のエポキシ樹脂に対する配合量は、エポキシ樹脂100重量部に対し、1〜10重量部が好ましい。この場合、DSCにより2つ以上の発熱ピークが出ることがある。   The blending amount of the sulfonium salt with respect to the epoxy resin is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin. In this case, two or more exothermic peaks may appear due to DSC.

本発明の回路接続材料は、さらに熱可塑性樹脂を含むことができる。熱可塑性樹脂としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリアミド樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、ポリスチレン樹脂、キシレン樹脂、ポリウレタン樹脂等が使用できる。特に、水酸基含有樹脂が、硬化時の応力緩和性に優れ、水酸基による接着性が向上するため好ましい。各ポリマーをラジカル重合性の官能基で変性したものは耐熱性が向上するためより好ましい。このような場合は分子量10000以上の水酸基含有樹脂であり、かつラジカル重合性物質でもある。
これらポリマーの分子量は10000以上が好ましいが1000000以上になると混合性が悪くなる傾向にある。
The circuit connection material of the present invention can further contain a thermoplastic resin. As the thermoplastic resin, polyvinyl butyral resin, polyvinyl formal resin, polyamide resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, polystyrene resin, xylene resin, polyurethane resin and the like can be used. In particular, a hydroxyl group-containing resin is preferable because it is excellent in stress relaxation at the time of curing and the adhesion due to the hydroxyl group is improved. A polymer obtained by modifying each polymer with a radically polymerizable functional group is more preferable because heat resistance is improved. In such a case, it is a hydroxyl group-containing resin having a molecular weight of 10,000 or more, and is also a radical polymerizable substance.
The molecular weight of these polymers is preferably 10,000 or more, but if it is 1,000,000 or more, the mixing property tends to deteriorate.

水酸基含有樹脂としては、Tg(ガラス転移温度)が40℃以上で分子量10000以上の水酸基含有樹脂が好ましく使用され、例えばフェノキシ樹脂を使用することができる。水酸基含有樹脂は、カルボキシル基含有エラストマー、エポキシ基含有エラストマー、ラジカル重合性の官能基によって変性されていてもよい。ラジカル重合性の官能基で変性したものは耐熱性が向上するため好ましい。
フェノキシ樹脂は、二官能フェノール類とエピハロヒドリンを高分子量まで反応させるか、又は二官能エポキシ樹脂と二官能フェノール類を重付加反応させることにより得られる。
As the hydroxyl group-containing resin, a hydroxyl group-containing resin having a Tg (glass transition temperature) of 40 ° C. or more and a molecular weight of 10,000 or more is preferably used. For example, a phenoxy resin can be used. The hydroxyl group-containing resin may be modified with a carboxyl group-containing elastomer, an epoxy group-containing elastomer, or a radical polymerizable functional group. Those modified with a radically polymerizable functional group are preferred because the heat resistance is improved.
The phenoxy resin can be obtained by reacting a bifunctional phenol and epihalohydrin to a high molecular weight or by polyaddition reaction of a bifunctional epoxy resin and a bifunctional phenol.

また、カルボキシル基含有エラストマー、エポキシ基含有エラストマーとしては、分子末端又は分子鎖中にカルボキシル基又はエポキシ基を有するエラストマーであるならばどのようなものでもよく、例えば、ブタジエン系重合体、アクリル重合体、ポリエーテルウレタンゴム、ポリエステルウレタンゴム、ポリアミドウレタンゴム、シリコーンゴム等があり、ブタジエン系重合体が好ましい。なお、ブタジエン系重合体としては、ブタジエン重合体、ブタジエン−スチレン共重合体、ブタジエン−アクリロニトリル共重合体等が挙げられる。これらのうち、ブタジエン−アクリロニトリル共重合体が特に好ましい。   Further, the carboxyl group-containing elastomer and the epoxy group-containing elastomer may be any elastomer as long as it is an elastomer having a carboxyl group or an epoxy group in the molecular terminal or molecular chain, such as a butadiene-based polymer and an acrylic polymer. , Polyether urethane rubber, polyester urethane rubber, polyamide urethane rubber, silicone rubber and the like, and butadiene polymers are preferred. Examples of the butadiene polymer include a butadiene polymer, a butadiene-styrene copolymer, and a butadiene-acrylonitrile copolymer. Of these, butadiene-acrylonitrile copolymers are particularly preferred.

さらに、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤及びフェノール樹脂やメラミン樹脂、イソシアネート類等を含有することもできる。
カップリング剤としては、ビニル基、アクリル基、アミノ基、エポキシ基、及びイソシアネート基含有物が、接着性の向上の点から好ましい。
Furthermore, a filler, a softener, an accelerator, an anti-aging agent, a colorant, a flame retardant, a thixotropic agent, a coupling agent, a phenol resin, a melamine resin, isocyanates, and the like can also be contained.
As a coupling agent, a vinyl group, an acrylic group, an amino group, an epoxy group, and an isocyanate group-containing material are preferable from the viewpoint of improving adhesiveness.

本発明の回路接続材料は導電性粒子がなくても、接続時に相対向する回路電極の直接接触により接続が得られるが、導電性粒子を含有した場合、より安定した接続が得られる。
導電性粒子としては、Au、Ag、Ni、Cu、はんだ等の金属粒子やカーボン等があり、十分なポットライフを得るためには、表層はNi、Cu等の遷移金属類ではなくAu、Ag、白金族の貴金属類が好ましくAuがより好ましい。
また、Ni等の遷移金属類の表面をAu等の貴金属類で被覆したものでもよい。また、非導電性のガラス、セラミック、プラスチック等に前記した導通層を被覆等により形成し、最外層を貴金属類プラスチックを核とした場合や、熱溶融金属粒子の場合、加熱加圧により変形性を有するので接続時に電極との接触面積が増加し信頼性が向上するので好ましい。
Even if the circuit connection material of the present invention does not have conductive particles, connection can be obtained by direct contact of circuit electrodes facing each other at the time of connection. However, when conductive particles are contained, more stable connection can be obtained.
The conductive particles include metal particles such as Au, Ag, Ni, Cu, and solder, and carbon. In order to obtain a sufficient pot life, the surface layer is not a transition metal such as Ni or Cu, but Au, Ag. Platinum group noble metals are preferred, and Au is more preferred.
Further, the surface of a transition metal such as Ni may be coated with a noble metal such as Au. In addition, when the conductive layer described above is formed by coating or the like on non-conductive glass, ceramic, plastic, etc., and the outermost layer is precious metal plastic as the core, or in the case of hot melt metal particles, it is deformable by heating and pressing. Therefore, the contact area with the electrode is increased at the time of connection, and the reliability is improved.

本発明の回路接続材料は、0℃から300℃の範囲のDSC(示差走査熱量測定)測定において、発熱曲線の頂点の温度が200℃以上となるピークを除いた残りのピークの発熱量が、全体の発熱量の60%以上であることが好ましい。
DSCは、測定温度範囲内で、発熱、吸熱の無い標準試料との温度差をたえず打ち消すように熱量を供給又は除去するゼロ位法を測定原理とするものであり、測定装置が市販されておりそれを用いて測定できる。
In the circuit connecting material of the present invention, in DSC (differential scanning calorimetry) measurement in the range of 0 ° C. to 300 ° C., the exothermic amount of the remaining peaks excluding the peak at which the temperature at the top of the exothermic curve is 200 ° C. or more is It is preferably 60% or more of the total calorific value.
DSC is based on the zero position method, where the amount of heat is supplied or removed so that the temperature difference from a standard sample that does not generate heat or endotherm is constantly canceled within the measurement temperature range. It can be measured using it.

発熱曲線と発熱量の求め方を、図1〜4(算出例1〜4)を用いて以下に説明する。
図1〜4に示すように、発熱曲線は、縦軸に単位時間当たりに供給された熱量(熱流束)dq/dtをとり、横軸に温度をとって求める。図1〜4は、0℃〜300℃の範囲において、200℃以下にピークA、200℃以上にピークBがある場合を示している。
接着剤の反応は発熱反応であり、一定の昇温速度で試料を昇温していくと、試料が反応し熱量が発生する。その熱量をチャートに出力し、ベースラインを基準として発熱曲線とベースラインで囲まれた面積を求め、これを発熱量とする。0℃から300℃まで10℃/分の昇温速度で測定し、上記した発熱量を求める。これは、市販の装置を用いて全自動で測定できる。
DSCの頂点が200℃以上となるピークを除いた残りのピーク(残ピークPrと呼ぶ)の発熱量のDSCピーク全体に対する比率は、これらの面積比から求めることができる。残ピークPrは、図1〜4において、斜線で示している。残ピークPrの発熱量(面積)比率(%)={A/(A+B)}×100となる。
残ピークPrの発熱開始温度、発熱終了温度については、図1〜4に示すように、前述したベースラインと残ピークPrの発熱曲線が交わる温度をTa(発熱開始温度)、Te(発熱終了温度)とする。
図4に示す算出例4のように発熱曲線がベースラインと交わらず、いわゆる肩をつくる場合がある。この場合は、200℃以上に頂点を有するピークとそれと隣り合う低温側のピークとの間の発熱曲線において最小の熱流束を有する部分の温度をTe(発熱終了温度)とする。また算出例4における発熱量(面積)は、Teから発熱曲線に伸ばした直線と残ピークPrの発熱曲線とベースラインによって囲まれる部分の面積によって求めることができる。
A method for obtaining the heat generation curve and the heat generation amount will be described below with reference to FIGS. 1 to 4 (calculation examples 1 to 4).
As shown in FIGS. 1 to 4, the heat generation curve is obtained by taking the amount of heat (heat flux) dq / dt supplied per unit time on the vertical axis and the temperature on the horizontal axis. 1 to 4 show a case where the peak A is at 200 ° C. or lower and the peak B is at 200 ° C. or higher in the range of 0 ° C. to 300 ° C. FIG.
The reaction of the adhesive is an exothermic reaction, and when the sample is heated at a constant temperature increase rate, the sample reacts to generate heat. The amount of heat is output to a chart, the area surrounded by the heat generation curve and the base line is obtained with the base line as a reference, and this is defined as the heat generation amount. Measurement is performed from 0 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min, and the calorific value described above is obtained. This can be measured fully automatically using a commercially available device.
The ratio of the exothermic amount of the remaining peak (referred to as the residual peak Pr) excluding the peak at which the peak of the DSC is 200 ° C. or higher to the entire DSC peak can be obtained from these area ratios. The remaining peak Pr is indicated by diagonal lines in FIGS. The calorific value (area) ratio (%) of the remaining peak Pr is {A / (A + B)} × 100.
Regarding the heat generation start temperature and heat generation end temperature of the remaining peak Pr, as shown in FIGS. 1 to 4, the temperatures at which the above-described baseline and the heat generation curve of the remaining peak Pr intersect are Ta (heat generation start temperature) and Te (heat generation end temperature). ).
As in Calculation Example 4 shown in FIG. 4, the exothermic curve does not cross the base line, and a so-called shoulder may be created. In this case, the temperature of the portion having the minimum heat flux in the exothermic curve between the peak having a peak at 200 ° C. or higher and the adjacent low-temperature side peak is defined as Te (heat generation end temperature). In addition, the calorific value (area) in calculation example 4 can be obtained from the straight line extending from Te to the exothermic curve, the exothermic curve of the remaining peak Pr, and the area surrounded by the base line.

残ピークPrの発熱量は全体の発熱量の60%以上であることが好ましく、75%以上であることがより好ましく、80%以上であるとさらに好ましい。残ピークPrの発熱量が全体の発熱量の60%に満たない場合、回路接続に必要な硬化反応が終了するまでに多くの時間を要してしまうため、生産性が劣り好ましくない。
また、残ピークPrの発熱開始温度が60℃以上、かつ残ピークPrの発熱終了温度が180℃以下であることが好ましい。発熱開始温度が60℃より低いと、ポットライフ性に劣り好ましくない。また、発熱終了温度が180℃を超えると回路接続に必要な硬化反応を終了させるために高温が必要となるため、接続回路へのダメージ等の面から好ましくない。
The calorific value of the remaining peak Pr is preferably 60% or more of the total calorific value, more preferably 75% or more, and further preferably 80% or more. When the heat generation amount of the remaining peak Pr is less than 60% of the total heat generation amount, it takes a long time to complete the curing reaction necessary for circuit connection, which is not preferable because the productivity is inferior.
Moreover, it is preferable that the exothermic start temperature of the remaining peak Pr is 60 ° C. or higher and the exothermic end temperature of the remaining peak Pr is 180 ° C. or lower. When the heat generation starting temperature is lower than 60 ° C., the pot life property is inferior, which is not preferable. Further, if the heat generation end temperature exceeds 180 ° C., a high temperature is required to complete the curing reaction necessary for circuit connection, which is not preferable from the viewpoint of damage to the connection circuit.

さらに、本発明の回路接続材料は、ラジカル重合性物質(1)が(メタ)アクリレート化合物であるとき、(メタ)アクリレート化合物の(メタ)アクリレート当量が、エポキシ樹脂(3)のエポキシ当量よりも大きいことが好ましい。   Furthermore, when the radically polymerizable substance (1) is a (meth) acrylate compound, the (meth) acrylate equivalent of the (meth) acrylate compound is more than the epoxy equivalent of the epoxy resin (3). Larger is preferred.

また、回路接続材料を2層以上に分割し、硬化剤を含有する層と導電性粒子を含有する層に分離した場合、ポットライフの向上が得られる。   Further, when the circuit connection material is divided into two or more layers and separated into a layer containing a curing agent and a layer containing conductive particles, an improvement in pot life can be obtained.

本発明の接続方法は、第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とを、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に本発明の接続材料(フィルム状接着剤)を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子のみを電気的に接続させる。
このような回路部材としては半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、プリント基板等の基板等が用いられる。回路部材には接続端子が通常は多数(場合によっては単数でもよい)設けられている。
In the connection method of the present invention, a first circuit member having a first connection terminal and a second circuit member having a second connection terminal are arranged so that the first connection terminal and the second connection terminal are opposed to each other. The first connection terminal arranged opposite to each other by interposing the connection material (film adhesive) of the present invention between the first connection terminal and the second connection terminal arranged opposite to each other and heated and pressurized And only the second connection terminal is electrically connected.
As such a circuit member, a chip component such as a semiconductor chip, a resistor chip or a capacitor chip, a substrate such as a printed circuit board, or the like is used. The circuit member is usually provided with a large number of connection terminals (or a single connection terminal in some cases).

より良好な電気的接続を得るためには、回路電極(接続端子)の少なくとも一方の表面を、金、銀、錫及び白金族から選ばれる金属にすることが好ましい。表面層は金、銀、白金族、又は錫のいずれかから選択され、これらを組み合わせて用いてもよい。また、銅/ニッケル/金のように複数の金属を組み合わせて多層構成としてもよい。   In order to obtain better electrical connection, it is preferable that at least one surface of the circuit electrode (connection terminal) is made of a metal selected from gold, silver, tin, and a platinum group. The surface layer is selected from gold, silver, platinum group, or tin, and these may be used in combination. Moreover, it is good also as a multilayer structure combining several metals like copper / nickel / gold.

図5は本発明の一実施形態にかかる回路端子の接続方法を示す断面図である。
図5(a)において、1は第一の基板(第一の回路部材)を、2は第二の基板(第二の回路部材)を、1aは第一の回路電極(第一の接続端子)を、2aは第二の回路電極(第二の接続端子)を、3は接着剤を、4は導電性粒子を、5は加熱加圧ヘッドを、それぞれ示している。接着剤3と導電性粒子4から本発明の回路接続材料が構成される。
FIG. 5 is a cross-sectional view illustrating a circuit terminal connection method according to an embodiment of the present invention.
In FIG. 5A, 1 is a first substrate (first circuit member), 2 is a second substrate (second circuit member), and 1a is a first circuit electrode (first connection terminal). 2a is a second circuit electrode (second connection terminal), 3 is an adhesive, 4 is a conductive particle, and 5 is a heating and pressing head. The circuit connection material of the present invention is composed of the adhesive 3 and the conductive particles 4.

基板1,2は、半導体チップ類のシリコーンやガリウム・ヒ素等や、ガラス、セラミックス、ガラス・エポキシ複合体、プラスチック等の絶縁基板である。
回路電極1aは基板1の表面に銅箔で設けたもので、金の表面層が形成されている。回路電極2aは基板2の表面に銅箔で設けたもので、錫の表面層が形成されている。
回路電極を設けた基板は接続時の加熱による揮発成分による接続への影響をなくすために、回路接続材料による接続工程の前に予め加熱処理することが好ましい。
図5(b)に示すように、仮接続の後に、基板1の回路電極1aと基板2の回路電極2aを位置合わせし、基板2上方より加熱加圧ヘッド5にて所定時間の加熱加圧を行い本接続を完了する。
The substrates 1 and 2 are insulating substrates such as semiconductor chips such as silicone, gallium and arsenic, glass, ceramics, glass / epoxy composite, and plastic.
The circuit electrode 1a is provided with a copper foil on the surface of the substrate 1, and a gold surface layer is formed thereon. The circuit electrode 2a is provided on the surface of the substrate 2 with a copper foil, and a tin surface layer is formed thereon.
The substrate provided with the circuit electrodes is preferably pre-heated before the connection step using the circuit connection material in order to eliminate the influence on the connection due to the volatile component due to the heating at the time of connection.
As shown in FIG. 5B, after the temporary connection, the circuit electrode 1a of the substrate 1 and the circuit electrode 2a of the substrate 2 are aligned, and the heating and pressing head 5 is heated and pressed for a predetermined time from above the substrate 2. To complete this connection.

(実施例1)
ビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂(Mw:65,000)60gを酢酸エチル140gに溶解し、30重量%溶液を得た。重量比で、ビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂60g、ジ−t−ブチルパーオキシヘキサヒドロテレフタレート2.5g、ポリエチレングリコールジアクリレート(平均EO数:23)10g、芳香族スルホニウム塩(三新化学工業製、SI−60LA)2.5g、アクリルゴム微粒子分散型エポキシ樹脂(BPA328)30g、シランカップリング剤(東レダウコーニングシリコーン製、SH−6040)2.0gを配合し、ポリスチレン系核体(直径:4μm)の表面にAu層を形成した導電粒子を10体積%分散してフィルム塗工溶液を得た。ついでこの溶液を50μmの片面を表面処理したPET(ポリエチレンテレフタレート)フィルムに塗工装置を用いて塗布し、70℃10分の熱風乾燥により、接着剤層の厚みが25μmのフィルム状接着剤を得た。
Example 1
60 g of bisphenol A / bisphenol F copolymer phenoxy resin (Mw: 65,000) was dissolved in 140 g of ethyl acetate to obtain a 30 wt% solution. By weight, 60 g of bisphenol A / bisphenol F copolymer phenoxy resin, 2.5 g of di-t-butylperoxyhexahydroterephthalate, 10 g of polyethylene glycol diacrylate (average EO number: 23), aromatic sulfonium salt (Sanshin) Made of Chemical Industry, SI-60LA) 2.5g, acrylic rubber fine particle dispersed epoxy resin (BPA328) 30g, silane coupling agent (Toray Dow Corning Silicone, SH-6040) 2.0g, polystyrene core Conductive particles having an Au layer formed on the surface (diameter: 4 μm) were dispersed by 10% by volume to obtain a film coating solution. Next, this solution was applied to a PET (polyethylene terephthalate) film having a surface treated of 50 μm using a coating device, and dried with hot air at 70 ° C. for 10 minutes to obtain a film adhesive having an adhesive layer thickness of 25 μm. It was.

この接着剤をDSCで随時測定した。このフィルムのDSCの残ピークPrは、全体の81%であった。また、残ピークPrの発熱開始温度は92℃であり、発熱終了温度は175℃であった。
このフィルム状接着剤(2×20mm)をITO回路付きガラス基板に80℃、1MPaで貼り付けた後、セパレータを剥離し、チップのバンプとITO回路つきガラス基板の位置合わせを行なった。ついで、160℃、40g/バンプ、10秒の条件でチップ上方から加熱、加圧を行い、本圧着を行なった。このフィルム状接着剤を用いた、圧着による反りは3.0〜6.0μmであった。また、接続抵抗は、1バンプ当たり最高で150mΩ、平均で70mΩ、この圧着体は恒温恒湿処理60℃、90%RH、300時間処理後に最高で20Ω以下、平均で5Ω以下であった。
This adhesive was measured by DSC as needed. The residual peak Pr of DSC of this film was 81% of the whole. Further, the heat generation start temperature of the remaining peak Pr was 92 ° C., and the heat generation end temperature was 175 ° C.
After this film adhesive (2 × 20 mm) was attached to a glass substrate with an ITO circuit at 80 ° C. and 1 MPa, the separator was peeled off, and the bumps of the chip and the glass substrate with the ITO circuit were aligned. Next, heating and pressurization were performed from above the chip under the conditions of 160 ° C., 40 g / bump, and 10 seconds to perform the main press bonding. Warpage due to pressure bonding using this film adhesive was 3.0 to 6.0 μm. The connection resistance was 150 mΩ at the maximum per bump and 70 mΩ on the average, and this pressure-bonded body had a constant temperature and humidity treatment of 60 ° C., 90% RH, 300 hours and a maximum of 20 Ω or less, and an average of 5 Ω or less.

ガラス基板の反りは以下の方法により求めた。図6(a)、(b)に示すように、評価用チップ60{金バンプ(面積:50×50μm、スペース20μm、高さ15μm、バンプ数362)つきチップ(1.7×17mm、厚み500μm)}と評価用ガラス基板62(厚み1.1mm、ITO配線付)を得られた接着剤64で接続したもので測定した。図6(a)はチップ60付ガラス基板62を斜め上から見た斜視図、図6(b)はチップ60付ガラス基板62を斜め下から見た斜視図である。ガラス基板62の反りを求める際は、表面粗さ計を用いて圧着の前後で反り量を測定し、その変化量を「圧着による反り」とした。また、反りの測定は、接着剤64を圧着する側と反対側の面を、圧着部を中心に25mmの距離で測定した。反り量の値の正負は、ガラス側に凸な反りを正とした。 The warpage of the glass substrate was determined by the following method. As shown in FIGS. 6A and 6B, an evaluation chip 60 {gold bump (area: 50 × 50 μm, space 20 μm, height 15 μm, number of bumps 362) chip (1.7 × 17 mm, thickness 500 μm) )} And an evaluation glass substrate 62 (thickness 1.1 mm, with ITO wiring) were connected with the obtained adhesive 64 and measured. 6A is a perspective view of the glass substrate 62 with the chip 60 as viewed obliquely from above, and FIG. 6B is a perspective view of the glass substrate 62 with the chip 60 as viewed from obliquely below. When calculating | requiring the curvature of the glass substrate 62, the curvature amount was measured before and behind crimping using the surface roughness meter, and the variation | change_quantity was made into "the curvature by crimping". Further, the warpage was measured by measuring the surface opposite to the side to which the adhesive 64 is pressure-bonded at a distance of 25 mm around the pressure-bonding portion. The positive or negative value of the amount of warpage was defined as a positive warp on the glass side.

(実施例2)
ビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂(Mw:65,000)60gを酢酸エチル140gに溶解し、30重量%溶液を得た。重量比で、フェノキシ樹脂60g、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン3.5g、エトキシ化グリセリントリアクリレート(平均EO数:20)10g、芳香族スルホニウム塩(三新化学工業製、SI−60LA)2.5g、アクリルゴム微粒子分散型エポキシ樹脂(BPA328)30g、シランカップリング剤(東レダウコーニングシリコーン製、SH−6040)2.0gを配合し、ポリスチレン系核体(直径:4μm)の表面にAu層を形成した導電粒子を10体積%分散してフィルム塗工溶液を得た。以下実施例1と同様にしてフィルム状接着剤を得た。
(Example 2)
60 g of bisphenol A / bisphenol F copolymer phenoxy resin (Mw: 65,000) was dissolved in 140 g of ethyl acetate to obtain a 30 wt% solution. By weight ratio, 60 g of phenoxy resin, 3.5 g of 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, 10 g of ethoxylated glycerin triacrylate (average EO number: 20), aromatic sulfonium 2.5 g of salt (manufactured by Sanshin Chemical Co., Ltd., SI-60LA), 30 g of acrylic rubber fine particle dispersed epoxy resin (BPA328), 2.0 g of silane coupling agent (manufactured by Toray Dow Corning Silicone, SH-6040), Conductive particles having an Au layer formed on the surface of a polystyrene core (diameter: 4 μm) were dispersed by 10% by volume to obtain a film coating solution. Thereafter, a film adhesive was obtained in the same manner as in Example 1.

この接着剤をDSCで随時測定した。このフィルムのDSCの残ピークPrは、全体の84%であった。また、残ピークPrの発熱開始温度は84℃であり、発熱終了温度は170℃であった。
このフィルム状接着剤(2×20mm)をITO回路付きガラス基板に80℃、1MPaで貼り付けた後、セパレータを剥離し、チップのバンプとITO回路つきガラス基板の位置合わせを行なった。ついで、160℃、40g/バンプ、10秒の条件でチップ上方から加熱、加圧を行い、本圧着を行なった。このフィルム状接着剤を用いた、圧着による反りは3.5〜6.5μmであった。また、接続抵抗は、1バンプ当たり最高で110mΩ、平均で60mΩ、この圧着体は恒温恒湿処理60℃、90%RH、300時間処理後に最高で20Ω以下、平均で5Ω以下であった。
This adhesive was measured by DSC as needed. The residual peak Pr of DSC of this film was 84% of the whole. The exothermic start temperature of the remaining peak Pr was 84 ° C., and the exothermic end temperature was 170 ° C.
After this film adhesive (2 × 20 mm) was attached to a glass substrate with an ITO circuit at 80 ° C. and 1 MPa, the separator was peeled off, and the bumps of the chip and the glass substrate with the ITO circuit were aligned. Next, heating and pressurization were performed from above the chip under the conditions of 160 ° C., 40 g / bump, and 10 seconds to perform the main press bonding. Warpage due to pressure bonding using this film adhesive was 3.5 to 6.5 μm. Further, the connection resistance was 110 mΩ at the maximum per bump and 60 mΩ on the average, and this pressure-bonded body had a constant temperature and humidity treatment at 60 ° C. and 90% RH for 300 hours, and the maximum was 20 Ω or less and the average was 5 Ω or less.

(実験例3)
ビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂(Mw:65,000)60gを酢酸エチル140gに溶解し、30重量%溶液を得た。重量比で、ビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂60g、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン3.5g、ポリエチレングリコールジアクリレート(平均EO数:4)10g、芳香族スルホニウム塩(三新化学工業製、SI−60LA)2.5g、ビスフェノールA型エポキシ樹脂(エポキシ当量:180−190)30g、シランカップリング剤(東レダウコーニングシリコーン製、SH−6040)2.0gを配合し、ポリスチレン系核体(直径:4μm)の表面にAu層を形成した導電粒子を10体積%分散してフィルム塗工溶液を得た。以下実施例1と同様にしてフィルム状接着剤を得た。
(Experimental example 3)
60 g of bisphenol A / bisphenol F copolymer phenoxy resin (Mw: 65,000) was dissolved in 140 g of ethyl acetate to obtain a 30 wt% solution. By weight ratio, bisphenol A / bisphenol F copolymer phenoxy resin 60 g, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane 3.5 g, polyethylene glycol diacrylate (average EO number: 4) 10 g, aromatic sulfonium salt (manufactured by Sanshin Chemical Industry, SI-60LA) 2.5 g, bisphenol A type epoxy resin (epoxy equivalent: 180-190), silane coupling agent (manufactured by Toray Dow Corning Silicone, SH −6040) 2.0 g was blended, and 10% by volume of conductive particles in which an Au layer was formed on the surface of a polystyrene core (diameter: 4 μm) was dispersed to obtain a film coating solution. Thereafter, a film adhesive was obtained in the same manner as in Example 1.

この接着剤をDSCで随時測定した。このフィルムのDSCの残ピークPrは、全体の82%であった。また、残ピークPrの発熱開始温度は84℃であり、発熱終了温度は165℃であった。
このフィルム状接着剤(2×20mm)をITO回路付きガラス基板に80℃、1MPaで貼り付けた後、セパレータを剥離し、チップのバンプとITO回路つきガラス基板の位置合わせを行なった。ついで、160℃、40g/バンプ、10秒の条件でチップ上方から加熱、加圧を行い、本圧着を行なった。このフィルム状接着剤を用いた、圧着による反りは4.5〜6.5μmであった。また、接続抵抗は、1バンプ当たり最高で110mΩ、平均で60mΩ、この圧着体は恒温恒湿処理60℃、90%RH、300時間処理後に最高で20Ω以下、平均で5Ω以下であった。
This adhesive was measured by DSC as needed. The residual peak Pr of DSC of this film was 82% of the whole. Further, the heat generation start temperature of the remaining peak Pr was 84 ° C., and the heat generation end temperature was 165 ° C.
After this film adhesive (2 × 20 mm) was attached to a glass substrate with an ITO circuit at 80 ° C. and 1 MPa, the separator was peeled off, and the bumps of the chip and the glass substrate with the ITO circuit were aligned. Next, heating and pressurization were performed from above the chip under the conditions of 160 ° C., 40 g / bump, and 10 seconds to perform the main press bonding. Warpage due to pressure bonding using this film adhesive was 4.5 to 6.5 μm. Further, the connection resistance was 110 mΩ at the maximum per bump and 60 mΩ on the average, and this pressure-bonded body had a constant temperature and humidity treatment at 60 ° C. and 90% RH for 300 hours, and the maximum was 20 Ω or less and the average was 5 Ω or less.

(比較例1)
ビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂(Mw:65,000)90gを酢酸エチル210gに溶解し、30重量%溶液を得た。重量比で、ビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂(Mw:65,000)67g、芳香族スルホニウム塩(三新化学工業製、SI−60LA)2.5g、アクリルゴム微粒子分散型エポキシ樹脂(BPA328)33g、シランカップリング剤(東レダウコーニングシリコーン製、SH−6040)2.0gを配合し、ポリスチレン系核体(直径:4μm)の表面にAu層を形成した導電粒子を10体積%分散してフィルム塗工溶液を得た。以下実施例1と同様にしてフィルム状接着剤を得た。
(Comparative Example 1)
90 g of bisphenol A / bisphenol F copolymer phenoxy resin (Mw: 65,000) was dissolved in 210 g of ethyl acetate to obtain a 30 wt% solution. By weight, 67 g of bisphenol A / bisphenol F copolymer phenoxy resin (Mw: 65,000), 2.5 g of aromatic sulfonium salt (manufactured by Sanshin Chemical Industry, SI-60LA), acrylic rubber fine particle dispersed epoxy resin ( BPA 328) 33 g and silane coupling agent (Toray Dow Corning Silicone, SH-6040) 2.0 g were blended, and 10% by volume of conductive particles in which an Au layer was formed on the surface of a polystyrene core (diameter: 4 μm) Thus, a film coating solution was obtained. Thereafter, a film adhesive was obtained in the same manner as in Example 1.

この接着剤をDSCで随時測定した。このフィルムのDSCの残ピークPrは、全体の72%であった。また、残ピークPrの発熱開始温度は90℃であり、発熱終了温度は150℃であった。
このフィルム状接着剤(2×20mm)をITO回路付きガラス基板に80℃、1MPaで貼り付けた後、セパレータを剥離し、チップのバンプとITO回路つきガラス基板の位置合わせを行なった。ついで、160℃、40g/バンプ、10秒の条件でチップ上方から加熱、加圧を行い、本圧着を行なった。このフィルム状接着剤を用いた、圧着による反りは7.5〜10.5μmであった。この圧着体は恒温恒湿処理60℃、90%RH、300時間処理後に最高で15Ω以下、平均で4Ω以下であった。
This adhesive was measured by DSC as needed. The DSC residual peak Pr of this film was 72% of the total. Further, the heat generation start temperature of the remaining peak Pr was 90 ° C., and the heat generation end temperature was 150 ° C.
After this film adhesive (2 × 20 mm) was attached to a glass substrate with an ITO circuit at 80 ° C. and 1 MPa, the separator was peeled off, and the bumps of the chip and the glass substrate with the ITO circuit were aligned. Next, heating and pressurization were performed from above the chip under the conditions of 160 ° C., 40 g / bump, and 10 seconds to perform the main press bonding. Warpage due to pressure bonding using this film adhesive was 7.5 to 10.5 μm. The pressure-bonded body had a constant temperature and humidity treatment of 60 ° C., 90% RH, 300 hours and a maximum of 15Ω or less, and an average of 4Ω or less.

(比較例2)
ビスフェノールA型フェノキシ樹脂(Mw:45,000)40gを酢酸エチル93.3gに溶解し、30重量%溶液を得た。重量比で、ビスフェノールA型フェノキシ樹脂60g、芳香族スルホニウム塩(三新化学工業製、SI−60LA)2.0g、アクリルゴム微粒子分散型エポキシ樹脂(BPA328)40g、シランカップリング剤(東レダウコーニングシリコーン製、SH−6040)2.0gを配合し、ポリスチレン系核体(直径:4μm)の表面にAu層を形成した導電粒子を10体積%分散してフィルム塗工溶液を得た。以下実施例1と同様にしてフィルム状接着剤を得た。
(Comparative Example 2)
40 g of bisphenol A type phenoxy resin (Mw: 45,000) was dissolved in 93.3 g of ethyl acetate to obtain a 30 wt% solution. By weight, bisphenol A type phenoxy resin 60g, aromatic sulfonium salt (manufactured by Sanshin Chemical Industry, SI-60LA) 2.0g, acrylic rubber fine particle dispersed epoxy resin (BPA328) 40g, silane coupling agent (Toray Dow Corning) Silicone (SH-6040) 2.0 g was blended, and 10 vol% of conductive particles having an Au layer formed on the surface of a polystyrene core (diameter: 4 μm) were dispersed to obtain a film coating solution. Thereafter, a film adhesive was obtained in the same manner as in Example 1.

この接着剤をDSCで随時測定した。このフィルムのDSCの残ピークPrは、全体の43%であった。また、残ピークPrの発熱開始温度は96℃であり、発熱終了温度は149℃であった。
このフィルム状接着剤(2×20mm)をITO回路付きガラス基板に80℃、1MPaで貼り付けた後、セパレータを剥離し、チップのバンプとITO回路つきガラス基板の位置合わせを行なった。ついで、160℃、40g/バンプ、10秒の条件でチップ上方から加熱、加圧を行い、本圧着を行なった。このフィルム状接着剤を用いた、圧着による反りは3.0〜6.0μmであった。また、接続抵抗は、1バンプ当たり最高で110mΩ、平均で60mΩ、この圧着体は恒温恒湿処理60℃、90%RH、300時間処理後に導通不良が発生した。
This adhesive was measured by DSC as needed. The DSC residual peak Pr of this film was 43% of the total. Further, the heat generation start temperature of the remaining peak Pr was 96 ° C., and the heat generation end temperature was 149 ° C.
After this film adhesive (2 × 20 mm) was attached to a glass substrate with an ITO circuit at 80 ° C. and 1 MPa, the separator was peeled off, and the bumps of the chip and the glass substrate with the ITO circuit were aligned. Next, heating and pressurization were performed from above the chip under the conditions of 160 ° C., 40 g / bump, and 10 seconds to perform the main press bonding. Warpage due to pressure bonding using this film adhesive was 3.0 to 6.0 μm. In addition, the connection resistance was 110 mΩ at maximum per bump and 60 mΩ on average, and this pressure-bonded body was poor in conduction after being treated at a constant temperature and humidity treatment of 60 ° C. and 90% RH for 300 hours.

本発明の回路接続材料は、電気・電子用の等方性、異方性接着剤として、幅広く使用できる。   The circuit connection material of the present invention can be widely used as an isotropic and anisotropic adhesive for electric and electronic use.

発熱量、発熱開始温度及び発熱終了温度の算出方法(算出例1)を説明するための図である。It is a figure for demonstrating the calculation method (calculation example 1) of the emitted-heat amount, the heat-generation start temperature, and the heat-generation end temperature. 発熱量、発熱開始温度及び発熱終了温度の算出方法(算出例2)を説明するための図である。It is a figure for demonstrating the calculation method (calculation example 2) of the emitted-heat amount, the heat-generation start temperature, and the heat-generation end temperature. 発熱量、発熱開始温度及び発熱終了温度の算出方法(算出例3)を説明するための図である。It is a figure for demonstrating the calculation method (calculation example 3) of the emitted-heat amount, the heat-generation start temperature, and the heat-generation end temperature. 発熱量、発熱開始温度及び発熱終了温度の算出方法(算出例4)を説明するための図である。It is a figure for demonstrating the calculation method (calculation example 4) of the emitted-heat amount, the heat-generation start temperature, and the heat-generation end temperature. 本発明の一実施形態にかかる回路端子の接続方法を示す断面図である。It is sectional drawing which shows the connection method of the circuit terminal concerning one Embodiment of this invention. 実施例における反りの測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the curvature in an Example.

符号の説明Explanation of symbols

1 第一の基板
1a 第一の回路電極
2 第二の基板
2a 第二の回路電極
3 接着剤
4 導電性粒子
5 加熱加圧ヘッド
DESCRIPTION OF SYMBOLS 1 1st board | substrate 1a 1st circuit electrode 2 2nd board | substrate 2a 2nd circuit electrode 3 Adhesive 4 Conductive particle 5 Heating and pressing head

Claims (7)

相対向する回路電極間に介在され、相対向する回路電極を加熱加圧し、加圧方向の電極間のみを電気的に接続する回路接続材料であって、下記(1)〜(4)の成分を含有する回路接続材料。
(1)ラジカル重合性物質
(2)加熱により遊離ラジカルを発生する重合開始剤
(3)エポキシ樹脂
(4)カチオン重合性開始剤
A circuit connecting material that is interposed between opposing circuit electrodes, heats and presses the opposing circuit electrodes, and electrically connects only the electrodes in the pressing direction, and includes the following components (1) to (4) A circuit connecting material containing.
(1) radical polymerizable substance (2) polymerization initiator that generates free radicals upon heating (3) epoxy resin (4) cationic polymerizable initiator
0℃から300℃の範囲のDSC測定において、発熱曲線の頂点の温度が200℃以上となるピークを除いた残りのピークの発熱量が、全体の発熱量の60%以上である請求項1記載の回路接続材料。   2. The calorific value of the remaining peaks excluding the peak at which the temperature at the top of the exothermic curve is 200 ° C. or higher in DSC measurement in the range of 0 ° C. to 300 ° C. is 60% or more of the total calorific value. Circuit connection material. 0℃から300℃の範囲のDSC測定において、発熱曲線の頂点の温度が200℃以上となるピークを除いた残りのピークの発熱開始温度が60℃以上、かつそのピークの発熱終了温度が180℃以下である請求項1又は2記載の回路接続材料。   In DSC measurement in the range of 0 ° C. to 300 ° C., excluding the peak where the temperature at the top of the exothermic curve is 200 ° C. or higher, the exothermic start temperature of the remaining peak is 60 ° C. or higher, and the exothermic end temperature of that peak is 180 ° C. The circuit connection material according to claim 1, wherein: 前記ラジカル重合性物質(1)が(メタ)アクリレート化合物であり、この(メタ)アクリレート化合物の(メタ)アクリレート当量が、前記エポキシ樹脂(3)のエポキシ当量よりも大きい請求項1〜3のいずれか一項記載の回路接続材料。   The radically polymerizable substance (1) is a (meth) acrylate compound, and the (meth) acrylate equivalent of the (meth) acrylate compound is larger than the epoxy equivalent of the epoxy resin (3). The circuit connection material according to claim 1. 前記(メタ)アクリレート化合物が、骨格にエチレンオキサイド及び/又はプロピレンオキサイドを6以上含有し、かつ(メタ)アクリロイル基を2個以上有する請求項4記載の回路接続材料。   The circuit connection material according to claim 4, wherein the (meth) acrylate compound contains 6 or more ethylene oxide and / or propylene oxide in the skeleton, and has 2 or more (meth) acryloyl groups. 第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とが、第一の接続端子と第二の接続端子を対向して配置されており、前記対向配置した第一の接続端子と第二の接続端子の間に請求項1〜5のいずれか一項記載の回路接続材料が介在されており、前記対向配置した第一の接続端子と第二の接続端子のみが電気的に接続されている回路端子の接続構造体。   The first circuit member having the first connection terminal and the second circuit member having the second connection terminal are arranged to face the first connection terminal and the second connection terminal, and The circuit connection material according to any one of claims 1 to 5 is interposed between a first connection terminal and a second connection terminal arranged to face each other, and the first connection terminal and the second connection terminals arranged to face each other. A circuit terminal connection structure in which only the connection terminals are electrically connected. 第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第二の回路部材とを、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に請求項1〜5のいずれか一項記載の回路接続材料を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子のみを電気的に接続させる回路端子の接続方法。
A first circuit member having a first connection terminal and a second circuit member having a second connection terminal are disposed so that the first connection terminal and the second connection terminal are opposed to each other, and the opposed arrangement is performed. The circuit connection material according to any one of claims 1 to 5 is interposed between the first connection terminal and the second connection terminal, and the first connection terminal and the second disposed opposite to each other by heating and pressing. Circuit terminal connection method for electrically connecting only the connection terminals.
JP2004310574A 2004-10-26 2004-10-26 Circuit connection material, circuit terminal connection structure and connection method Expired - Fee Related JP4534716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004310574A JP4534716B2 (en) 2004-10-26 2004-10-26 Circuit connection material, circuit terminal connection structure and connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004310574A JP4534716B2 (en) 2004-10-26 2004-10-26 Circuit connection material, circuit terminal connection structure and connection method

Publications (2)

Publication Number Publication Date
JP2006127776A true JP2006127776A (en) 2006-05-18
JP4534716B2 JP4534716B2 (en) 2010-09-01

Family

ID=36722305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004310574A Expired - Fee Related JP4534716B2 (en) 2004-10-26 2004-10-26 Circuit connection material, circuit terminal connection structure and connection method

Country Status (1)

Country Link
JP (1) JP4534716B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069238A (en) * 2006-09-13 2008-03-27 Tatsuta System Electronics Kk Thermoconductive paste
WO2008078692A1 (en) * 2006-12-27 2008-07-03 Dh Material Inc. Cationically polymerizable resin composition for molding, and molded article using the same
JP2009088465A (en) * 2007-09-14 2009-04-23 Hitachi Chem Co Ltd Anisotropically conductive adhesive, anisotropically conductive film, and method of manufacturing circuit connecting structure
WO2010038574A1 (en) * 2008-09-30 2010-04-08 ソニーケミカル&インフォメーションデバイス株式会社 Acrylic dielectric adhesive
JP2010280896A (en) * 2010-08-06 2010-12-16 Sony Chemical & Information Device Corp Adhesive for counter electrode connection
WO2011016385A1 (en) * 2009-08-05 2011-02-10 横浜ゴム株式会社 Epoxy resin composition
JP2011162710A (en) * 2010-02-12 2011-08-25 Adeka Corp Solvent-free one-component type composition of cyanic acid ester/epoxy composite resin
US8247697B2 (en) 2008-03-27 2012-08-21 Sony Chemical & Information Device Corporation Anisotropic conductive film, joined structure and method for producing the joined structure
JP2013057017A (en) * 2011-09-08 2013-03-28 Sekisui Chem Co Ltd Insulating material, laminate, connection structure, method for producing the laminate, and method for producing the connection structure
US8524032B2 (en) 2008-11-20 2013-09-03 Dexerials Corporation Connecting film, and joined structure and method for producing the same
US10154587B2 (en) 2013-10-15 2018-12-11 Dexerials Corporation Electrical connection material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384234B2 (en) * 2014-09-25 2018-09-05 デクセリアルズ株式会社 Radical polymerization type adhesive composition and method for producing electrical connector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168412A (en) * 1996-12-10 1998-06-23 Sumitomo Bakelite Co Ltd Anisotropically conductive adhesive
WO2000046315A1 (en) * 1999-02-08 2000-08-10 Hitachi Chemical Co., Ltd. Adhesive, electrode-connecting structure, and method of connecting electrodes
JP2001323246A (en) * 2000-03-07 2001-11-22 Sony Chem Corp Adhesive for connecting electrode and bonding method using the adhesive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168412A (en) * 1996-12-10 1998-06-23 Sumitomo Bakelite Co Ltd Anisotropically conductive adhesive
WO2000046315A1 (en) * 1999-02-08 2000-08-10 Hitachi Chemical Co., Ltd. Adhesive, electrode-connecting structure, and method of connecting electrodes
JP2001323246A (en) * 2000-03-07 2001-11-22 Sony Chem Corp Adhesive for connecting electrode and bonding method using the adhesive

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069238A (en) * 2006-09-13 2008-03-27 Tatsuta System Electronics Kk Thermoconductive paste
WO2008078692A1 (en) * 2006-12-27 2008-07-03 Dh Material Inc. Cationically polymerizable resin composition for molding, and molded article using the same
JP2009088465A (en) * 2007-09-14 2009-04-23 Hitachi Chem Co Ltd Anisotropically conductive adhesive, anisotropically conductive film, and method of manufacturing circuit connecting structure
US8980043B2 (en) 2008-03-27 2015-03-17 Dexerials Corporation Anisotropic conductive film, joined structure and method for producing the joined structure
US8247697B2 (en) 2008-03-27 2012-08-21 Sony Chemical & Information Device Corporation Anisotropic conductive film, joined structure and method for producing the joined structure
WO2010038574A1 (en) * 2008-09-30 2010-04-08 ソニーケミカル&インフォメーションデバイス株式会社 Acrylic dielectric adhesive
US8613623B2 (en) 2008-09-30 2013-12-24 Sony Chemical & Information Device Corporation Acrylic insulating adhesive
US8524032B2 (en) 2008-11-20 2013-09-03 Dexerials Corporation Connecting film, and joined structure and method for producing the same
US9023464B2 (en) 2008-11-20 2015-05-05 Dexerials Corporation Connecting film, and joined structure and method for producing the same
JP2011032435A (en) * 2009-08-05 2011-02-17 Yokohama Rubber Co Ltd:The Epoxy resin composition
WO2011016385A1 (en) * 2009-08-05 2011-02-10 横浜ゴム株式会社 Epoxy resin composition
JP2011162710A (en) * 2010-02-12 2011-08-25 Adeka Corp Solvent-free one-component type composition of cyanic acid ester/epoxy composite resin
JP2010280896A (en) * 2010-08-06 2010-12-16 Sony Chemical & Information Device Corp Adhesive for counter electrode connection
JP2013057017A (en) * 2011-09-08 2013-03-28 Sekisui Chem Co Ltd Insulating material, laminate, connection structure, method for producing the laminate, and method for producing the connection structure
US10154587B2 (en) 2013-10-15 2018-12-11 Dexerials Corporation Electrical connection material

Also Published As

Publication number Publication date
JP4534716B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP5067355B2 (en) Circuit connection material and circuit member connection structure
KR101410108B1 (en) Circuit-connecting material, and connection structure for circuit member
JP4905352B2 (en) Adhesive sheet, circuit member connection structure using the same, and semiconductor device
JP4862944B2 (en) Circuit connection material
KR20140059828A (en) Adhesive composition and connection body
JP4534716B2 (en) Circuit connection material, circuit terminal connection structure and connection method
JP5176139B2 (en) Circuit connection material and circuit member connection structure using the same
JP2007224228A (en) Circuit-connecting material, connection structure of circuit terminal, and method for connecting circuit terminal
JP2001323224A (en) Adhesive composition, method for connecting circuit terminal using the same and connection structure of the circuit terminal
JP2011100605A (en) Circuit connecting material and connection structure of circuit member using the same
JP4794702B2 (en) Circuit connection material, circuit terminal connection structure, and circuit terminal connection method
JP2010100840A (en) Adhesive film and circuit connection material
JP4794703B2 (en) Circuit connection material, circuit terminal connection structure, and circuit terminal connection method
JP2008133411A (en) Adhesive film for electrical connection
JP4380328B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP2008112713A (en) Anisotropic conductive film and crimping method
JP2017145382A (en) Conductive adhesive and method for producing the same, cured product and electronic component
JP7006029B2 (en) Adhesive compositions and structures for circuit connections
JP3975746B2 (en) Circuit connection material and method of manufacturing circuit connection body using the same
JP4794704B2 (en) Circuit connection material, circuit terminal connection structure, and circuit terminal connection method
JP4945881B2 (en) Adhesive with support for circuit connection and circuit connection structure using the same
JP3889944B2 (en) Adhesive film for circuit connection and method for producing circuit board using the same
JP4696360B2 (en) Adhesive composition, circuit terminal connection method using the same, and circuit terminal connection structure
JP4363844B2 (en) Low temperature curable adhesive and anisotropic conductive adhesive film using the same
JP5365666B2 (en) Circuit connection material, circuit terminal connection structure and connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070612

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130625

LAPS Cancellation because of no payment of annual fees