JP2006126012A - Magneto-electric conversion system, magneto-electric conversion apparatus and its control circuit - Google Patents

Magneto-electric conversion system, magneto-electric conversion apparatus and its control circuit Download PDF

Info

Publication number
JP2006126012A
JP2006126012A JP2004314681A JP2004314681A JP2006126012A JP 2006126012 A JP2006126012 A JP 2006126012A JP 2004314681 A JP2004314681 A JP 2004314681A JP 2004314681 A JP2004314681 A JP 2004314681A JP 2006126012 A JP2006126012 A JP 2006126012A
Authority
JP
Japan
Prior art keywords
magnetic field
current
detection means
magnetic detection
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004314681A
Other languages
Japanese (ja)
Inventor
Masaki Ikeda
雅紀 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Microsystems Co Ltd
Asahi Kasei Microdevices Corp
Original Assignee
Asahi Kasei Microsystems Co Ltd
Asahi Kasei Microdevices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Microsystems Co Ltd, Asahi Kasei Microdevices Corp filed Critical Asahi Kasei Microsystems Co Ltd
Priority to JP2004314681A priority Critical patent/JP2006126012A/en
Publication of JP2006126012A publication Critical patent/JP2006126012A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain sufficient magnetic field measuring accuracy which is stable for external conditions such as temperature. <P>SOLUTION: The system is constituted of a hall element 1, a first current source 4, a coil 2, a second current source 5 and a control circuit 6. The hall element 1 detects magnetic field intensity and the first current source 4 supplies the hall element 1 with a drive current Ih. The coil 2 is arranged in the vicinity of the hall element 1. The second current source 5 supplies the coil 2 with exiting current Ic. The control circuit 6 controls the drive current Ih and the exiting current Ic. The control circuit 6 controls the current value of the drive current Ih so that the difference between the output value of the hall element 1 when the exiting current Ic is supplied to the coil 2 and the output value of the hall element 1 when the exiting current Ic is not supplied to the coil 2 becomes constant. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁電変換システム及び磁電変換装置並びにその制御回路に関し、より詳細には、温度などの外的条件に対して安定であり、十分な磁界測定精度が得られるようにした磁電変換システム及び磁電変換装置並びにその制御回路に関し、磁界強度を電気信号に変換する変換技術に関する。   The present invention relates to a magnetoelectric conversion system, a magnetoelectric conversion device, and a control circuit thereof, and more specifically, a magnetoelectric conversion system that is stable with respect to external conditions such as temperature and that can obtain sufficient magnetic field measurement accuracy, and The present invention relates to a magnetoelectric conversion device and a control circuit thereof, and relates to a conversion technique for converting magnetic field strength into an electric signal.

磁界強度の検出を目的として、ホール素子がしばしば利用される。ホール素子において、出力電圧と磁界の関係は、一般に
E=sIB
で示される。ここで、Eは出力電圧、Iはホール素子に流す電流(ホール電流)、Bはホール素子に印加する磁界(被測定磁界)、sはホール素子の物性により決定される定数を示している。
Hall elements are often used for the purpose of detecting magnetic field strength. In a Hall element, the relationship between output voltage and magnetic field is generally E = sIB.
Indicated by Here, E is an output voltage, I is a current flowing through the Hall element (Hall current), B is a magnetic field applied to the Hall element (magnetic field to be measured), and s is a constant determined by the physical properties of the Hall element.

しかしながら、sの値は、温度等の外的条件で容易に変化することから、温度が変化するような環境において、十分な磁界測定精度が得られる磁界−電圧変換回路を実現することは困難であった。   However, since the value of s easily changes under external conditions such as temperature, it is difficult to realize a magnetic field-voltage conversion circuit that can obtain sufficient magnetic field measurement accuracy in an environment where the temperature changes. there were.

このため、磁界測定精度の向上を目的として、従来、以下の(1),(2)のようなことが行なわれていた。
(1)適当な温度特性をもった電圧変換回路を構成し、ホール素子の出力をこの変換回路を通すことにより、温度特性を補償する(例えば、特許文献1乃至3参照)。
(2)適当な温度特性をもった電流源を構成し、この出力をホール電流(I)としてホール素子に供給することにより、ホール素子の温度特性を補償する(例えば、特許文献4乃至6参照)。
For this reason, the following (1) and (2) have been conventionally performed for the purpose of improving the magnetic field measurement accuracy.
(1) A voltage conversion circuit having an appropriate temperature characteristic is configured, and the temperature characteristic is compensated by passing the output of the Hall element through the conversion circuit (see, for example, Patent Documents 1 to 3).
(2) A current source having an appropriate temperature characteristic is configured, and this output is supplied to the Hall element as the Hall current (I), thereby compensating the temperature characteristic of the Hall element (see, for example, Patent Documents 4 to 6). ).

特開平6−74975号公報JP-A-6-74975 特開平9−54149号公報JP-A-9-54149 特開平10−239410号公報Japanese Patent Laid-Open No. 10-239410 特開平6−289111号公報JP-A-6-289111 特開平8−201106号公報JP-A-8-201106 特開平10−253728号公報Japanese Patent Laid-Open No. 10-253728

しかしながら、上述したような手段では、オープンループでの制御となることから、どの程度の精度が得られるのか作ってみないと分からないという問題があった。また、ホール素子の温度特性に合わせて、電圧変換回路や電流源の温度特性を調整する必要があるという問題があった。   However, since the above-described means is an open-loop control, there is a problem that it is impossible to know how much accuracy can be obtained unless it is made. Further, there is a problem that it is necessary to adjust the temperature characteristics of the voltage conversion circuit and the current source in accordance with the temperature characteristics of the Hall element.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、温度などの外的条件に対して安定で、十分な磁界測定精度が得られるようにした磁電変換システム及び磁電変換装置並びにその制御回路を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a magnetoelectric conversion system which is stable with respect to external conditions such as temperature and can obtain sufficient magnetic field measurement accuracy. It is an object of the present invention to provide a magnetoelectric converter and its control circuit.

本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、磁電変換システムであって、磁界強度を検出する磁気検出手段と、該磁気検出手段に駆動電流を供給する第1の電流供給手段と、前記磁気検出手段の近傍に配置された磁界発生手段と、該磁界発生手段に励起電流を供給する第2の電流供給手段と、前記駆動電流及び前記励起電流を制御する制御手段とを備え、該制御手段は、前記励起電流が前記磁界発生手段に供給されているときの、前記磁気検出手段の出力値と、前記励起電流が前記磁界発生手段に供給されていないときの、前記磁気検出手段の出力値との差が一定になるように、前記駆動電流の電流値が制御されることを特徴とする。   The present invention has been made in order to achieve such an object, and the invention according to claim 1 is a magnetoelectric conversion system, comprising: a magnetic detection means for detecting magnetic field strength; and a drive for the magnetic detection means. A first current supply means for supplying a current; a magnetic field generation means disposed in the vicinity of the magnetic detection means; a second current supply means for supplying an excitation current to the magnetic field generation means; the drive current; Control means for controlling the excitation current, and the control means outputs the output value of the magnetic detection means when the excitation current is supplied to the magnetic field generation means, and the excitation current is supplied to the magnetic field generation means. The current value of the drive current is controlled so that the difference from the output value of the magnetic detection means when not supplied is constant.

また、請求項2に記載の発明は、磁電変換システムであって、同一平面上に設置され、磁界強度を検出する第1及び第2の磁気検出手段と、該第1及び第2の磁気検出手段に駆動電流を供給する第1の電流供給手段と、前記第1及び第2の磁気検出手段の近傍にそれぞれ配置された第1及び第2の磁界発生手段と、該第1の磁界発生手段に励起電流を供給し、該第1の磁界発生手段に発生した磁界の向きと反対向きの磁界を前記第2の磁界発生手段が発生するように、該第2の磁界発生手段に励起電流を供給する第2の電流供給手段と、前記駆動電流を制御する制御手段とを備え、該制御手段は、前記励起電流が前記第1及び第2の磁界発生手段に供給されているときの、前記第1の磁気検出手段の出力値と前記第2の磁気検出手段の出力値との差が一定になるように、前記駆動電流の電流値が制御されることを特徴とする。   The invention according to claim 2 is a magnetoelectric conversion system, which is installed on the same plane and detects first and second magnetic detection means for detecting magnetic field strength, and the first and second magnetic detection systems. First current supply means for supplying drive current to the means, first and second magnetic field generation means disposed in the vicinity of the first and second magnetic detection means, and the first magnetic field generation means The excitation current is supplied to the second magnetic field generation means so that the second magnetic field generation means generates a magnetic field opposite to the direction of the magnetic field generated in the first magnetic field generation means. A second current supply means for supplying, and a control means for controlling the drive current, the control means when the excitation current is supplied to the first and second magnetic field generating means, The output value of the first magnetic detection means and the output value of the second magnetic detection means Such that the difference is constant, the current value of the drive current is being controlled.

また、請求項3に記載の発明は、請求項2に記載の発明において、前記第1の磁気検出手段の出力値と前記第2の磁気検出手段の出力値との和に基づいて被測定磁界を検出することを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the measured magnetic field is based on the sum of the output value of the first magnetic detection means and the output value of the second magnetic detection means. Is detected.

また、請求項4に記載の発明は、請求項1,2又は3に記載の発明において、前記磁気検出手段が、ホール素子であることを特徴とする。   The invention according to claim 4 is the invention according to claim 1, 2, or 3, wherein the magnetic detection means is a Hall element.

また、請求項5に記載の発明は、請求項4に記載の発明において、前記ホール素子は、ICプロセスの拡散抵抗により形成されたことを特徴とする。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the Hall element is formed by a diffusion resistance of an IC process.

また、請求項6に記載の発明は、請求項1,2又は3に記載の発明において、前記磁気発生手段が、コイルであることを特徴とする。   The invention according to claim 6 is the invention according to claim 1, 2 or 3, wherein the magnetism generating means is a coil.

また、請求項7に記載の発明は、請求項6に記載の発明において、前記コイルは、ICプロセスの配線層により形成されたことを特徴とする。   The invention according to claim 7 is the invention according to claim 6, wherein the coil is formed of a wiring layer of an IC process.

また、請求項8に記載の発明は、請求項5に記載の発明において、前記ホール素子及び前記コイル並びに前記制御手段は、ICプロセスにより一体形成されていることを特徴とする。   The invention according to claim 8 is the invention according to claim 5, wherein the hall element, the coil and the control means are integrally formed by an IC process.

また、請求項9に記載の発明は、磁電変換装置であった、磁界強度を検出する磁気検出手段と、該磁気検出手段に駆動電流を供給する第1の電流供給手段と、前記磁気検出手段の近傍に配置された磁界発生手段と、該磁界発生手段に励起電流を供給する第2の電流供給手段とを備え、前記励起電流が前記磁界発生手段に供給されているときの、前記磁気検出手段の出力値と、前記励起電流が前記磁界発生手段に供給されていないときの、前記磁気検出手段の出力値との差が一定になるように、前記駆動電流の電流値が制御されることを特徴とする。   According to a ninth aspect of the present invention, there is provided a magnetic detection device for detecting a magnetic field strength, a first current supply unit for supplying a drive current to the magnetic detection unit, and the magnetic detection unit. Magnetic field generating means disposed in the vicinity of the magnetic field generating means and second current supply means for supplying an excitation current to the magnetic field generating means, and the magnetic detection when the excitation current is supplied to the magnetic field generating means The current value of the drive current is controlled so that the difference between the output value of the means and the output value of the magnetic detection means when the excitation current is not supplied to the magnetic field generation means is constant. It is characterized by.

また、請求項10に記載の発明は、磁電変換装置であって、同一平面上に設置され、磁界強度を検出する第1及び第2の磁気検出手段と、該第1及び第2の磁気検出手段に駆動電流を供給する第1の電流供給手段と、前記第1及び第2の磁気検出手段の近傍にそれぞれ配置された第1及び第2の磁界発生手段と、該第1の磁界発生手段に励起電流を供給し、前記第1の磁界発生手段に発生した磁界の向きと反対向きの磁界を前記第2の磁界発生手段が発生するように、前記第2の磁界発生手段に励起電流を供給する第2の電流供給手段とを備え、前記励起電流が前記第1及び第2の磁界発生手段に供給されているときの、前記第1の磁気検出手段の出力値と前記第2の磁気検出手段の出力値との差が一定になるように、前記駆動電流の電流値が制御されることを特徴とする。   A tenth aspect of the present invention is a magnetoelectric conversion device which is installed on the same plane and detects first and second magnetic detection means for detecting magnetic field strength, and the first and second magnetic detection devices. First current supply means for supplying drive current to the means, first and second magnetic field generation means disposed in the vicinity of the first and second magnetic detection means, and the first magnetic field generation means The excitation current is supplied to the second magnetic field generation means so that the second magnetic field generation means generates a magnetic field opposite to the direction of the magnetic field generated in the first magnetic field generation means. A second current supply means for supplying, and an output value of the first magnetic detection means and the second magnetism when the excitation current is supplied to the first and second magnetic field generation means. The current value of the drive current so that the difference from the output value of the detection means is constant. Characterized in that it is controlled.

また、請求項11に記載の発明は、請求項9又は10に記載の発明において、前記磁気検出手段が、ホール素子であることを特徴とする。   The invention according to claim 11 is the invention according to claim 9 or 10, characterized in that the magnetic detection means is a Hall element.

また、請求項12に記載の発明は、磁界強度を検出する磁気検出手段と、該磁気検出手段に駆動電流を供給する第1の電流供給手段と、前記磁気検出手段の近傍に配置された磁界発生手段と、該磁界発生手段に励起電流を供給する第2の電流供給手段とを備えた磁電変換装置の制御回路であって、前記励起電流が前記磁界発生手段に供給されているときの、前記磁気検出手段の出力値と、前記励起電流が前記磁界発生手段に供給されていないときの、前記磁気検出手段の出力値との差が一定になるように、前記駆動電流の電流値が制御されることを特徴とする。   According to a twelfth aspect of the present invention, there is provided a magnetic detection means for detecting a magnetic field intensity, a first current supply means for supplying a drive current to the magnetic detection means, and a magnetic field disposed in the vicinity of the magnetic detection means. A control circuit of a magnetoelectric conversion device comprising a generation means and a second current supply means for supplying an excitation current to the magnetic field generation means, wherein the excitation current is supplied to the magnetic field generation means, The current value of the drive current is controlled so that the difference between the output value of the magnetic detection means and the output value of the magnetic detection means when the excitation current is not supplied to the magnetic field generation means is constant. It is characterized by being.

また、請求項13に記載の発明は、同一平面上に設置され、磁界強度を検出する第1及び第2の磁気検出手段と、該第1及び第2の磁気検出手段に駆動電流を供給する第1の電流供給手段と、前記第1及び第2の磁気検出手段の近傍にそれぞれ配置された第1及び第2の磁界発生手段と、該第1の磁界発生手段に励起電流を供給し、前記第1の磁界発生手段に発生した磁界の向きと反対向きの磁界を前記第2の磁界発生手段が発生するように、前記第2の磁界発生手段に励起電流を供給する第2の電流供給手段とを備えた磁電変換装置の制御回路であって、前記励起電流が前記第1及び第2の磁界発生手段に供給されているときの、前記第1の磁気検出手段の出力値と前記第2の磁気検出手段の出力値との差が一定になるように、前記駆動電流の電流値が制御されることを特徴とする。   According to a thirteenth aspect of the present invention, the first and second magnetic detection means are installed on the same plane and detect the magnetic field strength, and the drive current is supplied to the first and second magnetic detection means. A first current supply means, first and second magnetic field generation means disposed in the vicinity of the first and second magnetic detection means, respectively, and an excitation current is supplied to the first magnetic field generation means, A second current supply for supplying an excitation current to the second magnetic field generating means so that the second magnetic field generating means generates a magnetic field opposite to the direction of the magnetic field generated in the first magnetic field generating means; And an output value of the first magnetic detection means when the excitation current is supplied to the first and second magnetic field generation means and the first magnetic detection means. The drive power is set so that the difference between the output value of the magnetic detection means of 2 and the output value of the And a current value of is controlled.

また、請求項14に記載の発明は、請求項12又は13に記載の発明において、前記磁気検出手段が、ホール素子であることを特徴とする。   The invention according to claim 14 is the invention according to claim 12 or 13, wherein the magnetic detection means is a Hall element.

このように、本発明者は、上述した課題を解決するために検討を重ねた結果、ホール素子の近傍にコイルを設置し、このコイルに定電流を流して定磁界を発生させ、この磁界に対するホール素子の出力を制御に用いることが、その目的に適合することを見出し、その知見に基づいて本発明をなすに至った。   Thus, as a result of repeated studies to solve the above-described problems, the present inventor installed a coil in the vicinity of the Hall element, and caused a constant current to flow through the coil to generate a constant magnetic field. It has been found that the use of the output of the Hall element for control is suitable for the purpose, and the present invention has been made based on the knowledge.

つまり、本発明は、ホール素子と、その近傍に設置されたコイルと、ホール素子及びコイルに電流を供給する手段と、ホール素子からの信号を受けて必要な信号を出力する制御回路とを備えたものである。   That is, the present invention includes a hall element, a coil installed in the vicinity thereof, a hall element and means for supplying a current to the coil, and a control circuit that receives a signal from the hall element and outputs a necessary signal. It is a thing.

本発明によれば、磁界強度を検出する磁気検出手段と、この磁気検出手段に駆動電流を供給する第1の電流供給手段と、磁気検出手段の近傍に配置された磁界発生手段と、磁界発生手段に励起電流を供給する第2の電流供給手段と、駆動電流及び前記励起電流を制御する制御手段とを備え、この制御手段は、励起電流が磁界発生手段に供給されているときの、磁気検出手段の出力値と、励起電流が磁界発生手段に供給されていないときの、磁気検出手段の出力値との差が一定になるように、駆動電流の電流値が制御されるようにしたので、温度などの外的条件に対して安定であり、十分な磁界測定精度が得られる。   According to the present invention, magnetic detection means for detecting magnetic field strength, first current supply means for supplying a drive current to the magnetic detection means, magnetic field generation means disposed in the vicinity of the magnetic detection means, and magnetic field generation A second current supply means for supplying the excitation current to the means, and a control means for controlling the drive current and the excitation current. The control means is a magnetic element when the excitation current is supplied to the magnetic field generation means. The current value of the drive current is controlled so that the difference between the output value of the detection means and the output value of the magnetic detection means when the excitation current is not supplied to the magnetic field generation means is constant. It is stable against external conditions such as temperature, and sufficient magnetic field measurement accuracy can be obtained.

以下、図面を参照して本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明に係る磁電変換システムの実施例1を説明するための構成図で、図中符号1はホール素子(磁気検出手段)、2はコイル(磁界発生手段)、3はスイッチ(SW)、4は電流源(第1の電流供給手段)、5は定電流源(第2の電流供給手段)、6は制御回路(制御手段)、Aはホール電流入力端子、B,Dは出力端子、Cは接地端子を示している。   FIG. 1 is a configuration diagram for explaining a first embodiment of a magnetoelectric conversion system according to the present invention, in which reference numeral 1 denotes a hall element (magnetic detection means), 2 denotes a coil (magnetic field generation means), and 3 denotes a switch ( SW), 4 is a current source (first current supply means), 5 is a constant current source (second current supply means), 6 is a control circuit (control means), A is a hall current input terminal, and B and D are An output terminal C indicates a ground terminal.

ホール素子1は、ICプロセスによって形成された拡散抵抗で、4端子素子であり、ホール電流入力端子Aと接地端子Cと出力端子B,Dを備えている。ホール電流入力端子Aには、ホール電流(駆動電流)Ihを供給する電流源4が接続されていて、出力端子B,Dには、制御回路6が接続されている。   The Hall element 1 is a diffused resistor formed by an IC process, is a four-terminal element, and includes a Hall current input terminal A, a ground terminal C, and output terminals B and D. A current source 4 for supplying a hall current (drive current) Ih is connected to the hall current input terminal A, and a control circuit 6 is connected to the output terminals B and D.

ホール素子1の近傍、具体的にはホール素子1上にコイル2が設けられており、このコイル2は、ICプロセスの配線層を用いて形成されている。また、このコイル2に接続されているスイッチ3には、定電流(励起電流)Icを供給する定電流源5が接続されている。また、このスイッチ3は、制御回路6によりON/OFF制御されるように構成されている。また、制御回路6を含むその他の構成要素もICプロセスにより一体形成されている。   A coil 2 is provided in the vicinity of the Hall element 1, specifically, on the Hall element 1, and this coil 2 is formed using a wiring layer of an IC process. The switch 3 connected to the coil 2 is connected to a constant current source 5 for supplying a constant current (excitation current) Ic. The switch 3 is configured to be ON / OFF controlled by the control circuit 6. Other components including the control circuit 6 are also integrally formed by an IC process.

次に、本実施例1における磁電変換システムの動作について説明する。
ホール電流入力端子Aに接続された電流源4により、ホール素子1にはホール電流Ihが供給されている。このとき、コイル2に接続されたスイッチ3はOFFしているものとし、また、被測定磁界Beが、図1に示した向き(紙面上から下)に、ホール素子1に印加されているものとする。その結果、ホール素子1の出力端子D−B間には、ホール電圧Eh(=sBeIh)が発生している。
Next, the operation of the magnetoelectric conversion system according to the first embodiment will be described.
A hall current Ih is supplied to the hall element 1 by a current source 4 connected to the hall current input terminal A. At this time, the switch 3 connected to the coil 2 is turned off, and the magnetic field Be to be measured is applied to the Hall element 1 in the direction shown in FIG. And As a result, a Hall voltage Eh (= sBeIh) is generated between the output terminals DB of the Hall element 1.

いま、スイッチ3がONとなり、コイル2に定電流源5から励起電流Icが供給されたとする。コイル2の巻き数をnとしたとき、このコイル2によりBc(=knIc)の磁界が発生し、ホール素子1には、Be−Bcの磁界が印加されることになる。   Now, it is assumed that the switch 3 is turned ON and the excitation current Ic is supplied from the constant current source 5 to the coil 2. When the number of turns of the coil 2 is n, a magnetic field of Bc (= knIc) is generated by the coil 2, and a Be—Bc magnetic field is applied to the Hall element 1.

この結果、ホール素子1の出力端子D−B間には、ホール電圧Ex(=s(Be−Bc)Ih)が発生する。ここで、kはコイル2の形状により与えられる係数であり、温度に対する感度はきわめて低いことから、Bcは温度に対して一定な磁界となる。従って、Eh−Ex(=sBcIh)の値が一定になるように電流源4の駆動電流Ihを調整することにより、sIhを温度によらず一定とすることができることから、温度によらず被測定磁界Beによって一意に定まるホール電圧Eh(=sBeIh)が得られることとなる。   As a result, a Hall voltage Ex (= s (Be−Bc) Ih) is generated between the output terminals DB of the Hall element 1. Here, k is a coefficient given by the shape of the coil 2, and since sensitivity to temperature is very low, Bc is a constant magnetic field with respect to temperature. Therefore, by adjusting the drive current Ih of the current source 4 so that the value of Eh−Ex (= sBcIh) becomes constant, sIh can be made constant regardless of the temperature. A Hall voltage Eh (= sBeIh) uniquely determined by the magnetic field Be is obtained.

本実施例1における制御回路6は、スイッチ3を周期的にON/OFFするとともに、OFFしている時の出力端子D−B間電圧からONしているときのD−B電圧を減算し、この電圧値と設定値を比較し、この比較値が設定値よりも小さいときは、ホール電流Ihを増加し、この比較値が設定値よりも大きいときは、ホール電流Ihを減少させる動作を行っている。   The control circuit 6 according to the first embodiment periodically turns the switch 3 ON / OFF, and subtracts the DB voltage when the switch 3 is ON from the voltage between the output terminals DB when the switch 3 is OFF, This voltage value is compared with the set value, and when this comparison value is smaller than the set value, the hall current Ih is increased, and when this comparison value is larger than the set value, the hall current Ih is decreased. ing.

このように、本実施例1の磁電変換システムは、ホール素子1と第1の電流源4とコイル2と第2の電流源5と制御回路6とから構成されている。ホール素子1は磁界強度を検出するもので、第1の電流源4はホール素子1に駆動電流Ihを供給するもので、コイル2はホール素子1の近傍に配置されたもので、第2の電流源5はコイル2に励起電流Icを供給するもので、制御回路6は駆動電流Ih及び励起電流Icを制御するものである。   As described above, the magnetoelectric conversion system according to the first embodiment includes the Hall element 1, the first current source 4, the coil 2, the second current source 5, and the control circuit 6. The Hall element 1 detects the magnetic field intensity, the first current source 4 supplies the drive current Ih to the Hall element 1, and the coil 2 is disposed in the vicinity of the Hall element 1, The current source 5 supplies the excitation current Ic to the coil 2, and the control circuit 6 controls the drive current Ih and the excitation current Ic.

この制御回路6は、励起電流Icがコイル2に供給されていないときの、ホール素子1の出力値と、励起電流Icがコイル2に供給されているときの、ホール素子1の出力値との差が一定になるように、駆動電流Ihの電流値が制御されるように構成されている。   The control circuit 6 calculates the output value of the Hall element 1 when the excitation current Ic is not supplied to the coil 2 and the output value of the Hall element 1 when the excitation current Ic is supplied to the coil 2. The current value of the drive current Ih is controlled so that the difference becomes constant.

なお、本実施例1の磁電変換システムの構成にともない、磁電変換装置及びその制御回路も構成されることは明らかである。   It is obvious that the magnetoelectric conversion device and its control circuit are also configured with the configuration of the magnetoelectric conversion system of the first embodiment.

本実施例2における構成図は、上述した実施例1における構成図と同じであり、実施例2の基本動作は、上述した実施例1と同様である。しかしながら、実施例1と実施例2における制御回路6の動作が異なり、本実施例2におけるホール電流Ihは一定値である。制御回路6は、スイッチ3がONしている時の出力端子D−B間電圧からOFFしているときの出力端子D−B電圧を減算し、この電圧値と設定値の比を、スイッチ3がOFFしているときの出力端子D−B電圧に乗じることにより、温度によらず被測定磁界Beによって一意に定まる電圧信号を得るように動作する。   The configuration diagram in the second embodiment is the same as the configuration diagram in the first embodiment described above, and the basic operation of the second embodiment is the same as that of the first embodiment described above. However, the operation of the control circuit 6 in the first and second embodiments is different, and the hole current Ih in the second embodiment is a constant value. The control circuit 6 subtracts the voltage at the output terminal DB when the switch 3 is turned off from the voltage between the output terminals DB when the switch 3 is turned on. By multiplying the voltage at the output terminal D-B when is turned off, a voltage signal uniquely determined by the magnetic field Be to be measured is obtained regardless of the temperature.

図2は、本発明に係る磁電変換システムの実施例3を説明するための構成図で、上述した実施例1との相違は、本実施例3においてホール素子が2個設けられている点である。   FIG. 2 is a configuration diagram for explaining a third embodiment of the magnetoelectric conversion system according to the present invention. The difference from the first embodiment is that two Hall elements are provided in the third embodiment. is there.

図中符号11は第1のホール素子(第1の磁気検出手段),12は第1のコイル(第1の磁界発生手段),13は第2のコイル(第2の磁界発生手段)、14,18は電流源(第1の電流供給手段)、15は定電流源(第2の電流供給手段)、16は制御回路(制御手段)、17は第2のホール素子(第2の磁気検出手段)、A,Jはホール電流入力端子、B,Kは出力端子、C,Lは接地端子、D,Mは出力端子を示している。   In the figure, reference numeral 11 denotes a first Hall element (first magnetic detection means), 12 denotes a first coil (first magnetic field generation means), 13 denotes a second coil (second magnetic field generation means), 14 , 18 are current sources (first current supply means), 15 is a constant current source (second current supply means), 16 is a control circuit (control means), and 17 is a second Hall element (second magnetic detection). Means), A and J are Hall current input terminals, B and K are output terminals, C and L are ground terminals, and D and M are output terminals.

ホール素子11,17は、ICプロセスによって形成された拡散抵抗で、各ホール素子11,17は4端子素子であり、ホール電流入力端子A,Jと接地端子C、Lと出力端子B,D及び出力端子K,Mを備えている。また、ホール素子11とホール素子17のコイル12とコイル13に流れる電流の向きは逆になっている。ホール電流入力端子A,Jには、ホール電流(駆動電流)Ihを供給する電流源14,18が接続されていて、出力端子B,Dと出力端子K,Mには、制御回路16が接続されている。   Hall elements 11 and 17 are diffused resistors formed by an IC process, and each hall element 11 and 17 is a four-terminal element. Hall current input terminals A and J and ground terminals C and L and output terminals B and D and Output terminals K and M are provided. Further, the directions of the currents flowing through the coils 12 and 13 of the Hall element 11 and the Hall element 17 are reversed. Current sources 14 and 18 for supplying a hall current (drive current) Ih are connected to the hall current input terminals A and J, and a control circuit 16 is connected to the output terminals B and D and the output terminals K and M. Has been.

ホール素子11,17の近傍、具体的にはホール素子11,17上にコイル12,13が設けられており、このコイル12,13は、ICプロセスの配線層を用いて形成されている。また、このコイル12,13には、定電流(励起電流)Icを供給する定電流15が接続されている。電流源14,18は、制御回路16により電流量が制御されるように構成されている。また、制御回路16を含むその他の構成要素もICプロセスにより一体形成されている。   Coils 12 and 13 are provided in the vicinity of the Hall elements 11 and 17, specifically, on the Hall elements 11 and 17, and the coils 12 and 13 are formed using a wiring layer of an IC process. The coils 12 and 13 are connected to a constant current 15 for supplying a constant current (excitation current) Ic. The current sources 14 and 18 are configured such that the amount of current is controlled by the control circuit 16. Other components including the control circuit 16 are also integrally formed by an IC process.

次に、本実施例3における磁電変換システムの動作について説明する。
ホール電流入力端子Aに接続された電流源14とホール電流入力端子Jに接続された電流源18により、ホール素子11及び17には同一のホール電流Ihが供給されている。被測定磁界Beが、図2に示した向き(紙面上から下)に、ホール素子11,17に印加されているものとする。さらに、ホール素子11,17のコイル12,13には、定電流源15から励起電流Icが供給されている。コイル12,13の巻き数をnとした時、このコイル12,13によりBc(=knIc)の磁界が発生することになるが、ホール素子11とホール素子17ではコイル12とコイル13に流れる電流の向きが逆であるため、ホール素子11にはBe−Bcの磁界が、ホール素子17にはBe+Bcの磁界が印加されることになる。
Next, the operation of the magnetoelectric conversion system according to the third embodiment will be described.
The same Hall current Ih is supplied to the Hall elements 11 and 17 by the current source 14 connected to the Hall current input terminal A and the current source 18 connected to the Hall current input terminal J. It is assumed that the magnetic field Be to be measured is applied to the Hall elements 11 and 17 in the direction shown in FIG. Further, the excitation current Ic is supplied from the constant current source 15 to the coils 12 and 13 of the Hall elements 11 and 17. When the number of turns of the coils 12 and 13 is n, a magnetic field of Bc (= knIc) is generated by the coils 12 and 13, but in the Hall element 11 and the Hall element 17, the current flowing through the coils 12 and 13 Therefore, a Be−Bc magnetic field is applied to the Hall element 11 and a Be + Bc magnetic field is applied to the Hall element 17.

その結果、ホール素子11の出力端子D−B間にはホール電圧Eh1(=sIh(Be−Bc))が、ホール素子17の出力端子M−K間にはホール電圧Eh2(=sIh(Be+Bc))が発生している。   As a result, the Hall voltage Eh1 (= sIh (Be−Bc)) is output between the output terminals D and B of the Hall element 11, and the Hall voltage Eh2 (= sIh (Be + Bc) is output between the output terminals M and K of the Hall element 17. ) Has occurred.

従って、Eh1,Eh2に加算または減算の処理をおこなうことで、
Esub=Eh2−Eh1=sIh(Be+Bc)−sIh(Be−Bc)
=2sIhBc
Eadd=Eh2+Eh1=sIh(Be+Bc)+sIh(Be−Bc)
=2sIhBe
となる、被測定磁界にのみ依存して決まる電圧Eaddとコイル電流によって発生される磁界のみによって決まる電圧Esub(=2sIhBc)を得ることができる。
Therefore, by adding or subtracting to Eh1 and Eh2,
Esub = Eh2-Eh1 = sIh (Be + Bc) -sIh (Be-Bc)
= 2sIhBc
Eadd = Eh2 + Eh1 = sIh (Be + Bc) + sIh (Be−Bc)
= 2sIhBe
Thus, a voltage Eadd determined only depending on the magnetic field to be measured and a voltage Esub (= 2sIhBc) determined only by the magnetic field generated by the coil current can be obtained.

Bcは温度に対して一定な磁界であるから、Esubが常に一定となるように駆動電流Ihを制御すれば、結果としてsIhが温度によらず一定となり、温度によらず被測定磁界Beによって一意に定まる、ホール電圧Eadd(=2sIhBe)が得られることとなる。   Since Bc is a magnetic field that is constant with respect to temperature, if the drive current Ih is controlled so that Esub is always constant, the result is that sIh is constant regardless of the temperature, and is unique by the measured magnetic field Be regardless of the temperature. As a result, the Hall voltage Eadd (= 2 sIhBe) is obtained.

本実施例3における制御回路16は、出力端子M−K間の電圧から出力端子D−B間の電圧を減算し、この電圧値と設定値を比較し、この比較値が設定値よりも小さいときはホール電流Ihを増加し、この比較値が設定値よりも大きいときはホール電流Ihを減少させる動作を行っている。   The control circuit 16 according to the third embodiment subtracts the voltage between the output terminals D and B from the voltage between the output terminals M and K, compares the voltage value with the set value, and the comparison value is smaller than the set value. When the comparison value is larger than the set value, the hall current Ih is decreased.

このように、本実施例3の磁電変換システムは、第1及び第2のホール素子11,17と、第1の電流源14,18と、第1及び第2のコイル12,13と、第2の電流源15と、制御回路16とから構成されている。第1及び第2のホール素子11,17は同一平面上に設置され、磁界強度を検出するもので、第1の電流源14,18は第1及び第2のホール素子11,17に駆動電流Ihを供給するもので、第1及び第2のコイル12,13は第1及び第2のホール素子11,17の近傍にそれぞれ配置されたもので、第2の電流源15は、第1のコイル12に励起電流Icを供給し、この第1のコイル12に発生した磁界の向きと反対向きの磁界を第2のコイル13が発生するように、この第2のコイル13に励起電流Icを供給するもので、制御回路16は駆動電流Ihを制御するものである。   As described above, the magnetoelectric conversion system according to the third embodiment includes the first and second Hall elements 11 and 17, the first current sources 14 and 18, the first and second coils 12 and 13, and the first 2 current sources 15 and a control circuit 16. The first and second Hall elements 11 and 17 are installed on the same plane and detect the magnetic field strength. The first current sources 14 and 18 supply driving current to the first and second Hall elements 11 and 17. Ih is supplied, and the first and second coils 12 and 13 are arranged in the vicinity of the first and second Hall elements 11 and 17, respectively. The excitation current Ic is supplied to the coil 12, and the excitation current Ic is supplied to the second coil 13 so that the second coil 13 generates a magnetic field opposite to the direction of the magnetic field generated in the first coil 12. The control circuit 16 controls the drive current Ih.

この制御回路16は、励起電流Icが第1及び第2のコイル12,13に供給されているときの、第1のホール素子11の出力値と第2のホール素子17の出力値との差が一定になるように、駆動電流Ihの電流値を制御するように構成されている。   The control circuit 16 determines the difference between the output value of the first Hall element 11 and the output value of the second Hall element 17 when the excitation current Ic is supplied to the first and second coils 12 and 13. Is configured to control the current value of the drive current Ih.

なお、本実施例3の磁電変換システムの構成にともない、磁電変換装置及びその制御回路も構成されることは明らかである。   It is obvious that the magnetoelectric conversion device and its control circuit are also configured with the configuration of the magnetoelectric conversion system of the third embodiment.

このように、上述した各実施例による磁電変換システムは、温度などの外的条件に対して安定であり、十分な磁界測定精度が得られるものである。   As described above, the magnetoelectric conversion system according to each of the embodiments described above is stable with respect to external conditions such as temperature, and sufficient magnetic field measurement accuracy can be obtained.

本発明に係る磁電変換システムの実施例1,2を説明するための構成図である。It is a block diagram for demonstrating Example 1, 2 of the magnetoelectric conversion system which concerns on this invention. 本発明に係る磁電変換システムの実施例3を説明するための構成図である。It is a block diagram for demonstrating Example 3 of the magnetoelectric conversion system which concerns on this invention.

符号の説明Explanation of symbols

1 ホール素子(磁気検出手段)
2 コイル(磁界発生手段)
3 スイッチ(SW)
4 電流源(第1の電流供給手段)
5 定電流源(第2の電流供給手段)
6 制御回路(制御手段)
11 第1のホール素子(第1の磁気検出手段)
12 第1のコイル(第1の磁界発生手段)
13 第2のコイル(第2の磁界発生手段)
14,18 電流源(第1の電流供給手段)
15 定電流源(第2の電流供給手段)
16 制御回路(制御手段)
17 第2のホール素子(第2の磁気検出手段)
A,J ホール電流入力端子
B,D,K,M 出力端子
C,L 接地端子
1 Hall element (magnetic detection means)
2 Coils (magnetic field generating means)
3 Switch (SW)
4 Current source (first current supply means)
5 Constant current source (second current supply means)
6 Control circuit (control means)
11 First Hall element (first magnetic detection means)
12 1st coil (1st magnetic field generation means)
13 Second coil (second magnetic field generating means)
14, 18 Current source (first current supply means)
15 constant current source (second current supply means)
16 Control circuit (control means)
17 Second Hall element (second magnetic detection means)
A, J Hall current input terminal B, D, K, M Output terminal C, L Ground terminal

Claims (14)

磁界強度を検出する磁気検出手段と、
該磁気検出手段に駆動電流を供給する第1の電流供給手段と、
前記磁気検出手段の近傍に配置された磁界発生手段と、
該磁界発生手段に励起電流を供給する第2の電流供給手段と、
前記駆動電流及び前記励起電流を制御する制御手段とを備え、
該制御手段は、
前記励起電流が前記磁界発生手段に供給されているときの、前記磁気検出手段の出力値と、前記励起電流が前記磁界発生手段に供給されていないときの、前記磁気検出手段の出力値との差が一定になるように、前記駆動電流の電流値が制御されることを特徴とする磁電変換システム。
Magnetic detection means for detecting magnetic field strength;
First current supply means for supplying a drive current to the magnetic detection means;
Magnetic field generating means disposed in the vicinity of the magnetic detection means;
Second current supply means for supplying an excitation current to the magnetic field generating means;
Control means for controlling the drive current and the excitation current,
The control means includes
The output value of the magnetic detection means when the excitation current is supplied to the magnetic field generation means and the output value of the magnetic detection means when the excitation current is not supplied to the magnetic field generation means A magnetoelectric conversion system, wherein a current value of the drive current is controlled so that the difference becomes constant.
同一平面上に設置され、磁界強度を検出する第1及び第2の磁気検出手段と、
該第1及び第2の磁気検出手段に駆動電流を供給する第1の電流供給手段と、
前記第1及び第2の磁気検出手段の近傍にそれぞれ配置された第1及び第2の磁界発生手段と、
該第1の磁界発生手段に励起電流を供給し、該第1の磁界発生手段に発生した磁界の向きと反対向きの磁界を前記第2の磁界発生手段が発生するように、該第2の磁界発生手段に励起電流を供給する第2の電流供給手段と、
前記駆動電流を制御する制御手段とを備え、
該制御手段は、
前記励起電流が前記第1及び第2の磁界発生手段に供給されているときの、前記第1の磁気検出手段の出力値と前記第2の磁気検出手段の出力値との差が一定になるように、前記駆動電流の電流値が制御されることを特徴とする磁電変換システム。
First and second magnetic detection means installed on the same plane for detecting magnetic field strength;
First current supply means for supplying a drive current to the first and second magnetic detection means;
First and second magnetic field generating means respectively disposed in the vicinity of the first and second magnetic detection means;
An excitation current is supplied to the first magnetic field generating means, and the second magnetic field generating means generates a magnetic field in a direction opposite to the direction of the magnetic field generated in the first magnetic field generating means. Second current supply means for supplying an excitation current to the magnetic field generation means;
Control means for controlling the drive current,
The control means includes
The difference between the output value of the first magnetic detection means and the output value of the second magnetic detection means becomes constant when the excitation current is supplied to the first and second magnetic field generation means. As described above, the current value of the drive current is controlled.
前記第1の磁気検出手段の出力値と前記第2の磁気検出手段の出力値との和に基づいて被測定磁界を検出することを特徴とする請求項2に記載の磁電変換システム。   3. The magnetoelectric conversion system according to claim 2, wherein the magnetic field to be measured is detected based on a sum of an output value of the first magnetic detection means and an output value of the second magnetic detection means. 前記磁気検出手段が、ホール素子であることを特徴とする請求項1,2又は3に記載の磁電変換システム。   The magnetoelectric conversion system according to claim 1, 2 or 3, wherein the magnetic detection means is a Hall element. 前記ホール素子は、ICプロセスの拡散抵抗により形成されたことを特徴とする請求項4に記載の磁電変換システム。   The magnetoelectric conversion system according to claim 4, wherein the Hall element is formed by a diffusion resistance of an IC process. 前記磁気発生手段が、コイルであることを特徴とする請求項1,2又は3に記載の磁電変換システム。   The magnetoelectric conversion system according to claim 1, 2 or 3, wherein the magnetism generating means is a coil. 前記コイルは、ICプロセスの配線層により形成されたことを特徴とする請求項6に記載の磁電変換システム。   The magnetoelectric conversion system according to claim 6, wherein the coil is formed of a wiring layer of an IC process. 前記ホール素子及び前記コイル並びに前記制御手段は、ICプロセスにより一体形成されていることを特徴とする請求項5に記載の磁電変換システム。   The magnetoelectric conversion system according to claim 5, wherein the hall element, the coil, and the control unit are integrally formed by an IC process. 磁界強度を検出する磁気検出手段と、
該磁気検出手段に駆動電流を供給する第1の電流供給手段と、
前記磁気検出手段の近傍に配置された磁界発生手段と、
該磁界発生手段に励起電流を供給する第2の電流供給手段とを備え、
前記励起電流が前記磁界発生手段に供給されているときの、前記磁気検出手段の出力値と、前記励起電流が前記磁界発生手段に供給されていないときの、前記磁気検出手段の出力値との差が一定になるように、前記駆動電流の電流値が制御されることを特徴とする磁電変換装置。
Magnetic detection means for detecting magnetic field intensity;
First current supply means for supplying a drive current to the magnetic detection means;
Magnetic field generating means disposed in the vicinity of the magnetic detection means;
Second current supply means for supplying an excitation current to the magnetic field generation means,
An output value of the magnetic detection means when the excitation current is supplied to the magnetic field generation means and an output value of the magnetic detection means when the excitation current is not supplied to the magnetic field generation means A magnetoelectric conversion device characterized in that the current value of the drive current is controlled so that the difference becomes constant.
同一平面上に設置され、磁界強度を検出する第1及び第2の磁気検出手段と、
該第1及び第2の磁気検出手段に駆動電流を供給する第1の電流供給手段と、
前記第1及び第2の磁気検出手段の近傍にそれぞれ配置された第1及び第2の磁界発生手段と、
該第1の磁界発生手段に励起電流を供給し、前記第1の磁界発生手段に発生した磁界の向きと反対向きの磁界を前記第2の磁界発生手段が発生するように、前記第2の磁界発生手段に励起電流を供給する第2の電流供給手段とを備え、
前記励起電流が前記第1及び第2の磁界発生手段に供給されているときの、前記第1の磁気検出手段の出力値と前記第2の磁気検出手段の出力値との差が一定になるように、前記駆動電流の電流値が制御されることを特徴とする磁電変換装置。
First and second magnetic detection means installed on the same plane for detecting magnetic field strength;
First current supply means for supplying a drive current to the first and second magnetic detection means;
First and second magnetic field generating means respectively disposed in the vicinity of the first and second magnetic detection means;
An excitation current is supplied to the first magnetic field generating means, and the second magnetic field generating means generates a magnetic field in a direction opposite to the direction of the magnetic field generated in the first magnetic field generating means. Second current supply means for supplying an excitation current to the magnetic field generation means,
The difference between the output value of the first magnetic detection means and the output value of the second magnetic detection means becomes constant when the excitation current is supplied to the first and second magnetic field generation means. As described above, the current value of the drive current is controlled.
前記磁気検出手段が、ホール素子であることを特徴とする請求項9又は10に記載の磁電変換装置。   The magnetoelectric conversion device according to claim 9 or 10, wherein the magnetic detection means is a Hall element. 磁界強度を検出する磁気検出手段と、
該磁気検出手段に駆動電流を供給する第1の電流供給手段と、
前記磁気検出手段の近傍に配置された磁界発生手段と、
該磁界発生手段に励起電流を供給する第2の電流供給手段とを備えた磁電変換装置の制御回路であって、
前記励起電流が前記磁界発生手段に供給されているときの、前記磁気検出手段の出力値と、前記励起電流が前記磁界発生手段に供給されていないときの、前記磁気検出手段の出力値との差が一定になるように、前記駆動電流の電流値が制御されることを特徴とする制御回路。
Magnetic detection means for detecting magnetic field intensity;
First current supply means for supplying a drive current to the magnetic detection means;
Magnetic field generating means disposed in the vicinity of the magnetic detection means;
A control circuit for a magnetoelectric conversion device, comprising: a second current supply means for supplying an excitation current to the magnetic field generation means;
An output value of the magnetic detection means when the excitation current is supplied to the magnetic field generation means and an output value of the magnetic detection means when the excitation current is not supplied to the magnetic field generation means A control circuit, wherein a current value of the driving current is controlled so that the difference becomes constant.
同一平面上に設置され、磁界強度を検出する第1及び第2の磁気検出手段と、
該第1及び第2の磁気検出手段に駆動電流を供給する第1の電流供給手段と、
前記第1及び第2の磁気検出手段の近傍にそれぞれ配置された第1及び第2の磁界発生手段と、
該第1の磁界発生手段に励起電流を供給し、前記第1の磁界発生手段に発生した磁界の向きと反対向きの磁界を前記第2の磁界発生手段が発生するように、前記第2の磁界発生手段に励起電流を供給する第2の電流供給手段とを備えた磁電変換装置の制御回路であって、
前記励起電流が前記第1及び第2の磁界発生手段に供給されているときの、前記第1の磁気検出手段の出力値と前記第2の磁気検出手段の出力値との差が一定になるように、前記駆動電流の電流値が制御されることを特徴とする制御回路。
First and second magnetic detection means installed on the same plane for detecting magnetic field strength;
First current supply means for supplying a drive current to the first and second magnetic detection means;
First and second magnetic field generating means respectively disposed in the vicinity of the first and second magnetic detection means;
An excitation current is supplied to the first magnetic field generating means, and the second magnetic field generating means generates a magnetic field in a direction opposite to the direction of the magnetic field generated in the first magnetic field generating means. A control circuit for a magnetoelectric conversion device, comprising: a second current supply means for supplying an excitation current to the magnetic field generation means;
The difference between the output value of the first magnetic detection means and the output value of the second magnetic detection means becomes constant when the excitation current is supplied to the first and second magnetic field generation means. Thus, the current value of the drive current is controlled.
前記磁気検出手段が、ホール素子であることを特徴とする請求項12又は13に記載の制御回路。   The control circuit according to claim 12, wherein the magnetic detection means is a Hall element.
JP2004314681A 2004-10-28 2004-10-28 Magneto-electric conversion system, magneto-electric conversion apparatus and its control circuit Pending JP2006126012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314681A JP2006126012A (en) 2004-10-28 2004-10-28 Magneto-electric conversion system, magneto-electric conversion apparatus and its control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314681A JP2006126012A (en) 2004-10-28 2004-10-28 Magneto-electric conversion system, magneto-electric conversion apparatus and its control circuit

Publications (1)

Publication Number Publication Date
JP2006126012A true JP2006126012A (en) 2006-05-18

Family

ID=36720895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314681A Pending JP2006126012A (en) 2004-10-28 2004-10-28 Magneto-electric conversion system, magneto-electric conversion apparatus and its control circuit

Country Status (1)

Country Link
JP (1) JP2006126012A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123144A1 (en) * 2007-03-23 2008-10-16 Asahi Kasei Emd Corporation Magnetic sensor and its sensitivity measuring method
JP2008256415A (en) * 2007-04-02 2008-10-23 Nissan Motor Co Ltd Magnetic sensor apparatus
JP2010286492A (en) * 2009-06-15 2010-12-24 Headway Technologies Inc Secular change correction method and current measuring method of mr sensor
JP2011039060A (en) * 2009-08-17 2011-02-24 Headway Technologies Inc Secular change correction method and secular change correction device for magnetoresistance effect sensor
JP2011513706A (en) * 2008-02-26 2011-04-28 アレグロ・マイクロシステムズ・インコーポレーテッド Magnetic field sensor with automatic sensitivity adjustment
JP2013500469A (en) * 2009-07-22 2013-01-07 アレグロ・マイクロシステムズ・インコーポレーテッド Circuit and method for generating a diagnostic operating mode of a magnetic field sensor
JP2014006061A (en) * 2012-06-21 2014-01-16 Asahi Kasei Electronics Co Ltd Sensor driving circuit
WO2014199654A1 (en) * 2013-06-13 2014-12-18 日本航空電子工業株式会社 Current sensor
JP2015169517A (en) * 2014-03-06 2015-09-28 旭化成エレクトロニクス株式会社 Magnetic detection device, current sensor, and magnetic detection method
US9151807B2 (en) 2009-02-17 2015-10-06 Allegro Microsystems, Llc Circuits and methods for generating a self-test of a magnetic field sensor
US9201122B2 (en) 2012-02-16 2015-12-01 Allegro Microsystems, Llc Circuits and methods using adjustable feedback for self-calibrating or self-testing a magnetic field sensor with an adjustable time constant
WO2016047149A1 (en) * 2014-09-26 2016-03-31 旭化成エレクトロニクス株式会社 Hall electromotive force signal detection circuit and current sensor
US9638764B2 (en) 2015-04-08 2017-05-02 Allegro Microsystems, Llc Electronic circuit for driving a hall effect element with a current compensated for substrate stress
US9645220B2 (en) 2014-04-17 2017-05-09 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor using phase discrimination
US9735773B2 (en) 2014-04-29 2017-08-15 Allegro Microsystems, Llc Systems and methods for sensing current through a low-side field effect transistor
US9804249B2 (en) 2014-11-14 2017-10-31 Allegro Microsystems, Llc Dual-path analog to digital converter
US9841485B2 (en) 2014-11-14 2017-12-12 Allegro Microsystems, Llc Magnetic field sensor having calibration circuitry and techniques
US9851417B2 (en) 2015-07-28 2017-12-26 Allegro Microsystems, Llc Structure and system for simultaneous sensing a magnetic field and mechanical stress
US10132879B2 (en) 2016-05-23 2018-11-20 Allegro Microsystems, Llc Gain equalization for multiple axis magnetic field sensing
US10162017B2 (en) 2016-07-12 2018-12-25 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
US10466298B2 (en) 2014-11-14 2019-11-05 Allegro Microsystems, Llc Magnetic field sensor with shared path amplifier and analog-to-digital-converter
US10520559B2 (en) 2017-08-14 2019-12-31 Allegro Microsystems, Llc Arrangements for Hall effect elements and vertical epi resistors upon a substrate
US11169223B2 (en) 2020-03-23 2021-11-09 Allegro Microsystems, Llc Hall element signal calibrating in angle sensor
US11630130B2 (en) 2021-03-31 2023-04-18 Allegro Microsystems, Llc Channel sensitivity matching

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117080A (en) * 1975-04-07 1976-10-14 Ricoh Co Ltd Magnetic field measuring method using hall element
JPS6148777A (en) * 1984-08-16 1986-03-10 エルゲーツエツト・ランデイス・ウント・ギール・ツーク・アクチエンゲゼルシヤフト Compensator for variation of conversion coefficient of magnetic field sensor
JPH0432080U (en) * 1990-07-09 1992-03-16
JP2002299599A (en) * 2001-04-02 2002-10-11 Asahi Kasei Corp Integrated magnetic sensor and its manufacturing method
JP2003142752A (en) * 2001-11-01 2003-05-16 Asahi Kasei Corp Manufacturing method of magnetic sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117080A (en) * 1975-04-07 1976-10-14 Ricoh Co Ltd Magnetic field measuring method using hall element
JPS6148777A (en) * 1984-08-16 1986-03-10 エルゲーツエツト・ランデイス・ウント・ギール・ツーク・アクチエンゲゼルシヤフト Compensator for variation of conversion coefficient of magnetic field sensor
JPH0432080U (en) * 1990-07-09 1992-03-16
JP2002299599A (en) * 2001-04-02 2002-10-11 Asahi Kasei Corp Integrated magnetic sensor and its manufacturing method
JP2003142752A (en) * 2001-11-01 2003-05-16 Asahi Kasei Corp Manufacturing method of magnetic sensor

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9116195B2 (en) 2007-03-23 2015-08-25 Asahi Kasei Emd Corporation Magnetic sensor and sensitivity measuring method thereof
WO2008123144A1 (en) * 2007-03-23 2008-10-16 Asahi Kasei Emd Corporation Magnetic sensor and its sensitivity measuring method
KR101124025B1 (en) 2007-03-23 2012-03-27 아사히 가세이 일렉트로닉스 가부시끼가이샤 Magnetic sensor and its sensitivity measuring method
JP5027217B2 (en) * 2007-03-23 2012-09-19 旭化成エレクトロニクス株式会社 Magnetic sensor and sensitivity measurement method thereof
JP2012215579A (en) * 2007-03-23 2012-11-08 Asahi Kasei Electronics Co Ltd Magnetic sensor and sensitivity measurement method thereof
JP2008256415A (en) * 2007-04-02 2008-10-23 Nissan Motor Co Ltd Magnetic sensor apparatus
JP2013224958A (en) * 2008-02-26 2013-10-31 Allegro Microsystems Llc Magnetic field sensor with automatic sensitivity adjustment
JP2011513706A (en) * 2008-02-26 2011-04-28 アレグロ・マイクロシステムズ・インコーポレーテッド Magnetic field sensor with automatic sensitivity adjustment
US9151807B2 (en) 2009-02-17 2015-10-06 Allegro Microsystems, Llc Circuits and methods for generating a self-test of a magnetic field sensor
JP2010286492A (en) * 2009-06-15 2010-12-24 Headway Technologies Inc Secular change correction method and current measuring method of mr sensor
JP2013500469A (en) * 2009-07-22 2013-01-07 アレグロ・マイクロシステムズ・インコーポレーテッド Circuit and method for generating a diagnostic operating mode of a magnetic field sensor
JP2011039060A (en) * 2009-08-17 2011-02-24 Headway Technologies Inc Secular change correction method and secular change correction device for magnetoresistance effect sensor
US9201122B2 (en) 2012-02-16 2015-12-01 Allegro Microsystems, Llc Circuits and methods using adjustable feedback for self-calibrating or self-testing a magnetic field sensor with an adjustable time constant
JP2014006061A (en) * 2012-06-21 2014-01-16 Asahi Kasei Electronics Co Ltd Sensor driving circuit
WO2014199654A1 (en) * 2013-06-13 2014-12-18 日本航空電子工業株式会社 Current sensor
JP2015169517A (en) * 2014-03-06 2015-09-28 旭化成エレクトロニクス株式会社 Magnetic detection device, current sensor, and magnetic detection method
US9645220B2 (en) 2014-04-17 2017-05-09 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor using phase discrimination
US9735773B2 (en) 2014-04-29 2017-08-15 Allegro Microsystems, Llc Systems and methods for sensing current through a low-side field effect transistor
WO2016047149A1 (en) * 2014-09-26 2016-03-31 旭化成エレクトロニクス株式会社 Hall electromotive force signal detection circuit and current sensor
JPWO2016047149A1 (en) * 2014-09-26 2017-04-27 旭化成エレクトロニクス株式会社 Hall electromotive force signal detection circuit and current sensor
EP3176593A4 (en) * 2014-09-26 2018-01-03 Asahi Kasei Microdevices Corporation Hall electromotive force signal detection circuit and current sensor
CN106716149A (en) * 2014-09-26 2017-05-24 旭化成微电子株式会社 Hall electromotive force signal detection circuit and current sensor
CN106716149B (en) * 2014-09-26 2020-10-30 旭化成微电子株式会社 Hall electromotive force signal detection circuit and current sensor
US9804249B2 (en) 2014-11-14 2017-10-31 Allegro Microsystems, Llc Dual-path analog to digital converter
US9841485B2 (en) 2014-11-14 2017-12-12 Allegro Microsystems, Llc Magnetic field sensor having calibration circuitry and techniques
US10466298B2 (en) 2014-11-14 2019-11-05 Allegro Microsystems, Llc Magnetic field sensor with shared path amplifier and analog-to-digital-converter
US9638764B2 (en) 2015-04-08 2017-05-02 Allegro Microsystems, Llc Electronic circuit for driving a hall effect element with a current compensated for substrate stress
US10746817B2 (en) 2015-07-28 2020-08-18 Allegro Microsystems, Llc Structure and system for simultaneous sensing a magnetic field and mechanical stress
US9851417B2 (en) 2015-07-28 2017-12-26 Allegro Microsystems, Llc Structure and system for simultaneous sensing a magnetic field and mechanical stress
US10132879B2 (en) 2016-05-23 2018-11-20 Allegro Microsystems, Llc Gain equalization for multiple axis magnetic field sensing
US10908232B2 (en) 2016-05-23 2021-02-02 Allegro Microsystems, Llc Gain equalization for multiple axis magnetic field sensing
US10162017B2 (en) 2016-07-12 2018-12-25 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
US10746818B2 (en) 2016-07-12 2020-08-18 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
US10520559B2 (en) 2017-08-14 2019-12-31 Allegro Microsystems, Llc Arrangements for Hall effect elements and vertical epi resistors upon a substrate
US11169223B2 (en) 2020-03-23 2021-11-09 Allegro Microsystems, Llc Hall element signal calibrating in angle sensor
US11630130B2 (en) 2021-03-31 2023-04-18 Allegro Microsystems, Llc Channel sensitivity matching

Similar Documents

Publication Publication Date Title
JP2006126012A (en) Magneto-electric conversion system, magneto-electric conversion apparatus and its control circuit
DK2732293T3 (en) METHOD AND DEVICE FOR MEASURING ELECTRIC CURRENTS USING A POWER TRANSFORMER
JP5144528B2 (en) Rotation angle detector
JPWO2012011306A1 (en) Current sensor
EP3680628A1 (en) Magnetic flowmeter assembly with zero-flow measurement capability
JP4008779B2 (en) 2-wire electromagnetic flow meter
JP6220748B2 (en) DC leakage current detector
JP2006266909A5 (en)
JP2010025889A (en) Electric current detector
CN111426356A (en) Magnetic flow meter assembly with independent coil drive and control system
JP2013200253A (en) Power measurement device
KR101886250B1 (en) Energy metering apparatus and method using the same
CN112666509A (en) Compensation system and method suitable for magnetic-sensing current sensor
JP5891516B2 (en) Current sensor
KR20190108062A (en) Excitation circuit of electromagnetic flowmeter and electromagnetic flowmeter
JP4245368B2 (en) Current measuring device and current measuring method
JP2011169833A (en) Current sensor
JP2016115240A (en) Multiplication circuit and power sensor including the same
JP2019184544A (en) Converter for electromagnetic flow meter, electromagnetic flow meter, and method for operating flow rate
JP2004020560A (en) Current sensor and method for controlling the same
JP7225694B2 (en) magnetic sensor
CN214895761U (en) Compensation system suitable for magnetic-sensing current sensor
JP2019138796A (en) Zero-flux type current sensor
JP2019054433A (en) Measurement voltage output device
JP2013148439A (en) Current sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420