JP2006125819A - Plate type heat exchanger - Google Patents

Plate type heat exchanger Download PDF

Info

Publication number
JP2006125819A
JP2006125819A JP2004347573A JP2004347573A JP2006125819A JP 2006125819 A JP2006125819 A JP 2006125819A JP 2004347573 A JP2004347573 A JP 2004347573A JP 2004347573 A JP2004347573 A JP 2004347573A JP 2006125819 A JP2006125819 A JP 2006125819A
Authority
JP
Japan
Prior art keywords
copper plate
plate
copper
heat
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004347573A
Other languages
Japanese (ja)
Inventor
Masami Takagi
正美 高木
Shozo Takagi
章三 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAGI SEISAKUSHO KK
Takagi Manufacturing Co Ltd
Original Assignee
TAKAGI SEISAKUSHO KK
Takagi Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAGI SEISAKUSHO KK, Takagi Manufacturing Co Ltd filed Critical TAKAGI SEISAKUSHO KK
Priority to JP2004347573A priority Critical patent/JP2006125819A/en
Publication of JP2006125819A publication Critical patent/JP2006125819A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the area of contact between fluid and a heat transfer plate when the fluid passes through a passage in communication, thereby increasing the efficiency of heat exchange, and reducing the heat capacity of the heat transfer plate for better heat responsiveness. <P>SOLUTION: The plate type heat exchanger comprises a copper plate A1 having formed therein a number of holes A5 and plated on its surface; a copper plate B2 plated on its surface and having holes B6 that are different in position or in both position and shape from the holes A5 in the copper plate A1, the holes B6 forming a passage 12 that is in communication when the copper plates A1, B2 are stacked together; a copper plate C3 located outside of the copper plate B2 to form a wall of the passage 12; and a copper plate D4 stacked on the outside of the copper plate A1 and having an inlet 9 and an outlet 10 for the fluid 8 while forming a wall of the passage 12. The copper plates A1, B2, C3 are held by the copper plate D4 and the copper plates A1, B2, C3, D4 are stacked and integrated together. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、伝熱板となる銅板を所定の枚数積層し、積層によって連通した通路を形成するプレート式熱交換器に関するものである。  The present invention relates to a plate heat exchanger in which a predetermined number of copper plates serving as heat transfer plates are stacked and a passage communicating by the stacking is formed.

近年、各種の化学設備や熱器具において、加熱、冷却、熱回収の工程にプレート式熱交換器が用いられている。  In recent years, plate-type heat exchangers have been used for heating, cooling, and heat recovery processes in various chemical facilities and heat appliances.

このプレート式熱交換器として、例えば図6に示す如く、ステンレス鋼板をプレス加工によって連続する凹凸32を形成した伝熱板31の表面にめっき加工を施し、該伝熱板31の表面にめっき処理により、金属被膜を形成し、該伝熱板31を所定の枚数、積層して連続式脱酸化電気炉でロウ付け34により接合し、伝熱板31と伝熱板31との間に狭い間隔の流体のチャンネル35を形成し、このチャンネル35に、液−液、液−ガスなどの2種類の流体を交互に流通させて開口33から流出させ、熱交換を行うものがある。(特許文献1)
特開2000−356490号公報
As this plate-type heat exchanger, for example, as shown in FIG. 6, a stainless steel plate is plated on the surface of a heat transfer plate 31 formed with continuous irregularities 32 by pressing, and the surface of the heat transfer plate 31 is plated. Then, a predetermined number of the heat transfer plates 31 are stacked and joined by brazing 34 in a continuous deoxidation electric furnace, and a narrow gap is formed between the heat transfer plate 31 and the heat transfer plate 31. The fluid channel 35 is formed, and two types of fluids such as liquid-liquid and liquid-gas are alternately circulated through the channel 35 to flow out from the opening 33 to exchange heat. (Patent Document 1)
JP 2000-356490 A

従来の特許文献1に示すものにおいては、耐久性、耐圧性、耐薬品性、耐食性などの諸特性の向上を図るため、ステンレス鋼板を用いて伝熱板31が形成され、伝熱板31を連続した脱酸化電気炉でロウ付け34によって接合している。また、伝熱板31はプレス加工で凹凸32を設け、複数の伝熱板31を積層し、各伝熱板31間に生じる空間をチャンネル35通路とし、液−液、液−ガスなど2種類の流体を交互に流通させている。
しかし、この特許文献1における問題点は伝熱板31の材料がステンレス鋼板であり、熱容量が大きく、しかも伝熱板31に平行して流体を流すことから流体と伝熱板31との接触面積が小さく、このため熱応答性が低く、熱交換に長時間を要するものであった。
In the prior art disclosed in Patent Document 1, in order to improve various properties such as durability, pressure resistance, chemical resistance, and corrosion resistance, a heat transfer plate 31 is formed using a stainless steel plate. Joined by brazing 34 in a continuous deoxidation electric furnace. Further, the heat transfer plate 31 is provided with irregularities 32 by press working, a plurality of heat transfer plates 31 are stacked, and a space generated between each heat transfer plate 31 is used as a channel 35 passage, and two types such as liquid-liquid and liquid-gas The fluid is circulated alternately.
However, the problem in this Patent Document 1 is that the material of the heat transfer plate 31 is a stainless steel plate, the heat capacity is large, and the fluid flows in parallel to the heat transfer plate 31, so that the contact area between the fluid and the heat transfer plate 31 is Therefore, the heat responsiveness is low and heat exchange takes a long time.

本発明は上記の課題を解決するためになされたものであり、具体的には請求項1に示すように、孔A5を多数個形成し、表面にめっき処理を施した銅板A1と、銅板A1の孔A5とは位置が異なるか、または位置と形状が異なり、銅板A1と積層することによって連通する通路12を形成した孔B6を有し、表面にめっき処理を施した銅板B2と、銅板B2の外側に位置し、通路12の壁をなす銅板C3と、銅板A1の外側に積層し、流体8の入口9と出口10を有し、通路12の壁となす銅板D4で挟み、銅板A1と銅板B2と銅板C3と銅板D4とを積層し、一体としたものである。  The present invention has been made to solve the above-mentioned problems. Specifically, as shown in claim 1, a copper plate A1 having a large number of holes A5 and plated on the surface, and a copper plate A1. The position of the hole A5 is different from the position of the hole A5, or the position and shape of the hole A5 is different from that of the hole A5. The copper plate B2 has a hole B6 formed with a passage 12 communicating with the copper plate A1 and is plated. The copper plate C3 that forms the wall of the passage 12 and the copper plate A1 are laminated on the outside of the copper plate A1, have an inlet 9 and an outlet 10 for the fluid 8, sandwiched by the copper plate D4 that forms the wall of the passage 12, and the copper plate A1 The copper plate B2, the copper plate C3, and the copper plate D4 are laminated and integrated.

本発明は上記のように構成したので、流体が連通する通路を通過するときの流体と伝熱板との接触面積が大きくなり、熱交換効率がよくなる。  Since the present invention is configured as described above, the contact area between the fluid and the heat transfer plate when passing through the passage through which the fluid communicates is increased, and the heat exchange efficiency is improved.

また、銅板を用いているため薄板にすることができ、かつ、多数個の孔をエッチングで作ることができるためステンレス鋼板にプレス加工により凹凸を設けた伝熱板に比べて著しく熱容量が小さくなり、熱応答性がよくなる。  In addition, since a copper plate is used, it can be made into a thin plate, and a large number of holes can be formed by etching, so that the heat capacity is significantly reduced compared to a heat transfer plate provided with irregularities by pressing a stainless steel plate. , Better thermal response.

また、連通する通路を形成する伝熱板と、連通する通路の壁と流体の出入口と、連通する通路の壁となる伝熱板は、連通する通路を形成する伝熱板の表面をロウ付けに適合しためっき処理を施し、金属被膜を形成したことにより、通常の連続脱酸素電気炉、特に汎用の水素炉による伝熱板同士のロウ付け接合を可能とすることができる。  Also, the heat transfer plate forming the communicating passage, the wall of the communicating passage, the fluid inlet / outlet, and the heat transfer plate serving as the communicating passage wall braze the surface of the heat transfer plate forming the communicating passage. By performing a plating process suitable for the above and forming a metal film, it is possible to braze and join the heat transfer plates with a normal continuous deoxidation electric furnace, particularly a general-purpose hydrogen furnace.

さらに孔の形状や位置が異なる銅板、すなわち複数の伝熱板を同時にめっき処理を施すことができるため、加工時間が圧縮できる。  Furthermore, since the copper plate having different hole shapes and positions, that is, a plurality of heat transfer plates can be plated simultaneously, the processing time can be reduced.

このように、流体と伝熱板との接触面積を大きくした熱交換効率の高いプレート式熱交換器を提供できるものである。  Thus, a plate heat exchanger having a high heat exchange efficiency with a large contact area between the fluid and the heat transfer plate can be provided.

以下本発明の一実施例を図1から図5に基づいて具体的に説明する。
図において、伝熱板となる銅板A1にエッチングによって所定の多数個の孔A5を加工する。同じく銅板A1の上に伝熱板となる銅板B2を積層することによって孔A5と連通する通路12を構成する孔B6をエッチングによって形成する。
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS.
In the figure, a predetermined number of holes A5 are processed by etching in a copper plate A1 serving as a heat transfer plate. Similarly, by laminating a copper plate B2 serving as a heat transfer plate on the copper plate A1, a hole B6 constituting the passage 12 communicating with the hole A5 is formed by etching.

また、熱の授受板となる銅板C3は平板で加熱、冷却、熱回収が必要な熱交換対象物20と接触しやすい面で熱交換対象物20に熱的に結合している。  Further, the copper plate C3 serving as a heat transfer plate is a flat plate and is thermally coupled to the heat exchange object 20 on a surface that easily contacts the heat exchange object 20 that needs to be heated, cooled, and recovered.

また、銅板C3は銅板A1の下面に積層され、銅板A1の孔A5に対向する壁面となり、連通する通路12を形成する。さらに、銅板D4は銅板B2の上方に積層され、孔B6と対応する位置に流体8の入口9と出口10を形成し、かつ、他の孔B6に対して壁面となり、連通する通路12を形成する。  The copper plate C3 is laminated on the lower surface of the copper plate A1, becomes a wall surface facing the hole A5 of the copper plate A1, and forms a communicating passage 12. Further, the copper plate D4 is laminated above the copper plate B2, and forms an inlet 9 and an outlet 10 for the fluid 8 at a position corresponding to the hole B6, and forms a passage 12 that becomes a wall surface and communicates with the other hole B6. To do.

次に銅板A1、銅板B2のそれぞれの表面にはロウ付けによる接合性に優れた金属材料(例えば、銀、ニッケル等)を用いためっき処理を施し、その表面にロウ付けに適した金属被膜を形成する。  Next, the surface of each of the copper plate A1 and the copper plate B2 is subjected to a plating process using a metal material (for example, silver, nickel, etc.) having excellent bonding properties by brazing, and a metal film suitable for brazing is applied to the surface. Form.

銅板A1及び銅板B2は、その平面形状が1辺を10mmから300mmの略方形に形成され、厚みはロウ付け時に金属皮膜のはみ出し、孔の損傷を防ぐため、0.1mmから1mmにするのが望ましい。銅板C3と銅板D4は、銅板A1と銅板B2と同等または大きい寸法が望ましい。  The copper plate A1 and the copper plate B2 are formed in a substantially rectangular shape with a side of 10 mm to 300 mm on one side, and the thickness is 0.1 mm to 1 mm in order to prevent the metal film from protruding during brazing and damage to the holes. desirable. The copper plate C3 and the copper plate D4 preferably have the same or larger dimensions as the copper plate A1 and the copper plate B2.

本熱交換器の組立は、図2に示すように行われる。ここで、銅板C3の上に銅板A1、その上に銅板B2さらにその上に銅板D4を重ねて積層し、治工具13にて固定し、連続式水素炉で約1000℃15分間程度の適当な温度と時間を費やして銅板A1、銅板B2、銅板C3、銅板D4を加熱する。このとき銅板A1、銅板B2のめっきによる金属皮膜が溶けて、4枚の銅板A1、銅板B2、銅板C3、銅板D4が接合される。  The heat exchanger is assembled as shown in FIG. Here, the copper plate A1 is laminated on the copper plate C3, the copper plate B2 is further laminated thereon, and the copper plate D4 is laminated thereon, and is fixed with the jig 13 and is suitably fixed at about 1000 ° C. for about 15 minutes in a continuous hydrogen furnace. The copper plate A1, the copper plate B2, the copper plate C3, and the copper plate D4 are heated by spending temperature and time. At this time, the metal film formed by plating the copper plate A1 and the copper plate B2 melts, and the four copper plates A1, copper plate B2, copper plate C3, and copper plate D4 are joined.

以上の如く汎用の連続式水素炉でプレート式熱交換器が完成する。  As described above, the plate heat exchanger is completed in a general-purpose continuous hydrogen furnace.

熱交換器を使用する時には、図1に示すように、まず、熱交換対象物20に取付ねじ21で本発明のプレート式熱交換器を固着する。  When using the heat exchanger, as shown in FIG. 1, first, the plate heat exchanger of the present invention is fixed to the heat exchange object 20 with the mounting screw 21.

このとき銅板D4、銅板B2、銅板A1、銅板C3は熱的に結合しているため、銅板C3が熱交換対象物20の熱を受け取り、順次銅板A、銅板B,銅板Dへと熱の伝達が行われる。  At this time, since the copper plate D4, the copper plate B2, the copper plate A1, and the copper plate C3 are thermally coupled, the copper plate C3 receives the heat of the heat exchange object 20, and sequentially transfers the heat to the copper plate A, the copper plate B, and the copper plate D. Is done.

次に、ポンプ23等に流体8を貯えるタンク24と管22をつなぎ、端部を銅板D4の流体8で入り口に接続する。流体8を本発明のプレート式熱交換器に注入するためにポンプ23を駆動すると、水等の流体8は銅板D4に設けた入口9に注ぎ込まれる。  Next, the tank 24 and the pipe 22 for storing the fluid 8 are connected to the pump 23 and the like, and the ends are connected to the inlet by the fluid 8 of the copper plate D4. When the pump 23 is driven to inject the fluid 8 into the plate heat exchanger of the present invention, the fluid 8 such as water is poured into the inlet 9 provided in the copper plate D4.

流体8は、銅板Bに設けられた孔B6を通り、つぎに銅板Bと銅板Cとで挟まれた銅板Aに設けられた孔A5を通り、次に銅板Aと銅板Dに挟まれた孔B6に進む。  The fluid 8 passes through the hole B6 provided in the copper plate B, then passes through the hole A5 provided in the copper plate A sandwiched between the copper plate B and the copper plate C, and then the hole sandwiched between the copper plate A and the copper plate D. Proceed to B6.

このように銅板C3の壁と銅板D4の壁とで形成された連通する通路12を進み、銅板D4の出口10から外部に導出される。Thus, it passes along the communication path 12 formed by the wall of the copper plate C3 and the wall of the copper plate D4, and is led out from the outlet 10 of the copper plate D4.

このとき流体8は銅板A,銅板B、銅板C、銅板Dから次々と熱の授受を行い、熱の伝達を行う。  At this time, the fluid 8 transfers heat one after another from the copper plate A, copper plate B, copper plate C, and copper plate D, and transfers heat.

なお、上記実施例では銅板A1及び銅板B2を銅板C3と銅板D4で挟み込んで一体化しているが、銅板C3と銅板D4の間にさらに銅板A1と銅板B2を挿入し流路を増しても良い。  In the above embodiment, the copper plate A1 and the copper plate B2 are integrated by being sandwiched between the copper plate C3 and the copper plate D4, but the copper plate A1 and the copper plate B2 may be further inserted between the copper plate C3 and the copper plate D4 to increase the number of channels. .

このプレート式熱交換器の流体の流れを詳細に説明すると、図3のごとく銅板D4に開孔した入口9から銅板A1内に流入した流体8は、銅板A1の孔A5に入り、続いて銅板B2の孔B6に流れ、次には銅板A1の孔A5へと連通した通路12を通って銅板D4に開孔した出口10に導かれる。  The flow of the fluid in the plate heat exchanger will be described in detail. The fluid 8 flowing into the copper plate A1 from the inlet 9 opened in the copper plate D4 as shown in FIG. 3 enters the hole A5 of the copper plate A1, and then continues to the copper plate. It flows to the hole B6 of B2, and then is led to the outlet 10 opened in the copper plate D4 through the passage 12 communicating with the hole A5 of the copper plate A1.

このとき、流体8は銅板C3の壁面を介して行われた熱交換対象物20との熱の授受によって変化した銅板C3の熱量を流体8内に導入するとともに、銅板A1、銅板B2、銅板D4とも熱の授受を行い、外部の放熱部から放熱する循環を行う。勿論、流体8だけでなく外部に接する伝熱板の表面からも放熱する。  At this time, the fluid 8 introduces into the fluid 8 the amount of heat of the copper plate C3 that has changed due to the transfer of heat with the heat exchange object 20 performed through the wall surface of the copper plate C3, and also includes the copper plate A1, the copper plate B2, and the copper plate D4. Both of them exchange heat and circulate to dissipate heat from the external heat dissipation part. Of course, heat is radiated not only from the fluid 8 but also from the surface of the heat transfer plate in contact with the outside.

また、このプレート式熱交換器は、銅板A1、銅板B2の厚みは薄ければ薄いほど熱容量が小さくなるため、流体8の通過量が一定の場合を仮定すると熱交換効率が高まるが、流体8の通過量を増やして熱交換効率を高めることもできる。  In addition, in this plate heat exchanger, the heat capacity decreases as the thickness of the copper plate A1 and the copper plate B2 is smaller. Therefore, assuming that the amount of the fluid 8 passing is constant, the heat exchange efficiency increases. It is also possible to increase the heat exchange efficiency by increasing the passage amount of.

本発明のプレート式交換器を組み立てるとき、すなわち銅板A1、銅板B2、銅板C3、銅板D4を接合する時に銅板A1、銅板B2のめっき層7が熱により溶け、強固な接合を作るが、溶けた金属皮膜のはみ出しにより、孔A5と孔B6に著しい変形が生じると、流体8の通路12における阻害物となる。
このため、めっき層7の厚みから銅板A1と銅板B2の厚みは、上記不具合の発生を阻止するため、銅板A1、銅板B2の厚みは上記したように0.1mmから1mmとするのが望ましい。
When the plate type exchanger of the present invention is assembled, that is, when the copper plate A1, the copper plate B2, the copper plate C3, and the copper plate D4 are joined, the plated layer 7 of the copper plate A1 and the copper plate B2 is melted by heat, and a strong joint is made. If significant deformation occurs in the holes A5 and B6 due to the protrusion of the metal film, it becomes an obstacle in the passage 12 of the fluid 8.
For this reason, from the thickness of the plating layer 7, the thicknesses of the copper plate A1 and the copper plate B2 prevent the occurrence of the above problems, so that the thicknesses of the copper plate A1 and the copper plate B2 are preferably 0.1 mm to 1 mm as described above.

組立時に行われる溶接の手段を詳しく説明すると、銅板A1、銅板B2、銅板C3,銅板D4を所定の治工具13で順序正しく積層し、仮固定し、水素炉の如き連続脱酸素電気炉内でめっき層7を溶かして接合を行う。  The welding means performed at the time of assembly will be described in detail. The copper plate A1, the copper plate B2, the copper plate C3, and the copper plate D4 are laminated in order with a predetermined jig 13 and temporarily fixed, and in a continuous deoxygenation electric furnace such as a hydrogen furnace. The plating layer 7 is melted and joined.

この組立加工は、金属被膜をめっき処理により、薄膜としたため金属皮膜のはみ出し等が少なくなり、好ましい仕上がりを得る。  In this assembling process, since the metal coating is formed into a thin film by plating, the metal coating does not protrude and the preferred finish is obtained.

本発明は上記のように構成したので、流体8が連通する通路12を通過するときの流体8と伝熱板との接触面積が大きくなり、熱交換効率がよくなる。  Since the present invention is configured as described above, the contact area between the fluid 8 and the heat transfer plate when passing through the passage 12 through which the fluid 8 communicates is increased, and the heat exchange efficiency is improved.

また、銅板を用いているため薄板にすることができ、かつ、多数個の孔をエッチングで作ることができるため、ステンレス鋼板にプレス加工により凹凸を設けた伝熱板に比べて、著しく熱容量が小さくなり、熱応答性がよくなる。  In addition, since a copper plate is used, it can be made into a thin plate and a large number of holes can be formed by etching, so that the heat capacity is significantly higher than that of a heat transfer plate provided with unevenness by pressing a stainless steel plate. Smaller and better thermal response.

また、連通する通路12を形成する伝熱板と、連通する通路12の壁と流体8の出入口と、連通する通路12の壁となる伝熱板は、それぞれに表面を接合に適合しためっきを施し、金属被膜を形成したことにより、通常の連続脱酸素電気炉、特に汎用の水素炉による伝熱板同士の接合を可能とすることができる。  In addition, the heat transfer plate forming the communicating passage 12, the wall of the communicating passage 12, the entrance and exit of the fluid 8, and the heat transfer plate serving as the wall of the communicating passage 12 are each plated with a surface suitable for bonding. By applying and forming a metal film, it is possible to join the heat transfer plates with a normal continuous deoxidation electric furnace, particularly a general-purpose hydrogen furnace.

さらに孔の形状や位置が異なる銅板、すなわち複数の伝熱板を同時にめっき処理することができるため、加工時間が圧縮できる。  Furthermore, since copper plates having different hole shapes and positions, that is, a plurality of heat transfer plates can be simultaneously plated, the processing time can be reduced.

このように、流体8と伝熱板との接触面積を大きくした熱交換効率の高いプレート式熱交換器を提供できるものである。  Thus, a plate heat exchanger with high heat exchange efficiency in which the contact area between the fluid 8 and the heat transfer plate is increased can be provided.

本発明の実施例であるプレート式熱交換器の断面図である。It is sectional drawing of the plate-type heat exchanger which is an Example of this invention. 本発明の組立時の説明図である。It is explanatory drawing at the time of the assembly of this invention. 本発明の一実施例断面による流体の流れの説明図である。It is explanatory drawing of the flow of the fluid by one Example cross section of this invention. 本発明の一実施例における銅板Aの説明図である。It is explanatory drawing of the copper plate A in one Example of this invention. 本発明の一実施例における銅板Bの説明図である。It is explanatory drawing of the copper plate B in one Example of this invention. 従来例の説明図である。It is explanatory drawing of a prior art example.

符号の説明Explanation of symbols

1 銅板A
2 銅板B
3 銅板C
4 銅板D
5 孔A
6 孔B
7 めっき層
8 流体
9 流体の入口
10 流体の出口
12 通路
20 熱交換対象物
1 Copper plate A
2 Copper plate B
3 Copper plate C
4 Copper plate D
5 hole A
6 hole B
7 Plating layer 8 Fluid 9 Fluid inlet 10 Fluid outlet 12 Passage 20 Heat exchange object

Claims (1)

孔A(5)を多数個形成し、表面にめっき処理を施した銅板A(1)と、銅板A(1)の孔A(5)とは位置が異なるか、または位置と形状が異なり、銅板A(1)と積層することによって連通する通路(12)を形成した孔B(6)を有し、表面にめっき処理を施した銅板B(2)と、銅板B(2)の外側に位置し、通路(12)の壁をなす銅板C(3)と、銅板A(1)の外側に積層し、流体(8)の入口(9)と出口(10)を有し、通路(12)の壁となす銅板D(4)で挟み、銅板A(1)と銅板B(2)と銅板C(3)と銅板D(4)とを積層し、一体としたこと特徴とするプレート式熱交換器。  The position of the copper plate A (1) formed with a large number of holes A (5) and plated on the surface is different from the position of the hole A (5) of the copper plate A (1), or the position and shape are different. It has a hole B (6) in which a passage (12) communicating with the copper plate A (1) by laminating is formed, and a copper plate B (2) plated on the surface and on the outside of the copper plate B (2) A copper plate C (3) located on the wall of the passage (12) and laminated on the outside of the copper plate A (1), having an inlet (9) and an outlet (10) for the fluid (8), and the passage (12 ) Is sandwiched between the copper plate D (4) and the copper plate A (1), the copper plate B (2), the copper plate C (3), and the copper plate D (4), and the plate type characterized by being integrated Heat exchanger.
JP2004347573A 2004-11-01 2004-11-01 Plate type heat exchanger Pending JP2006125819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004347573A JP2006125819A (en) 2004-11-01 2004-11-01 Plate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347573A JP2006125819A (en) 2004-11-01 2004-11-01 Plate type heat exchanger

Publications (1)

Publication Number Publication Date
JP2006125819A true JP2006125819A (en) 2006-05-18

Family

ID=36720732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347573A Pending JP2006125819A (en) 2004-11-01 2004-11-01 Plate type heat exchanger

Country Status (1)

Country Link
JP (1) JP2006125819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105258541A (en) * 2015-11-23 2016-01-20 丁海平 Superconducting heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105258541A (en) * 2015-11-23 2016-01-20 丁海平 Superconducting heat exchanger

Similar Documents

Publication Publication Date Title
US5644840A (en) Method of producing a plate-type heat exchanger
JP5135225B2 (en) Use of a micro heat transfer device as a fluid cooler for micro heat transfer and electronic devices
JP3597436B2 (en) Heat exchanger
JP5206830B2 (en) Heat exchanger
US8230909B2 (en) Heat exchanger and its manufacturing method
JP5601928B2 (en) High density stacked heat exchanger
JP6531328B2 (en) Heat exchanger and method of manufacturing the same
JP2003307397A (en) Heat exchanger
US6904961B2 (en) Prime surface gas cooler for high temperature and method for manufacture
JP2010121925A (en) Heat exchanger
JP2006125819A (en) Plate type heat exchanger
JP2018017424A (en) Manufacturing method of heat exchanger
JP4984955B2 (en) Power element mounting unit, power element mounting unit manufacturing method, and power module
JP2020101329A (en) Heat exchanger and manufacturing method thereof
JP2001215093A (en) Lamination-type heat exchanger and its manufacturing method
JP6536205B2 (en) Sheet brazing material, method of manufacturing heat exchanger and heat exchanger
JP2014052147A (en) Heat exchanger and method for fabricating the same
JP2009300065A (en) Heat exchanger
JP6601380B2 (en) Heat exchanger and air conditioner
JP6886631B2 (en) Metal plate for heat exchanger and its manufacturing method, and heat exchanger and its manufacturing method
KR101972523B1 (en) Welded type plate heat exchanger for improved pressure resistant
JP2009097825A (en) Hot water storage tank
JP2006322667A (en) Resin-made heat exchanger
JP2000356491A (en) Plate heat exchanger
JPH1163880A (en) Manufacture of stacked heat exchanger