JP2006125355A - Egr cooler - Google Patents

Egr cooler Download PDF

Info

Publication number
JP2006125355A
JP2006125355A JP2004317733A JP2004317733A JP2006125355A JP 2006125355 A JP2006125355 A JP 2006125355A JP 2004317733 A JP2004317733 A JP 2004317733A JP 2004317733 A JP2004317733 A JP 2004317733A JP 2006125355 A JP2006125355 A JP 2006125355A
Authority
JP
Japan
Prior art keywords
shell
cooling water
chamber
exhaust gas
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004317733A
Other languages
Japanese (ja)
Inventor
Minoru Kowada
稔 小和田
Takahiro Sano
貴弘 佐野
Takeyasu Sakurai
健泰 桜井
Miki Ihara
美樹 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2004317733A priority Critical patent/JP2006125355A/en
Publication of JP2006125355A publication Critical patent/JP2006125355A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an EGR cooler which excellently prevents the occurrence of local heating part in a shell. <P>SOLUTION: The cooler is equipped with a tube 12 for leading exhaust gas from a diesel engine, a shell 13 which surrounds the tube 12 and has a plurality of inflow ports 17 for cooling water along a peripheral direction, and a chamber 15 which creates an inside space 14 between the chamber and the outer periphery of the shell 13 to surround the shell. When supplying/discharging cooling water, the cooling water is led to the inside 13a from the peripheral direction of the shell 13 by a plurality of inflow ports 17 through the medium of the inside space 14 between the chamber 15 and the shell 13 so as to exchange heat with exhaust gas in the tube 12. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、再循環用の排気ガスを冷却するEGRクーラに関するものである。   The present invention relates to an EGR cooler that cools exhaust gas for recirculation.

従来より、大型トラック等の大型車両のエンジンでは、排気側から排気ガスの一部を抜き出して吸気側へと戻し、その吸気側に戻された排気ガスでエンジン内での燃料の燃焼を抑制させて燃焼温度を下げることによりNOx(窒素酸化物)の発生を低減するようにした、いわゆる排気ガス再循環(EGR:Exhaust Gas Recirculation)が行われている。   Conventionally, in an engine of a large vehicle such as a large truck, a part of exhaust gas is extracted from the exhaust side and returned to the intake side, and the exhaust gas returned to the intake side suppresses combustion of fuel in the engine. So-called exhaust gas recirculation (EGR) is performed in which the generation of NOx (nitrogen oxide) is reduced by lowering the combustion temperature.

一般的に、この種の排気ガス再循環を行う場合には、排気マニホールドから排気管に亘る排気通路の適宜位置と、吸気管から吸気マニホールドに亘る吸気通路の適宜位置との間をEGR配管により接続し、EGR配管を通して排気ガスを再循環するようにしている。   In general, when this type of exhaust gas recirculation is performed, an EGR pipe is provided between an appropriate position of the exhaust passage from the exhaust manifold to the exhaust pipe and an appropriate position of the intake passage from the intake pipe to the intake manifold. Connected to recirculate exhaust gas through EGR piping.

又、エンジンに再循環する排気ガスをEGR配管の途中で冷却すると、排気ガスの温度が下がり且つその容積が小さくなることにより、エンジンの出力を余り低下させずに燃焼温度を低下して効果的にNOxの発生を低減させることができるため、エンジンに排気ガスを再循環するEGR配管の途中に水冷式のEGRクーラを装備したものもある(例えば、下記の特許文献1を参照)。
特開2003−184658号公報
In addition, if the exhaust gas recirculated to the engine is cooled in the middle of the EGR pipe, the temperature of the exhaust gas is reduced and the volume of the exhaust gas is reduced, thereby effectively reducing the combustion temperature without significantly reducing the output of the engine. In addition, since the generation of NOx can be reduced, a water-cooled EGR cooler is provided in the middle of the EGR pipe for recirculating exhaust gas to the engine (see, for example, Patent Document 1 below).
JP 2003-184658 A

ここで、EGRクーラの一例を示すと、図5、図6に示す如く、EGRクーラ1は、ディーゼルエンジンから排気ガスを導く多数のチューブ2と、多数のチューブ2を包囲して両端を閉塞する円筒状のシェル3とを備え、多数のチューブ2がシェル3の両端を貫通してシェル3の内部4に配置されるように構成されている。又、シェル3の一方の端部近傍には冷却水流入部5を取り付けると共に、シェル3の他方の端部近傍には冷却水排出部6を取り付けている。なお、図中、7は排ガスの入口となる入口側ボンネット、8は排ガスの出口となる出口側ボンネットを示している。   Here, as an example of the EGR cooler, as shown in FIGS. 5 and 6, the EGR cooler 1 surrounds a large number of tubes 2 that lead exhaust gas from a diesel engine and a large number of tubes 2 and closes both ends. A cylindrical shell 3 is provided, and a large number of tubes 2 pass through both ends of the shell 3 and are arranged inside the shell 3. A cooling water inflow portion 5 is attached in the vicinity of one end portion of the shell 3, and a cooling water discharge portion 6 is attached in the vicinity of the other end portion of the shell 3. In the figure, reference numeral 7 denotes an inlet bonnet as an exhaust gas inlet, and 8 denotes an outlet bonnet as an exhaust gas outlet.

EGRクーラ1に対して冷却水を給排する際には、冷却水を、冷却水流入部5よりシェル3の内部4に導入し、ディーゼルエンジンからチューブ2内に導かれた排気ガスと熱交換させ、冷却水排出部6からシェル3の外部に排出するようにしている。   When supplying or discharging the cooling water to or from the EGR cooler 1, the cooling water is introduced into the inside 4 of the shell 3 from the cooling water inflow portion 5, and exchanges heat with the exhaust gas introduced into the tube 2 from the diesel engine. The coolant is discharged from the cooling water discharge portion 6 to the outside of the shell 3.

又、このようなEGRクーラ1には、冷却水に残存したエアによる局所的な加熱部分の発生を抑制するよう、冷却水からエアを抜くエア抜き構造を備えたものがある。   In addition, there is an EGR cooler 1 having an air vent structure for extracting air from the cooling water so as to suppress generation of a locally heated portion due to air remaining in the cooling water.

エア抜き構造は、図5に示す如く、EGRクーラ1で排気ガスと熱交換されて昇温した冷却水を、冷却水排出部6より送給ホース9を介して集合部10に送給し、集合部10でエア抜きがなされると共に、エア抜きされた冷却水を、集合部10からエンジン内へ再循環又はラジエータ(図示せず)へ送給するようになっている。   As shown in FIG. 5, the air vent structure feeds the cooling water heated by the EGR cooler 1 and the heat exchange with the exhaust gas to the collecting unit 10 from the cooling water discharge unit 6 via the feeding hose 9, Air is removed from the collecting portion 10 and the cooled air is recirculated from the collecting portion 10 into the engine or supplied to a radiator (not shown).

しかしながら、このようなEGRクーラ1では、シェル3内の局所的な加熱部分の発生を抑制することができても、局所的な加熱部分の発生を好適に防止することができないという問題があった。   However, in such an EGR cooler 1, there is a problem that even if the generation of the local heating portion in the shell 3 can be suppressed, the generation of the local heating portion cannot be suitably prevented. .

本発明は上述の実情に鑑みてなしたもので、シェル内の局所的な加熱部分の発生を好適に防止するEGRクーラを提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an EGR cooler that suitably prevents the generation of a locally heated portion in a shell.

本発明は、ディーゼルエンジンから排気ガスを導くチューブと、該チューブを包囲すると共に冷却水の流入口を周方向に沿って複数形成するシェルと、該シェルの外周との間に内部空間を形成して包囲するチャンバとを備え、前記冷却水を給排する際には、前記冷却水を、チャンバとシェルの間の内部空間を介して、複数の流入口により前記シェルの周方向から内部に導入し、前記チューブ内の排気ガスと熱交換させるように構成したことを特徴とするEGRクーラ、に係るものである。   The present invention forms an internal space between a tube that guides exhaust gas from a diesel engine, a shell that surrounds the tube and that has a plurality of cooling water inlets along the circumferential direction, and an outer periphery of the shell. A chamber that surrounds the cooling water, and when supplying or discharging the cooling water, the cooling water is introduced from the circumferential direction of the shell into the inside through a plurality of inlets through an internal space between the chamber and the shell. The EGR cooler is configured to exchange heat with the exhaust gas in the tube.

本発明は、チャンバの上部に、冷却水の排出口を形成すると共にエア抜き構造を備え、前記チャンバの排出口より排出された直後の冷却水から前記エア抜き構造でエアを抜くよう構成することが好ましい。   According to the present invention, a cooling water discharge port is formed in an upper portion of the chamber, and an air vent structure is provided, and the air is extracted from the cooling water immediately after being discharged from the chamber discharge port by the air vent structure. Is preferred.

又、本発明は、ディーゼルエンジンから排気ガスを導くチューブと、該チューブを包囲して上部に冷却水の排出口及びエア抜き構造を形成したシェルとを備え、前記冷却水を給排する際には、前記冷却水を、前記シェルの内部に導入して前記チューブ内の排気ガスと熱交換させると共に、前記シェルの排出口より排出された直後の冷却水から前記エア抜き構造でエアを抜くよう構成したことを特徴とするEGRクーラ、に係るものである。   Further, the present invention comprises a tube for guiding exhaust gas from a diesel engine, and a shell surrounding the tube and having a cooling water discharge port and an air vent structure formed thereon, and when supplying and discharging the cooling water. The cooling water is introduced into the inside of the shell to exchange heat with the exhaust gas in the tube, and air is extracted from the cooling water immediately after being discharged from the discharge port of the shell by the air vent structure. The present invention relates to an EGR cooler that is configured.

このように、請求項1のEGRクーラによれば、冷却水を、チャンバとシェルの間の内部空間を介して、複数の流入口により前記シェルの周方向から内部に導入するので、前記シェルの内部へ略均一に冷却水を導入し、前記シェル内の局所的な加熱部分の発生を好適に防止することができる。   Thus, according to the EGR cooler of claim 1, the cooling water is introduced into the inside from the circumferential direction of the shell by the plurality of inlets through the internal space between the chamber and the shell. It is possible to introduce the cooling water into the inside substantially uniformly to suitably prevent the generation of a locally heated portion in the shell.

請求項2のEGRクーラによれば、エア抜き構造によりチャンバの排出口より排出された直後の冷却水からエアを抜くので、エアを抜く効率を向上させてエアを抜く時間を大幅に短縮し、シェル内の局所的な加熱部分の発生を一層好適に防止することができる。   According to the EGR cooler of the second aspect, the air is extracted from the cooling water immediately after being discharged from the discharge port of the chamber by the air releasing structure, so that the efficiency of extracting the air is improved and the time for extracting the air is greatly shortened. Generation | occurrence | production of the local heating part in a shell can be prevented more suitably.

請求項3のEGRクーラによれば、エア抜き構造によりシェルの排出口より排出された直後の冷却水からエアを抜くので、エアを抜く効率を向上させてエアを抜く時間を大幅に短縮し、シェル内の局所的な加熱部分の発生を好適に防止することができる。   According to the EGR cooler of claim 3, the air is extracted from the cooling water immediately after being discharged from the discharge port of the shell by the air releasing structure, so that the efficiency of extracting the air is improved and the time for extracting the air is greatly shortened. Generation | occurrence | production of the local heating part in a shell can be prevented suitably.

上記した本発明のEGRクーラによれば、シェル内の局所的な加熱部分の発生を好適に防止することができるという優れた効果を奏し得る。   According to the above-described EGR cooler of the present invention, it is possible to achieve an excellent effect that generation of a locally heated portion in the shell can be suitably prevented.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図3は本発明を実施する形態の第一例を示すものである。   1 to 3 show a first example of an embodiment for carrying out the present invention.

第一例のEGRクーラ11は、ディーゼルエンジンから排気ガスを導く多数のチューブ12と、多数のチューブ12を包囲して両端を閉塞する円筒状のシェル13と、シェル13の外周との間に内部空間14を形成するよう包囲して両端を閉塞すると共にシェル13を固定するチャンバ15とを備えている。   The EGR cooler 11 of the first example includes a large number of tubes 12 that guide exhaust gas from a diesel engine, a cylindrical shell 13 that surrounds the numerous tubes 12 and closes both ends, and an outer periphery of the shell 13. A chamber 15 is provided so as to form a space 14 so as to close both ends and fix the shell 13.

チャンバ15は、一方の側部に流入部16を取り付けると共に、他方の側部に、上部に位置する排出口(図示せず)を形成しており、シェル13は、一方の端部に、チャンバ15の流入部16より長手方向の外方に位置するよう、シェル13の周方向に沿う複数(図2では6つ)の流入口17を形成すると共に、他方の端部に、チャンバ15の排出口(図示せず)に接続される排出流路(図示せず)を形成している。又、多数のチューブ12は、シェル13の両端面及びチャンバ15の両端面を貫通してシェル13の内部13aに配置されるように構成されている。なお、図中、15aは排ガスの入口となる入口側ボンネット、15bは排ガスの出口となる出口側ボンネットを示している。   The chamber 15 has an inflow portion 16 attached to one side, and a discharge port (not shown) located in the upper portion is formed on the other side, and the shell 13 has a chamber at one end. A plurality of (six in FIG. 2) inflow ports 17 are formed along the circumferential direction of the shell 13 so as to be located outward in the longitudinal direction from the inflow portion 16 of the 15 and the exhaust of the chamber 15 is formed at the other end. A discharge channel (not shown) connected to an outlet (not shown) is formed. In addition, a large number of tubes 12 are configured so as to pass through both end faces of the shell 13 and both end faces of the chamber 15 and be disposed in the inside 13 a of the shell 13. In addition, in the figure, 15a has shown the inlet side bonnet used as an exhaust_gas | exhaustion inlet_port | entrance, and 15b has shown the exit side bonnet used as the exit of exhaust gas.

ここで、シェル13の複数の流入口17は、周方向に沿って等間隔で形成されても良いし、冷却水の流入量を調整するよう形成位置を変えても良い。又、流入口17の大きさも全て同じにしても良いし、冷却水の流入量を調整するよう流入口17の大きさを変えても良い。更に、シェル13の流入口17の個数は特に限定されるものではない。   Here, the plurality of inlets 17 of the shell 13 may be formed at equal intervals along the circumferential direction, or the formation positions may be changed so as to adjust the inflow amount of the cooling water. Further, the sizes of the inflow ports 17 may all be the same, or the size of the inflow ports 17 may be changed so as to adjust the inflow amount of the cooling water. Further, the number of the inlets 17 of the shell 13 is not particularly limited.

一方、チャンバ15の排出口(図示せず)には、エア抜き構造18を備えた突出部19を備えており、突出部19の側方には、冷却水の送給用配管(図示せず)を接続し得る接続部20を形成している。ここで、突出部19のエア抜き構造18は、チャンバ15から排出された冷却水の送給ラインにおいて最も高い場所に位置している。   On the other hand, a discharge port (not shown) of the chamber 15 is provided with a protrusion 19 having an air vent structure 18, and a cooling water supply pipe (not shown) is provided on the side of the protrusion 19. ) Is formed. Here, the air vent structure 18 of the protrusion 19 is located at the highest place in the supply line of the cooling water discharged from the chamber 15.

以下、本発明の実施の形態の第一例の作用を説明する。   The operation of the first example of the embodiment of the present invention will be described below.

冷却水を給排する際には、冷却水を、チャンバ15の流入部16からチャンバ15とシェル13の間の内部空間14に供給して、複数の流入口17によりシェル13の周方向から内部13aに導入し、チューブ12内の排気ガスと熱交換させ、シェル13の内部13aから排出流路を介して排出する。   When supplying or discharging the cooling water, the cooling water is supplied from the inflow portion 16 of the chamber 15 to the internal space 14 between the chamber 15 and the shell 13, and the inside of the shell 13 from the circumferential direction by the plurality of inlets 17. It introduces into 13a, makes it heat-exchange with the exhaust gas in the tube 12, and is discharged | emitted from the inside 13a of the shell 13 via a discharge flow path.

更に、チャンバ15の排出流路から冷却水を排出した際には、突出部19のエア抜き構造18が、冷却水からエアを分離し、冷却水をエンジン内へ再循環又はラジエータ(図示せず)へ送給すると共に、エアを突出部19の上方へ排出してエンジン外へ送給している。   Further, when the cooling water is discharged from the discharge flow path of the chamber 15, the air vent structure 18 of the protrusion 19 separates the air from the cooling water and recirculates the cooling water into the engine or a radiator (not shown). ), And the air is discharged above the projecting portion 19 to be fed out of the engine.

このように、本発明の形態の第一例によれば、冷却水を、チャンバ15とシェル13の間の内部空間14を介して、複数の流入口17によりシェル13の周方向からシェル13の内部13aに導入するので、シェル13の内部13aへ略均一に冷却水を導入し、シェル13内の局所的な加熱部分の発生を好適に防止することができる。又、シェル13の流入口17を、チャンバ15の流入部16より長手方向の外方に位置するので、冷却水をシェル13の内部13aへ十分に導入し、チューブ12内の排気ガスと好適に熱交換することができる。   Thus, according to the first example of the embodiment of the present invention, the cooling water is supplied from the circumferential direction of the shell 13 by the plurality of inlets 17 through the internal space 14 between the chamber 15 and the shell 13. Since it introduce | transduces into the inside 13a, a cooling water can be introduce | transduced into the inside 13a of the shell 13 substantially uniformly, and generation | occurrence | production of the local heating part in the shell 13 can be prevented suitably. Further, since the inlet 17 of the shell 13 is positioned outward in the longitudinal direction from the inflow portion 16 of the chamber 15, the cooling water is sufficiently introduced into the inside 13 a of the shell 13 and is preferably used as the exhaust gas in the tube 12. Heat exchange can be performed.

チャンバ15の上部に、冷却水の排出口(図示せず)を形成すると共にエア抜き構造18を備え、チャンバ15の排出口より排出された直後の冷却水からエア抜き構造18でエアを抜くよう構成すると、エアを抜く効率を向上させてエアを抜く時間を大幅に短縮し、シェル13内の局所的な加熱部分の発生を一層好適に防止することができる。   A cooling water discharge port (not shown) is formed in the upper part of the chamber 15, and an air vent structure 18 is provided so that air can be extracted from the cooling water just discharged from the chamber 15 by the air vent structure 18. When configured, the efficiency of extracting air can be improved, the time for extracting air can be greatly shortened, and the generation of a locally heated portion in the shell 13 can be more suitably prevented.

図4は本発明を実施する形態の第二例を示すものである。   FIG. 4 shows a second example of an embodiment for carrying out the present invention.

第二例のEGRクーラ21は、ディーゼルエンジンから排気ガスを導く多数のチューブ22と、多数のチューブ22を包囲して両端を閉塞する円筒状のシェル23とを備えている。   The EGR cooler 21 of the second example includes a number of tubes 22 that guide exhaust gas from the diesel engine, and a cylindrical shell 23 that surrounds the number of tubes 22 and closes both ends.

シェル23は、一方の端部に流入部(図示せず)を取り付けると共に、他方の端部に、上部に位置する排出口(図示せず)を形成しており、多数のチューブ22は、シェル23の両端面を貫通してシェル23の内部23aに配置されるように構成されている。なお、図中、23bは排ガスの入口となる入口側ボンネットを示している。   The shell 23 has an inflow portion (not shown) attached to one end portion, and a discharge port (not shown) located in the upper portion is formed at the other end portion. 23 is configured to pass through both end faces of the shell 23 and be disposed in the inside 23a of the shell 23. In addition, in the figure, 23b has shown the inlet side bonnet used as the inlet_port | entrance of waste gas.

シェル23の排出口(図示せず)には、エア抜き構造24を備えた突出部25を備えており、突出部25の側方には、冷却水の送給用配管(図示せず)を接続し得る接続部26を形成している。ここで、突出部25のエア抜き構造24は、シェル23から排出された冷却水の送給ラインにおいて最も高い場所に位置している。   A discharge port (not shown) of the shell 23 is provided with a protrusion 25 having an air vent structure 24, and a cooling water supply pipe (not shown) is provided on the side of the protrusion 25. The connection part 26 which can be connected is formed. Here, the air vent structure 24 of the protrusion 25 is located at the highest place in the supply line of the cooling water discharged from the shell 23.

以下、本発明の実施の形態の第二例の作用を説明する。   The operation of the second example of the embodiment of the present invention will be described below.

冷却水を給排する際には、冷却水を、シェル23の流入部によりシェル23の内部23aに導入し、チューブ22内の排気ガスと熱交換させ、シェル23の内部23aから排出口を介して排出する。   When supplying or discharging the cooling water, the cooling water is introduced into the inside 23 a of the shell 23 through the inflow portion of the shell 23, exchanges heat with the exhaust gas in the tube 22, and passes through the outlet from the inside 23 a of the shell 23. To discharge.

更に、シェル23の排出口から冷却水を排出した際には、突出部25のエア抜き構造24が、冷却水からエアを分離し、冷却水をエンジン内へ再循環又はラジエータ(図示せず)へ送給すると共に、エアを突出部25の上方へ排出してエンジン外へ送給している。   Furthermore, when the cooling water is discharged from the outlet of the shell 23, the air vent structure 24 of the protrusion 25 separates the air from the cooling water and recirculates the cooling water into the engine or a radiator (not shown). In addition, the air is discharged above the protruding portion 25 and supplied to the outside of the engine.

このように、本発明の形態の第二例によれば、第一例と略同様に、エア抜き構造24によりシェル23より排出された直後の冷却水からエアを抜くので、エアを抜く効率を向上させてエアを抜く時間を大幅に短縮し、シェル23内の局所的な加熱部分の発生を好適に防止することができる。   As described above, according to the second example of the embodiment of the present invention, air is extracted from the cooling water immediately after being discharged from the shell 23 by the air vent structure 24, as in the first example. It is possible to significantly improve the time for extracting air and to suitably prevent the generation of a locally heated portion in the shell 23.

尚、本発明のEGRクーラは、上述の形態例にのみ限定されるものではなく、エア抜き構造はエアを冷却水から分離し得るならばどのような構成でも良いこと、EGRクーラを複数備えた場合においてもエア抜き構造を冷却水の送給ラインの最も高い位置に配置して同様な効果を奏するようにしても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The EGR cooler of the present invention is not limited to the above-described embodiment. The air vent structure may be any configuration as long as the air can be separated from the cooling water, and includes a plurality of EGR coolers. Even in such a case, the air vent structure may be arranged at the highest position of the cooling water supply line so as to achieve the same effect, and various modifications can be made without departing from the scope of the present invention. Of course.

本発明を実施する形態の第一例を示す側面図である。It is a side view which shows the 1st example of the form which implements this invention. 図1のII−II方向の矢視図である。It is an arrow view of the II-II direction of FIG. 図1のIII−III方向の矢視図である。It is an arrow view of the III-III direction of FIG. 本発明を実施する形態の第二例であってエア抜き構造を示す平面図である。It is a 2nd example of embodiment which implements this invention, and is a top view which shows an air bleeding structure. 従来のEGRクーラを示す概念図である。It is a conceptual diagram which shows the conventional EGR cooler. 従来のEGRクーラの断面を示す概念図である。It is a conceptual diagram which shows the cross section of the conventional EGR cooler.

符号の説明Explanation of symbols

12 チューブ
13 シェル
13a 内部
14 内部空間
15 チャンバ
17 流入口
18 エア抜き構造
22 チューブ
23 シェル
12 Tube 13 Shell 13a Internal 14 Internal space 15 Chamber 17 Inlet 18 Air venting structure 22 Tube 23 Shell

Claims (3)

ディーゼルエンジンから排気ガスを導くチューブと、該チューブを包囲すると共に冷却水の流入口を周方向に沿って複数形成するシェルと、該シェルの外周との間に内部空間を形成して包囲するチャンバとを備え、前記冷却水を給排する際には、前記冷却水を、チャンバとシェルの間の内部空間を介して、複数の流入口により前記シェルの周方向から内部に導入し、前記チューブ内の排気ガスと熱交換させるように構成したことを特徴とするEGRクーラ。   A tube that guides exhaust gas from a diesel engine, a shell that surrounds the tube and that forms a plurality of cooling water inlets along the circumferential direction, and a chamber that surrounds and forms an internal space between the outer periphery of the shell When supplying and discharging the cooling water, the cooling water is introduced into the inside from the circumferential direction of the shell through a plurality of inlets through an internal space between the chamber and the shell, and the tube An EGR cooler configured to exchange heat with the exhaust gas inside. チャンバの上部に、冷却水の排出口を形成すると共にエア抜き構造を備え、前記チャンバの排出口より排出された直後の冷却水から前記エア抜き構造でエアを抜くよう構成したことを特徴とする請求項1記載のEGRクーラ。   A cooling water discharge port is formed in the upper portion of the chamber, and an air vent structure is provided. The cooling water immediately after being discharged from the chamber discharge port is configured to draw air with the air vent structure. The EGR cooler according to claim 1. ディーゼルエンジンから排気ガスを導くチューブと、該チューブを包囲して上部に冷却水の排出口及びエア抜き構造を形成したシェルとを備え、前記冷却水を給排する際には、前記冷却水を、前記シェルの内部に導入して前記チューブ内の排気ガスと熱交換させると共に、前記シェルの排出口より排出された直後の冷却水から前記エア抜き構造でエアを抜くよう構成したことを特徴とするEGRクーラ。   A tube that guides exhaust gas from the diesel engine, and a shell that surrounds the tube and that has a cooling water discharge port and an air vent structure formed on the top thereof, when supplying and discharging the cooling water, The air is introduced into the shell to exchange heat with the exhaust gas in the tube, and the air is extracted from the cooling water immediately after being discharged from the discharge port of the shell. EGR cooler to do.
JP2004317733A 2004-11-01 2004-11-01 Egr cooler Pending JP2006125355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317733A JP2006125355A (en) 2004-11-01 2004-11-01 Egr cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317733A JP2006125355A (en) 2004-11-01 2004-11-01 Egr cooler

Publications (1)

Publication Number Publication Date
JP2006125355A true JP2006125355A (en) 2006-05-18

Family

ID=36720324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317733A Pending JP2006125355A (en) 2004-11-01 2004-11-01 Egr cooler

Country Status (1)

Country Link
JP (1) JP2006125355A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019475A (en) * 2008-07-09 2010-01-28 Japan Climate Systems Corp Heat exchanger
CN104141558A (en) * 2014-07-15 2014-11-12 潍柴动力股份有限公司 Exhaust gas recirculation cooling system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045884A (en) * 1998-07-24 2000-02-15 Hino Motors Ltd Egr cooler
JP2003336548A (en) * 2002-05-21 2003-11-28 Komatsu Ltd Degassing device to tooling water in egr cooler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045884A (en) * 1998-07-24 2000-02-15 Hino Motors Ltd Egr cooler
JP2003336548A (en) * 2002-05-21 2003-11-28 Komatsu Ltd Degassing device to tooling water in egr cooler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019475A (en) * 2008-07-09 2010-01-28 Japan Climate Systems Corp Heat exchanger
CN104141558A (en) * 2014-07-15 2014-11-12 潍柴动力股份有限公司 Exhaust gas recirculation cooling system

Similar Documents

Publication Publication Date Title
US10151279B2 (en) Apparatus for cooling vehicle engine
US20060201661A1 (en) Egr cooler
WO2009074147A3 (en) Exhaust gas recirculation cooling element for an internal combustion engine
JP4634291B2 (en) EGR cooler
JP2007100665A (en) Exhaust gas passage structure for internal combustion engine
JP2010112355A (en) Egr cooler
JP4248095B2 (en) EGR cooler
JP2000045884A (en) Egr cooler
JP2006125355A (en) Egr cooler
JP2009114924A (en) Egr cooler
JP2005069064A (en) Egr cooler
JP5916366B2 (en) Exhaust gas recirculation device
JP2002021581A (en) Gas turbine device equipped with heat exchanger
JP2015034530A (en) Egr device
JP5282003B2 (en) Exhaust gas recirculation device
JP2009002300A (en) Egr cooler
KR20120060251A (en) Integrated heat exchanger having sub-radiator and watercool charge air cooler
JP2016145524A (en) EGR cooler
JP2004124808A (en) Exhaust gas recirculation cooler
JP4488848B2 (en) Cooling air bleeding structure
JP2010048113A (en) Egr device
JP2008045444A (en) Egr cooler
JPH08261072A (en) Egr device for diesel engine
KR101161373B1 (en) Intercooler
KR101282684B1 (en) Exhaust Gas Recirculation cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720