JP2006122922A - Induction heating method - Google Patents

Induction heating method Download PDF

Info

Publication number
JP2006122922A
JP2006122922A JP2004311179A JP2004311179A JP2006122922A JP 2006122922 A JP2006122922 A JP 2006122922A JP 2004311179 A JP2004311179 A JP 2004311179A JP 2004311179 A JP2004311179 A JP 2004311179A JP 2006122922 A JP2006122922 A JP 2006122922A
Authority
JP
Japan
Prior art keywords
metal billet
heating
solenoid coil
induction heating
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004311179A
Other languages
Japanese (ja)
Inventor
Masafumi Nishida
雅文 西田
Noriyuki Ueno
紀幸 上野
Tsuyoshi Fujita
剛志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Light Metal Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd, Toyota Motor Corp filed Critical Nippon Light Metal Co Ltd
Priority to JP2004311179A priority Critical patent/JP2006122922A/en
Publication of JP2006122922A publication Critical patent/JP2006122922A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the heating cycle properties of a metal billet and to prevent the reduction in the mechanical properties of the stock by uniformly performing induction heating for the metal billet in a short time. <P>SOLUTION: In the induction heating method, at the time when a metal billet used for a semi-solid casting process is subjected to induction heating using a solenoid coil, the frequency of the electric current applied to the solenoid coil is changed in a heating stage. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半溶融・半凝固鋳造法に用いる金属ビレットを均一に誘導加熱する方法に関する。   The present invention relates to a method for uniformly induction heating a metal billet used in a semi-molten and semi-solid cast method.

鋳造材料に加熱処理を施して、固相成分と液相成分とが共存する半溶融・半凝固鋳造材料を調製し、次いで、その半溶融・半凝固鋳造材料を攪拌しつつ容器のノズルを介して鋳型に鋳込んだり、鋳型のキャビティに加圧充填する半溶融・半凝固鋳造法が知られている。この鋳造法はチクソキャスティング法(Thixocasting)又はレオキャスト法(Rheocasting)とも言われている。半溶融・半凝固状態にある合金金属は、ある程度流動性があり、成形中にガスの巻き込みが少なく、結晶粒が均一となるため、鋳造品の機械的性質を向上させることができる。   The casting material is heated to prepare a semi-molten / semi-solid cast material in which the solid phase component and liquid phase component coexist, and then the semi-molten / semi-solid cast material is stirred through the nozzle of the container. There are known semi-molten and semi-solid casting methods in which a mold is cast or a mold cavity is pressurized and filled. This casting method is also called a thixocasting method or a rheocasting method. An alloy metal in a semi-molten and semi-solid state has a certain degree of fluidity, less entrainment of gas during molding, and uniform crystal grains, so that the mechanical properties of the cast product can be improved.

半溶融・半凝固鋳造法では、円柱状の金属ビレットをソレノイドコイル内に収容して金属ビレットを誘導加熱する。所定の温度に加熱して半溶融金属ビレットを得た後、半溶融金属ビレットをダイカスト装置の射出スリーブに供給して成形品を成形する。   In the semi-molten / semi-solid cast method, a cylindrical metal billet is accommodated in a solenoid coil and the metal billet is induction-heated. After heating to a predetermined temperature to obtain a semi-molten metal billet, the semi-molten metal billet is supplied to an injection sleeve of a die casting apparatus to form a molded product.

ところで、誘導加熱器を構成するソレノイドコイル内に金属ビレットが配置された状態で、高周波交流電源を介してソレノイドコイルに電流を供給することにより、金属ビレットを加熱している。その際、金属ビレットを所望の固相率まで加熱するためには、相当な時間が必要となってしまい、サイクルタイムが長時間化するという問題がある。   By the way, the metal billet is heated by supplying a current to the solenoid coil via a high-frequency AC power supply in a state where the metal billet is disposed in the solenoid coil constituting the induction heater. In that case, in order to heat a metal billet to a desired solid-phase rate, considerable time is required and there exists a problem that cycle time becomes long.

そこで、誘導コイルに高電圧を付与することにより、金属ビレットの誘導加熱時間を短縮することが考えられている。しかしながら、金属ビレットを急速に加熱すると、加熱のバランスが崩れてしまい、金属ビレット全体を均一に加熱することが困難になる。   Therefore, it is considered to reduce the induction heating time of the metal billet by applying a high voltage to the induction coil. However, if the metal billet is heated rapidly, the heating balance is lost, and it becomes difficult to uniformly heat the entire metal billet.

下記特許文献1には、金属ビレット全体を短時間で均一に加熱することを目的として、まず、加熱初期段階において、金属ビレットを第1高周波電圧により加熱し、金属ビレットが所定の加熱状態に至った後、金属ビレットを第1高周波電圧よりも低電圧の第2高周波電圧によって加熱することが開示されている。
特開2002−146436号公報
In Patent Document 1 below, for the purpose of uniformly heating the entire metal billet in a short time, first, in the initial heating stage, the metal billet is heated by the first high-frequency voltage, and the metal billet reaches a predetermined heating state. After that, it is disclosed that the metal billet is heated by a second high frequency voltage lower than the first high frequency voltage.
JP 2002-146436 A

特許文献1に記載の、加熱処理初期段階より後期段階の入力電圧を下げることにより、加熱後期に金属ビレット内温度を均一にする加熱方法では、金属ビレット中心部は外周部からの熱伝導による昇温しか期待できない。このため、入力電力を上げて加熱時間を短縮しようとした場合、金属ビレット外周部が中心部に比較して高温度となり、加熱後期で均一化するために時間を要する。又、入力電力を低くしても、金属ビレット外周部が最も加熱されるため、外周部の金属ビレットが溶け出し、共晶組成の溶出が起こり、金属ビレットの組織が不均一となり、成型後の素材の機械的性質を低下させる原因となる。   In the heating method described in Patent Document 1, in which the temperature in the metal billet is made uniform in the later stage of heating by lowering the input voltage in the later stage from the initial stage of the heat treatment, the center part of the metal billet rises due to heat conduction from the outer peripheral part. Only warm can be expected. For this reason, when it is going to shorten heating time by raising input electric power, a metal billet outer peripheral part becomes high temperature compared with a center part, and time is required in order to equalize in the latter stage of heating. Moreover, even if the input power is lowered, the outer periphery of the metal billet is heated most, so the outer periphery of the metal billet is melted and eutectic composition elution occurs, the structure of the metal billet becomes uneven, It causes the mechanical properties of the material to deteriorate.

そこで、本発明は、金属ビレットの誘導加熱を均一且つ短時間に行って、加熱サイクル性の向上と成型後の素材の機械的性質の低下を防止することを目的とする。   Therefore, an object of the present invention is to perform induction heating of a metal billet uniformly and in a short time to prevent an improvement in heat cycleability and a decrease in mechanical properties of a material after molding.

本発明者らは、金属ビレットを誘導加熱する渦電流の浸透深さは加熱電流の周波数で変化することを見出し、本発明に到達した。   The present inventors have found that the penetration depth of the eddy current for induction heating of the metal billet varies with the frequency of the heating current, and reached the present invention.

即ち、本発明は、半溶融鋳造法に用いる金属ビレットをソレノイドコイルを用いて誘導加熱する方法の発明であり、該ソレノイドコイルへの印加電流の周波数を加熱段階で変化させることを特徴とする。   That is, the present invention is an invention of a method of induction heating a metal billet used in a semi-molten casting method using a solenoid coil, and is characterized in that the frequency of the current applied to the solenoid coil is changed in the heating stage.

該ソレノイドコイルへの印加電流の周波数を加熱段階で変化させる具体的手法としては、
(1)該ソレノイドコイルへの印加電流を、加熱初期段階は低周波数とし、該金属ビレットの中心部が所定温度に上昇後に高周波数に切り替えて該金属ビレットの外周部を目標温度まで加熱するか、
(2)該ソレノイドコイルへの印加電流を、低周波数と高周波数に随時切り替え、該金属ビレットの中心部と外周部を同時に目標温度まで加熱する、
が挙げられる。ここで、前記低周波数としては500Hz以下であり、高周波数としては1kHz以上が目安となる。
As a specific method of changing the frequency of the current applied to the solenoid coil in the heating stage,
(1) Whether the current applied to the solenoid coil is set to a low frequency in the initial heating stage, and the metal billet is heated to the target temperature by switching to a high frequency after the central portion of the metal billet rises to a predetermined temperature. ,
(2) The current applied to the solenoid coil is switched at any time between a low frequency and a high frequency, and the central portion and the outer peripheral portion of the metal billet are simultaneously heated to a target temperature.
Is mentioned. Here, the low frequency is 500 Hz or less, and the high frequency is 1 kHz or more.

上記(1)の誘導加熱方法では、ソレノイドコイルへの印加電流が低周波数である第1加熱装置と、ソレノイドコイルへの印加電流が高周波数である第2加熱装置とを直列に配置し、第1加熱装置で金属ビレットの中心部を所定温度に上昇させた後に、第2加熱装置で該金属ビレットの外周部を目標温度まで加熱することが、金属ビレット加熱の生産性を向上させるので好ましい。   In the induction heating method of the above (1), the first heating device having a low frequency applied to the solenoid coil and the second heating device having a high frequency applied to the solenoid coil are arranged in series. After raising the center part of a metal billet to predetermined temperature with 1 heating apparatus, heating the outer peripheral part of this metal billet to target temperature with a 2nd heating apparatus is preferable since productivity of metal billet heating is improved.

このように、本発明では、加熱段階で印加電流の周波数を変化させるため、金属ビレットの中心部を先行的に加熱し、最終段階で外周部を加熱しているため、金属ビレット全体がバランスよく加熱され、金属ビレット内の温度差を最適状態に維持することができる。これにより、金属ビレットの加熱時間を有効に短縮しサイクルタイムの短縮が確実に遂行されるとともに、金属ビレット全体を目標加熱状態に確実に加熱することが可能になる。   As described above, in the present invention, since the frequency of the applied current is changed in the heating stage, the center part of the metal billet is heated in advance, and the outer peripheral part is heated in the final stage. Being heated, the temperature difference in the metal billet can be maintained in an optimum state. As a result, the heating time of the metal billet can be effectively shortened and the cycle time can be reliably shortened, and the entire metal billet can be reliably heated to the target heating state.

本発明の誘導加熱方法が適用される金属ビレットの材質は半溶融・半凝固鋳造法に用いられる鋳造材料であれば特に限定されず、アルミニウムやその合金、又はマグネシウム合金,亜鉛合金,銅又はその合金,鉄系の合金,等の金属を例示することができる。これらの中で、アルミニウム合金又はマグネシウム合金が好ましく例示される。   The material of the metal billet to which the induction heating method of the present invention is applied is not particularly limited as long as it is a casting material used in the semi-molten / semi-solid casting method, and aluminum or an alloy thereof, or a magnesium alloy, a zinc alloy, copper or an alloy thereof. Metals such as alloys and iron-based alloys can be exemplified. Among these, an aluminum alloy or a magnesium alloy is preferably exemplified.

金属ビレットの外周部が中心部に比較して温度が上がりすぎると、比熱が急減に変化するため、金属ビレットを構成するアルミニウム合金などが溶出し、金属ビレット全体の温度を均一化できなくなる。本発明では、印加電流の周波数を加熱段階で変化させることで、金属ビレット全体の温度を均一化するとともに、短時間で加熱することができる。   If the temperature of the outer peripheral portion of the metal billet is excessively higher than that of the central portion, the specific heat changes rapidly, so that the aluminum alloy constituting the metal billet is eluted and the temperature of the entire metal billet cannot be made uniform. In the present invention, by changing the frequency of the applied current in the heating stage, the temperature of the entire metal billet can be made uniform and heated in a short time.

誘導加熱の周波数が一定である場合、発生する渦電流の位置は一定でビレット最表面であり、ビレット表面から中心部へ向かって伝熱していく。このため、中心部に比較して外周部の温度は上がり、ビレット内温度分布は不均一になると共に、溶け出しやすくなる。   When the frequency of induction heating is constant, the position of the generated eddy current is constant and is the outermost surface of the billet, and heat is transferred from the billet surface toward the center. For this reason, the temperature of the outer peripheral portion rises compared to the central portion, the temperature distribution in the billet becomes non-uniform, and it becomes easy to melt out.

又、渦電流の浸透深さtは、下記式で表現でき、加熱周波数fで変化する。ここで、ρは抵抗率であり、μは比等磁率であり、ともに被加熱物で決定される。   Further, the penetration depth t of eddy current can be expressed by the following equation, and changes with the heating frequency f. Here, ρ is the resistivity, μ is the relative magnetic constant, and both are determined by the object to be heated.

Figure 2006122922
Figure 2006122922

本発明では、上記式に着目し、印加電流の周波数を加熱段階で変化させることにより、金属ビレットの中心部と外周部の温度制御を達成するものである。   In the present invention, focusing on the above formula, the frequency of the applied current is changed in the heating stage, thereby achieving temperature control of the central portion and the outer peripheral portion of the metal billet.

図1に、本発明の1実施態様である、ソレノイドコイルへの印加電流を、加熱初期段階は低周波数とし、金属ビレットの中心部が所定温度に上昇後に高周波数に切り替えて金属ビレットの外周部を目標温度まで加熱する場合の、金属ビレットの中心部と外周部の温度上昇を模式的に示す。低周波加熱段階ではビレット中心部の方が外周部より温度が高く、高周波加熱段階で両者の温度が近づく。   FIG. 1 shows an embodiment of the present invention, in which an applied current to a solenoid coil is set to a low frequency in the initial heating stage, and the metal billet is switched to a high frequency after the central portion of the metal billet rises to a predetermined temperature. The temperature rise of the center part and outer peripheral part of a metal billet when heating up to target temperature is shown typically. In the low-frequency heating stage, the billet center is higher in temperature than the outer periphery, and both temperatures approach in the high-frequency heating stage.

図2に、本発明の他の実施態様である、ソレノイドコイルへの印加電流を、低周波数と高周波数に随時切り替え、金属ビレットの中心部と外周部を同時に目標温度まで加熱する場合の、金属ビレットの温度上昇を模式的に示す。金属ビレットの中心部と外周部はほぼ同一の温度上昇をする。金属ビレットの大きさにもよるが、この場合の低周波数加熱時間は20秒以下が好ましく、10秒以下がより好ましく、高低周波数加熱時間は30秒以上が好ましく、40秒以上がより好ましい。   FIG. 2 shows another embodiment of the present invention, in which the current applied to the solenoid coil is switched between a low frequency and a high frequency as needed, and the center and outer periphery of the metal billet are heated to the target temperature at the same time. The temperature rise of a billet is typically shown. The central portion and the outer peripheral portion of the metal billet have substantially the same temperature rise. Although depending on the size of the metal billet, the low frequency heating time in this case is preferably 20 seconds or less, more preferably 10 seconds or less, and the high and low frequency heating time is preferably 30 seconds or more, more preferably 40 seconds or more.

(実施例1)
径50mm、長さ400mmの円筒状のアルミニウム合金(成分は、Si:7%、FeO:1%、Mg:0.55%、残Al)をビレット温度目標を585℃として加熱した。加熱初期に、100Hz、200kW・秒で10秒間誘導加熱し、その後、5kHz、800kW・秒で50秒間誘導加熱した。合わせて60秒間で目標温度:585±2℃に金属ビレット全体を均一に加熱することができた。一般に、半溶融鋳造法の成型サイクルは約60秒であり、上記加熱時間60秒は従来の加熱時間と比べて大幅に短時間であり、半溶融鋳造法の成型サイクルと合致する。この結果、半溶融鋳造法の生産性を向上させることができる。
Example 1
A cylindrical aluminum alloy having a diameter of 50 mm and a length of 400 mm (components: Si: 7%, FeO: 1%, Mg: 0.55%, remaining Al) was heated at a billet temperature target of 585 ° C. In the initial stage of heating, induction heating was performed at 100 Hz and 200 kW · second for 10 seconds, and then induction heating was performed at 5 kHz and 800 kW · second for 50 seconds. In total, the entire metal billet could be heated uniformly to a target temperature of 585 ± 2 ° C. in 60 seconds. In general, the molding cycle of the semi-molten casting method is about 60 seconds, and the heating time of 60 seconds is much shorter than the conventional heating time, and matches the molding cycle of the semi-molten casting method. As a result, the productivity of the semi-molten casting method can be improved.

(実施例2)
5kHz、100Hzを2秒毎に切り替え、60秒間誘導加熱した他は、実施例1と同様に金属ビレットを誘導加熱した。目標温度:585±2℃に金属ビレット全体を均一に加熱することができた。
(Example 2)
The metal billet was induction heated in the same manner as in Example 1 except that 5 kHz and 100 Hz were switched every 2 seconds and induction heating was performed for 60 seconds. The entire metal billet could be uniformly heated to the target temperature: 585 ± 2 ° C.

印加電流の周波数を加熱段階で変化させることで、金属ビレットの加熱を短いサイクルで均一に行うことができる。これにより、半溶融鋳造法のより実用化に貢献する。   By changing the frequency of the applied current in the heating stage, the metal billet can be heated uniformly in a short cycle. This contributes to more practical use of the semi-molten casting method.

ソレノイドコイルへの印加電流を、加熱初期段階は低周波数とし、金属ビレットの中心部が所定温度に上昇後に高周波数に切り替えて金属ビレットの外周部を目標温度まで加熱する場合の、金属ビレットの中心部と外周部の温度上昇を模式的に示す図。The center of the metal billet when the current applied to the solenoid coil is set to a low frequency in the initial heating stage, and the metal billet is heated to the target temperature by switching to a high frequency after the center of the metal billet rises to a predetermined temperature. The figure which shows the temperature rise of a part and an outer peripheral part typically. ソレノイドコイルへの印加電流を、低周波数と高周波数に随時切り替え、金属ビレットの中心部と外周部を同時に目標温度まで加熱する場合の、金属ビレットの温度上昇を模式的に示す図。The figure which shows typically the temperature rise of a metal billet when the applied current to a solenoid coil is switched to a low frequency and a high frequency at any time, and the center part and outer peripheral part of a metal billet are heated to target temperature simultaneously.

Claims (6)

半溶融鋳造法に用いる金属ビレットをソレノイドコイルを用いて誘導加熱する際に、該ソレノイドコイルへの印加電流の周波数を加熱段階で変化させることを特徴とする誘導加熱方法。   An induction heating method characterized in that when a metal billet used in a semi-molten casting method is induction heated using a solenoid coil, the frequency of an electric current applied to the solenoid coil is changed in a heating stage. 前記ソレノイドコイルへの印加電流を、加熱初期段階は低周波数とし、該金属ビレットの中心部が所定温度に上昇後に高周波数に切り替えて該金属ビレットの外周部を目標温度まで加熱することを特徴とする請求項1に記載の誘導加熱方法。   The current applied to the solenoid coil is set to a low frequency in the initial heating stage, and the outer peripheral portion of the metal billet is heated to a target temperature by switching to a high frequency after the central portion of the metal billet rises to a predetermined temperature. The induction heating method according to claim 1. 前記ソレノイドコイルへの印加電流が低周波数である第1加熱装置と、該ソレノイドコイルへの印加電流が高周波数である第2加熱装置とを直列に配置し、該第1加熱装置で金属ビレットの中心部を所定温度に上昇させた後に、該第2加熱装置で該金属ビレットの外周部を目標温度まで加熱することを特徴とする請求項2に記載の誘導加熱方法。   A first heating device having a low frequency applied current to the solenoid coil and a second heating device having a high frequency applied current to the solenoid coil are arranged in series, and the first heating device uses a metal billet. 3. The induction heating method according to claim 2, wherein after the central portion is raised to a predetermined temperature, the outer peripheral portion of the metal billet is heated to a target temperature by the second heating device. 前記ソレノイドコイルへの印加電流を、低周波数と高周波数に随時切り替え、該金属ビレットの中心部と外周部を同時に目標温度まで加熱することを特徴とする請求項1に記載の誘導加熱方法。   2. The induction heating method according to claim 1, wherein the current applied to the solenoid coil is switched at any time between a low frequency and a high frequency, and the central portion and the outer peripheral portion of the metal billet are simultaneously heated to a target temperature. 前記低周波数が500Hz以下であり、高周波数が1kHz以上であることを特徴とする請求項2乃至4のいずれかに記載の誘導加熱方法。   The induction heating method according to any one of claims 2 to 4, wherein the low frequency is 500 Hz or less and the high frequency is 1 kHz or more. 前記金属ビレットがアルミニウム合金又はマグネシウム合金からなることを特徴とする請求項1乃至5のいずれかに記載の誘導加熱方法。   The induction heating method according to claim 1, wherein the metal billet is made of an aluminum alloy or a magnesium alloy.
JP2004311179A 2004-10-26 2004-10-26 Induction heating method Pending JP2006122922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311179A JP2006122922A (en) 2004-10-26 2004-10-26 Induction heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311179A JP2006122922A (en) 2004-10-26 2004-10-26 Induction heating method

Publications (1)

Publication Number Publication Date
JP2006122922A true JP2006122922A (en) 2006-05-18

Family

ID=36718148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311179A Pending JP2006122922A (en) 2004-10-26 2004-10-26 Induction heating method

Country Status (1)

Country Link
JP (1) JP2006122922A (en)

Similar Documents

Publication Publication Date Title
JP3049648B2 (en) Pressure molding method and pressure molding machine
KR101530106B1 (en) Semi-liquid metal processing and sensing device and method of using same
AU2001264749C1 (en) Method and apparatus for making a thixotropic metal slurry
JP2004525774A (en) Equipment for forming metal products
JP6843551B2 (en) Methods and systems for sensing the position of the ingot in the mold with a reduced cross-sectional area
AU2001261796B2 (en) Production of on-demand semi-solid material for castings
US20040055735A1 (en) Method and apparatus for manufacturing semi-solid metallic slurry
JP2009285726A (en) Tapping method in cold crucible melting furnace
US6942009B2 (en) Apparatus for manufacturing billet for thixocasting
Lakshmi et al. Induction reheating of A356. 2 aluminum alloy and thixocasting as automobile component
JP2006122922A (en) Induction heating method
JP6289474B2 (en) System and method for melting raw materials
JP4414950B2 (en) Metal billet for semi-molten casting and method for producing metal billet for semi-molten casting
US7753986B2 (en) Titanium processing with electric induction energy
US6938672B2 (en) Rheoforming apparatus
TWI529266B (en) Silicon electromagnetic casting device
JP4402907B2 (en) Material heating method and heating apparatus
JPH11104804A (en) Method for adjusting material
JP2011050976A (en) Method for manufacturing thin plate-like product of spherical graphite cast iron
JP2006164732A (en) Induction heating method
JP4496791B2 (en) Electromagnetic hot water nozzle and metal melting / hot water device using the same
JP2012228722A (en) Melting furnace for smelting metal
JP2001289567A (en) Control method for induction furnace
JP4575753B2 (en) Induction heating method
JPH04143036A (en) Super high temperature forging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006