JP4575753B2 - Induction heating method - Google Patents

Induction heating method Download PDF

Info

Publication number
JP4575753B2
JP4575753B2 JP2004333626A JP2004333626A JP4575753B2 JP 4575753 B2 JP4575753 B2 JP 4575753B2 JP 2004333626 A JP2004333626 A JP 2004333626A JP 2004333626 A JP2004333626 A JP 2004333626A JP 4575753 B2 JP4575753 B2 JP 4575753B2
Authority
JP
Japan
Prior art keywords
billet
induction heating
metal billet
heating method
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004333626A
Other languages
Japanese (ja)
Other versions
JP2006142326A (en
Inventor
淳一 斉藤
剛志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Light Metal Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd, Toyota Motor Corp filed Critical Nippon Light Metal Co Ltd
Priority to JP2004333626A priority Critical patent/JP4575753B2/en
Publication of JP2006142326A publication Critical patent/JP2006142326A/en
Application granted granted Critical
Publication of JP4575753B2 publication Critical patent/JP4575753B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

本発明は、半溶融鋳造法に用いる金属ビレットを誘導加熱する際に破損を防ぐ方法に関する。   The present invention relates to a method for preventing breakage when induction heating a metal billet used in a semi-molten casting method.

鋳造材料に加熱処理を施して、固相成分と液相成分とが共存する半溶融・半凝固鋳造材料を調製し、次いで、その半溶融・半凝固鋳造材料を攪拌しつつ容器のノズルを介して鋳型に鋳込んだり、鋳型のキャビティに加圧充填する半溶融・半凝固鋳造法が知られている。この鋳造法はチクソキャスティング法(Thixocasting)又はレオキャスト法(Rheocasting)とも言われている。半溶融・半凝固状態にある合金金属は、ある程度流動性があり、成形中にガスの巻き込みが少なく、結晶粒が均一となるため、鋳造品の機械的性質を向上させることができる。   The casting material is heated to prepare a semi-molten / semi-solid cast material in which the solid phase component and liquid phase component coexist, and then the semi-molten / semi-solid cast material is stirred through the nozzle of the container. There are known semi-molten and semi-solid casting methods in which a mold is cast or a mold cavity is pressurized and filled. This casting method is also called a thixocasting method or a rheocasting method. An alloy metal in a semi-molten and semi-solid state has a certain degree of fluidity, less entrainment of gas during molding, and uniform crystal grains, so that the mechanical properties of the cast product can be improved.

半溶融鋳造法では、円柱状の金属ビレットをソレノイドコイル内に収容して金属ビレットを誘導加熱する。所定の温度に加熱して半凝固金属ビレットを得た後、半凝固金属ビレットをダイカスト装置の射出スリーブに供給して成形品を成形する。   In the semi-molten casting method, a cylindrical metal billet is accommodated in a solenoid coil and the metal billet is induction heated. After heating to a predetermined temperature to obtain a semi-solid metal billet, the semi-solid metal billet is supplied to an injection sleeve of a die casting apparatus to form a molded product.

半溶融鋳造ではビレットの加熱を高周波あるいは低周波による誘導加熱で行っているものが多いが、その加熱時間は数分から十数分であった。例えば、下記特許文献1には、金属ビレット全体を短時間で均一に加熱することを目的として、まず、加熱初期段階において、金属ビレットを第1高周波電圧により加熱し、金属ビレットが所定の加熱状態に至った後、金属ビレットを第1高周波電圧よりも低電圧の第2高周波電圧によって加熱することが開示されている。   In many semi-molten castings, the billet is heated by induction heating at a high frequency or low frequency, but the heating time is from several minutes to several tens of minutes. For example, in Patent Document 1 below, for the purpose of uniformly heating the entire metal billet in a short time, first, in the initial heating stage, the metal billet is heated by the first high-frequency voltage, and the metal billet is in a predetermined heating state. It is disclosed that the metal billet is heated by the second high-frequency voltage lower than the first high-frequency voltage after reaching the above.

加熱時間を短縮し、生産性を向上することは生産コストの低減に有効であるが、従来の誘導コイルの中に単にビレットを置いただけの状態で誘導加熱出力を増加させると、電磁誘導により被加熱物であるビレット内に発生する電流が大きくなり、それにともない誘導コイルとビレットとの間にはたらく力も大きくなる。   Shortening the heating time and improving productivity is effective in reducing production costs. However, if the induction heating output is increased with only the billet placed in the conventional induction coil, it is affected by electromagnetic induction. The current generated in the billet, which is a heated object, increases, and the force acting between the induction coil and the billet increases accordingly.

加熱されたビレットの一部が溶けかけた状態でこの力がかかると、溶けかけた結晶粒界で分断され加熱途中のビレットの一部が破砕し飛散する現象がおこる。従来のようにゆっくり加熱する場合はこの力も小さいため、このような現象はおこらない。またこの破砕、飛散現象は磁束が集まりやすく外力により破砕しやすいコーナー部分で発生しやすい。この現象を抑えることは、加熱時間短縮には不可欠である。   When this force is applied in a state where a part of the heated billet is melted, a phenomenon occurs in which a part of the billet in the middle of heating is broken and scattered by being divided at the melted crystal grain boundary. Such a phenomenon does not occur when the heating is performed slowly as in the conventional case because the force is small. In addition, this crushing and scattering phenomenon is likely to occur at a corner portion where magnetic flux is easily collected and is easily crushed by an external force. Suppressing this phenomenon is essential for shortening the heating time.

図2は、誘導加熱コイルを用いてビレットの加熱を行なう状態を説明するための概念図である。ビレット12は、誘導加熱コイル11の中に配置され、誘導加熱コイル11が生成する交番磁場13によって誘導加熱される。図2には、ビレット12の長さ方向(コイルの軸方向)における表面温度の分布状態も示されている。   FIG. 2 is a conceptual diagram for explaining a state in which the billet is heated using the induction heating coil. The billet 12 is disposed in the induction heating coil 11 and is induction heated by an alternating magnetic field 13 generated by the induction heating coil 11. FIG. 2 also shows the distribution of the surface temperature in the length direction of the billet 12 (coil axial direction).

図2の場合は、誘導加熱コイル11の長さがビレット12の長さに比較して長過ぎる場合である。この場合、ビレット12の端面の縁部分(円柱端部のエッジ部分)が、エッジ効果と呼ばれる現象により、過剰に加熱されてしまう。エッジ効果とは、表皮効果に起因するジュール加熱がビレットの外側表面(円柱の外側表面)と端面付近の両方において行なわれることに起因して、端面のエッジ部分における発熱量が他の部分に比較して多くなる現象である。   In the case of FIG. 2, the induction heating coil 11 is too long compared to the billet 12. In this case, the edge part of the end face of the billet 12 (the edge part of the cylindrical end part) is excessively heated due to a phenomenon called the edge effect. The edge effect means that Joule heating due to the skin effect is performed on both the outer surface of the billet (the outer surface of the cylinder) and the vicinity of the end surface. It is a phenomenon that increases.

また、鋳造製品の品質を高める目的から、ビレットを構成する材料として高純度の材料が用いられるが、ビレットの構成材料の純度を高めた場合、ビレットの製造工程において、その円柱形状の表面近くに不純物が析出し、中央部の不純物濃度が小さくなる現象が表れる。この結果、ビレットを断面で見た場合に外側周辺部分の融点が、中央付近の融点よりやや低くなる。この現象と上述のエッジ効果の相乗作用により、ビレット端面の縁部分が先行して溶融し易い現象がより顕著になる。   In addition, for the purpose of improving the quality of the cast product, a high-purity material is used as the material constituting the billet. However, when the purity of the billet constituent material is increased, in the billet manufacturing process, it is close to the surface of the cylindrical shape. Impurities are precipitated, and a phenomenon that the impurity concentration in the central portion is reduced appears. As a result, when the billet is viewed in cross section, the melting point of the outer peripheral portion is slightly lower than the melting point near the center. Due to the synergistic effect of this phenomenon and the above-described edge effect, the phenomenon that the edge portion of the billet end face is likely to be melted in advance becomes more prominent.

このビレット12の端面縁部分の過剰な加熱は、その部分の溶融の進行による溶融金属の漏れ出し、ビレットの変形といった不都合を引き起こす。また、部分的な溶融は、鋳造製品の材質の不均一性の原因ともなる。   Excessive heating of the end face edge portion of the billet 12 causes inconveniences such as leakage of molten metal due to the progress of melting of the portion and deformation of the billet. Moreover, partial melting also causes non-uniformity in the material of the cast product.

上述のエッジ効果による好ましくないビレット端面の縁部分の過剰な加熱は、ビレットを数十秒というような短時間で加熱する場合に特に顕著になる。昇温速度が緩慢である場合は、基本的に熱平衡状態で全体が昇温してゆくので、ビレット端面の縁部分における過剰な加熱はあまり目立たず、それ程問題にはならない。   Excessive heating of the edge portion of the billet end face, which is undesirable due to the edge effect described above, is particularly noticeable when the billet is heated in a short time such as several tens of seconds. When the rate of temperature rise is slow, the temperature rises basically in a thermal equilibrium state, so excessive heating at the edge portion of the billet end face is not so noticeable and does not matter so much.

上述のビレット端面の縁部分の過剰な加熱を防止するには、ビレット12に対する誘導加熱コイル11の長さを適切な寸法に調整し、ビレット12端面付近における交番磁場の磁束密度を適切な値に調整する必要がある。ただし、誘導加熱コイルの長さがビレットに対して相対的に短く成り過ぎると、ビレット12の端面付近における交番磁束の密度が小さくなり過ぎ、逆にビレット12端面の縁部分における加熱が不十分になる恐れがある。   In order to prevent excessive heating of the edge portion of the billet end face described above, the length of the induction heating coil 11 with respect to the billet 12 is adjusted to an appropriate dimension, and the magnetic flux density of the alternating magnetic field near the end face of the billet 12 is set to an appropriate value. It needs to be adjusted. However, if the length of the induction heating coil becomes too short relative to the billet, the density of the alternating magnetic flux near the end surface of the billet 12 becomes too small, and conversely the heating at the edge portion of the end surface of the billet 12 is insufficient. There is a fear.

特開2002−146436号公報JP 2002-146436 A

そこで、本発明は、金属ビレットを誘導加熱する際に、特に短時間で誘導加熱を行う場合に、金属ビレットがその端部で破砕、飛散する現象を抑制し、金属ビレット全体を短時間に加熱して、加熱サイクル性を向上させることを目的とする。   Therefore, the present invention suppresses the phenomenon in which the metal billet is crushed and scattered at the end of the metal billet when the metal billet is induction-heated in a short time, and heats the entire metal billet in a short time. And it aims at improving heat cycle nature.

本発明者らは、誘導加熱時に金属ビレットが破砕、飛散する現象はその端部で発生することにヒントを得、本発明に到達した。   The inventors of the present invention have arrived at the present invention after obtaining a hint that the phenomenon that the metal billet is crushed and scattered during induction heating occurs at the end thereof.

即ち、本発明は、半溶融鋳造法に用いる金属ビレットをソレノイドコイルを用いて誘導加熱する方法の発明であり、該金属ビレットの両端面の外周部に保護キャップを被せることを特徴とする。   That is, the present invention is an invention of a method in which a metal billet used in a semi-molten casting method is induction-heated using a solenoid coil, and is characterized in that protective caps are placed on the outer peripheral portions of both end faces of the metal billet.

誘導加熱を金属ビレットが台座上に載置して行う場合には、前記保護キャップが該金属ビレットが台座で保護されない上部のみに被せられることが好ましい。   When induction heating is performed by placing a metal billet on a pedestal, the protective cap is preferably covered only on the upper portion where the metal billet is not protected by the pedestal.

前記保護キャップの材料としては、非透磁性で耐熱性のある材料が用いられる。この中で、耐熱セラミックが好ましく例示される。セラミックスとしては、窒化物系セラミックス、酸化物系セラミックス、又は炭化物系セラミックスが例示される。窒化物系セラミックスとしては、窒化チタンTiN、窒化アルミニウムAlN、窒化クロムCrN、窒化ケイ素Si、窒化鉄FeN、窒化ガリウムGaN、窒化ジルコニウムZrN等が例示され、炭化物系セラミックスとしては、炭化ケイ素SiC、炭化チタンTiC、炭化ジルコニウムZrC、炭化ホウ素BC、炭化タングステンWC等が例示される。その他、保護キャップの材料として、Al、Al、MgO、TiO、ZrO、例えばイットリウム安定化ZrO、またはガラス、または耐火セメント、または上記の材料を含有する混合物が挙げられる。更に、繊維強化セラミック材料かまたは繊維強化セラミック材料を含有するの材料も用いられる。繊維強化セラミック材料の繊維は、例えばSiC、Al、ガラス、または炭素が好ましく例示される。 As the material of the protective cap, a non-permeable and heat-resistant material is used. Among these, a heat resistant ceramic is preferably exemplified. Examples of ceramics include nitride ceramics, oxide ceramics, and carbide ceramics. Examples of nitride ceramics include titanium nitride TiN, aluminum nitride AlN, chromium nitride CrN, silicon nitride Si 3 N 4 , iron nitride FeN, gallium nitride GaN, zirconium nitride ZrN, and the like. Examples include SiC, titanium carbide TiC, zirconium carbide ZrC, boron carbide B 4 C, and tungsten carbide WC. Other protective cap materials include Al 2 O 3 , Al 3 O 4 , MgO, TiO, ZrO 2 , such as yttrium stabilized ZrO 2 , or glass, or refractory cement, or a mixture containing the above materials. . Furthermore, fiber reinforced ceramic materials or materials containing fiber reinforced ceramic materials are also used. The fiber of the fiber reinforced ceramic material is preferably exemplified by, for example, SiC, Al 2 O 3 , glass, or carbon.

本発明の誘導加熱方法が適用される金属ビレットの材質は半溶融鋳造法に用いられる鋳造材料であれば特に限定されず、アルミニウムやその合金、又はマグネシウム合金,亜鉛合金,銅又はその合金,鉄系の合金,等の金属を例示することができる。これらの中で、アルミニウム合金又はマグネシウム合金が好ましく例示される。   The material of the metal billet to which the induction heating method of the present invention is applied is not particularly limited as long as it is a casting material used in the semi-molten casting method, and aluminum or an alloy thereof, magnesium alloy, zinc alloy, copper or an alloy thereof, iron Metals such as alloys of the system can be exemplified. Among these, an aluminum alloy or a magnesium alloy is preferably exemplified.

このように、本発明では、金属ビレットの両端面の外周部に保護キャップを被せることにより、誘導加熱段階で金属ビレットの端部が破砕されたり、飛散することが防止され、金属ビレットの加熱サイクルタイムの短縮が確実に遂行されるとともに、金属ビレット全体を目標加熱状態に確実に加熱することが可能になる。   As described above, in the present invention, by covering the outer peripheral portions of both end faces of the metal billet with the protective cap, the end portion of the metal billet is prevented from being crushed or scattered in the induction heating stage, and the metal billet heating cycle is performed. The time can be reliably shortened and the entire metal billet can be reliably heated to the target heating state.

図1(a)は、本発明の1実施態様である、金属ビレットと保護キャップの斜視図を示す。図1(b)は、その断面図である。図1では、金属ビレットの両端部の全円周を保護しているが、金属ビレットの誘導加熱を各種形状の台座に載置して行う時には、該台座の部分は保護キャップがなくても良い。   Fig.1 (a) shows the perspective view of the metal billet and protective cap which is one embodiment of this invention. FIG. 1B is a sectional view thereof. In FIG. 1, the entire circumference of both ends of the metal billet is protected. However, when induction heating of the metal billet is performed on a pedestal of various shapes, the pedestal portion may not have a protective cap. .

(実施例)
径50mm、長さ400mmの円筒状のアルミニウム合金(成分は、Si:7%、Fe:0.1%、Mg:0.55%、残Al)からなる金属ビレットの両端部に、耐熱性セラミックからなる外径75mm、内径50mm、深さ10mmの保護キャップを被せて、誘導加熱した。金属ビレットの加熱温度目標を585℃とした。加熱は、5kHz、800kWで60秒間誘導加熱した。60秒間の短時間で目標温度:585±2℃に金属ビレット全体を加熱した。60秒間という短時間の急速加熱にもかかわらず、金属ビレットの端部に破損や飛散は一切なかった。
(Example)
A heat resistant ceramic is attached to both ends of a metal billet made of a cylindrical aluminum alloy having a diameter of 50 mm and a length of 400 mm (components: Si: 7%, Fe: 0.1%, Mg: 0.55%, remaining Al). A protective cap having an outer diameter of 75 mm, an inner diameter of 50 mm, and a depth of 10 mm was put on and heated by induction. The heating temperature target of the metal billet was set to 585 ° C. The heating was induction heating at 5 kHz and 800 kW for 60 seconds. The entire metal billet was heated to a target temperature of 585 ± 2 ° C. in a short period of 60 seconds. Despite rapid heating for a short time of 60 seconds, there was no breakage or scattering at the end of the metal billet.

金属ビレットの両端部に保護キャップを被せることで、端部の破損や飛散を防止して加熱を短いサイクルで行うことができる。これにより、半溶融鋳造法のより実用化に貢献する。   By covering the both ends of the metal billet with protective caps, the end can be prevented from being broken or scattered, and heating can be performed in a short cycle. This contributes to more practical use of the semi-molten casting method.

図1(a)は、本発明の1実施態様である、金属ビレットと保護キャップの斜視図を示す。図1(b)は、その断面図である。Fig.1 (a) shows the perspective view of the metal billet and protective cap which is one embodiment of this invention. FIG. 1B is a sectional view thereof. 誘導加熱コイルを用いてビレットの加熱を行なう状態を説明するための概念図である。It is a conceptual diagram for demonstrating the state which heats a billet using an induction heating coil.

符号の説明Explanation of symbols

11:誘導加熱コイル、12:ビレット、13:交番磁場。 11: induction heating coil, 12: billet, 13: alternating magnetic field.

Claims (4)

半溶融鋳造法に用いる金属ビレットをソレノイドコイルを用いて誘導加熱する際に、該金属ビレットの両端面の外周部に、耐熱セラミック製の保護キャップを被せることを特徴とする誘導加熱方法。 An induction heating method characterized in that when a metal billet used in a semi-molten casting method is induction heated using a solenoid coil, a protective cap made of a heat resistant ceramic is placed on the outer peripheral portions of both end faces of the metal billet. 前記金属ビレットが台座上に載置される場合は、前記保護キャップが該金属ビレットが台座で保護されない上部のみに被せられることを特徴とする請求項1に記載の誘導加熱方法。   The induction heating method according to claim 1, wherein when the metal billet is placed on a pedestal, the protective cap is placed only on an upper portion where the metal billet is not protected by the pedestal. 前記金属ビレットがアルミニウム合金又はマグネシウム合金からなることを特徴とする請求項1又は2に記載の誘導加熱方法。 The induction heating method according to claim 1 or 2 , wherein the metal billet is made of an aluminum alloy or a magnesium alloy. 前記耐熱セラミックが、TiN、AlN,CrN、SiThe heat-resistant ceramic is TiN, AlN, CrN, Si 3 N 4 、FeN、GaN、ZrN、SiC、TiC、ZrC、B, FeN, GaN, ZrN, SiC, TiC, ZrC, B 4 C、WC、AlC, WC, Al 2 O 3 、Al, Al 3 O 4 、MgO、TiO、ZrO, MgO, TiO, ZrO 2 、イットリウム安定化ZrO, Yttrium stabilized ZrO 2 、ガラスもしくは耐火セメント又はこれらの混合物、あるいはSiC、Al, Glass or refractory cement or mixtures thereof, SiC, Al 2 O 3 、ガラス又は炭素の繊維で強化された繊維強化セラミックから選択されることを特徴とする請求項1乃至3のいずれかに記載の誘導加熱方法。4. The induction heating method according to claim 1, wherein the induction heating method is selected from fiber reinforced ceramics reinforced with glass or carbon fibers.
JP2004333626A 2004-11-17 2004-11-17 Induction heating method Expired - Fee Related JP4575753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004333626A JP4575753B2 (en) 2004-11-17 2004-11-17 Induction heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004333626A JP4575753B2 (en) 2004-11-17 2004-11-17 Induction heating method

Publications (2)

Publication Number Publication Date
JP2006142326A JP2006142326A (en) 2006-06-08
JP4575753B2 true JP4575753B2 (en) 2010-11-04

Family

ID=36622595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004333626A Expired - Fee Related JP4575753B2 (en) 2004-11-17 2004-11-17 Induction heating method

Country Status (1)

Country Link
JP (1) JP4575753B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150155A (en) * 1997-07-30 1999-02-23 Honda Motor Co Ltd Device for heating metal-made billet
JP2003517933A (en) * 1999-12-22 2003-06-03 アルカン・テクノロジー・アンド・マネージメント・リミテッド Pretreatment of thixotropic metal bolts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150155A (en) * 1997-07-30 1999-02-23 Honda Motor Co Ltd Device for heating metal-made billet
JP2003517933A (en) * 1999-12-22 2003-06-03 アルカン・テクノロジー・アンド・マネージメント・リミテッド Pretreatment of thixotropic metal bolts

Also Published As

Publication number Publication date
JP2006142326A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
KR20090054921A (en) Systems for centrifugally casting highly reactive titanium metals
JP2009538991A (en) Dissolution method using graphite dissolution vessel
JP4099062B2 (en) Treatment of molten metal by moving electrical discharge
JP5703414B1 (en) Method for producing platinum group base alloy
EP3556487B1 (en) Casting method for active metal
JP4575753B2 (en) Induction heating method
JP3080582B2 (en) Metal casting method
EP1870182B1 (en) Process for the casting of molten alloy
US20100044002A1 (en) Induction furnace with gas diffuser and crucible and method therefor
US3434527A (en) Method for ultra-high purity precision casting
JP6289474B2 (en) System and method for melting raw materials
JP5000149B2 (en) Cold Crucible Induction Dissolver
US6250365B1 (en) Die casting process
JPH0711352A (en) Method for continuously melting and casting high melting point active metal
WO2018110370A1 (en) Casting method for active metal
JP4516937B2 (en) Immersion nozzle preheating device and continuous casting method.
CZ202149A3 (en) Method of controlled alloying of intermetallic alloys γ-TiAl with carbon during vacuum induction melting in graphite crucibles
JP2012228722A (en) Melting furnace for smelting metal
RU156040U1 (en) FERROTITANIUM MAKING HOUSING
JP2006164732A (en) Induction heating method
JP2007054870A (en) Metal billet for semi-melt casting and manufacturing method
JP2993169B2 (en) DC arc furnace
JP2003340560A (en) Method and apparatus for manufacturing active metal ingot
JP2023132268A (en) Apparatus and method for growing oxide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees