JP2006121006A - Thermoelectric conversion device and its manufacturing method - Google Patents

Thermoelectric conversion device and its manufacturing method Download PDF

Info

Publication number
JP2006121006A
JP2006121006A JP2004309942A JP2004309942A JP2006121006A JP 2006121006 A JP2006121006 A JP 2006121006A JP 2004309942 A JP2004309942 A JP 2004309942A JP 2004309942 A JP2004309942 A JP 2004309942A JP 2006121006 A JP2006121006 A JP 2006121006A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
electrode
member
formed
plurality
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004309942A
Other languages
Japanese (ja)
Other versions
JP4626263B2 (en )
Inventor
Isao Azeyanagi
Yukinori Hatano
Akio Matsuoka
Satoshi Mizutani
Fumiaki Nakamura
Yasuhiko Niimi
Eiichi Torigoe
Takashi Yamamoto
Yoichi Yoshino
文昭 中村
隆 山本
康彦 新美
彰夫 松岡
聡志 水谷
功 畔柳
五規 羽田野
洋一 芳野
栄一 鳥越
Original Assignee
Denso Corp
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion device that can be configured, in such a way that multiple electrode materials can be simultaneously molded and integrated into multiple thermoelectric devices, resulting in cost reduction, and to provide a method for manufacturing the thermoelectric conversion device.
SOLUTION: This thermoelectric conversion device has a thermoelectric device board 10, made by arranging in lines the thermoelectric devices configured, by alternately placing multiple p-type thermoelectric devices 12 and n-type thermoelectric devices 13 on a first insulated board 11, an electrode part 25, to which the above thermoelectric devices 12 and 13 are connected electrically and an electrode material 20, having a louver 26 for absorbing or dissipating the heat transferred from the electrode 25. For down the manufacturing cost, this electrode material 20 is configured, in a such way that at least multiple metal plates with the electrode 25 and louver 26 not formed in the predetermined shapes are concatenated and integrated via the insulated materials 21 that can be insulated electrically with their shells, and then multiple electrodes 25 and louvers 26 can be formed simultaneously in the predetermined shapes on the respective metal plates.
COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、N型熱電素子、P型熱電素子からなる直列回路に直流電流を流通させることで吸熱、放熱が得られる熱電変換装置およびその熱電変換装置の製造方法に関するものであり、特に、隣接する熱電素子とそれに接続される電極部材の構成およびその電極部材の製造方法に関する。 The present invention relates to a manufacturing method for N-type thermoelectric element, P-type thermoelectric consists element endotherm by circulating a DC current to the series circuit, the thermoelectric conversion radiating obtain device and a thermoelectric converter, in particular, adjacent construction of the thermoelectric element and the electrode member connected thereto to and methods for making the electrode member.

従来、この種の熱電変換装置として、例えば、特許文献1に示すように、N型熱電素子およびP型熱電素子をこの順序で複数組直列に接続して熱電素子群を構成し、この熱電素子群を吸熱/放熱電極部材で順次直列接続するとともに、上記熱電素子群の一方に突設して吸熱電極部材それぞれに吸熱熱交換部材を結合し、さらに熱電素子群の他方に突設して放熱電極部材それぞれに放熱熱交換部材を結合し、それぞれ吸熱熱交換部および放熱熱交換部を構成している。 Conventionally, as this kind of thermoelectric devices, for example, as shown in Patent Document 1, by connecting the N-type thermoelectric elements and P-type thermoelectric elements into a plurality of sets in series in this order to constitute a thermoelectric element group, the thermoelectric element groups together sequentially connected in series endothermic / heat-dissipating electrode member, projecting from the one of the thermoelectric element group bonded endothermic heat exchange member in each heat absorbing electrode member, further projecting from the other of the thermoelectric element group by heat radiation combining the heat radiating heat exchanger member to each electrode member constitutes a respective heat absorption heat exchanger and the heat radiating heat exchanger.

そして、これらの熱交換部をそれぞれ構成する各熱交換部材は、熱電素子群の並ぶ方向に沿って折曲される第1の折曲片および熱電素子の並ぶ方向とほぼ直角曲げられる第2の折曲片を備え、隣接する第2の折曲片の相互は電気的に絶縁して固定することにより、吸熱熱交換部と放熱熱交換部とを区画する壁を有するように構成している。 Then, each heat exchange member constituting these heat exchange section, respectively, the first bent piece and lined thermoelectric element direction substantially perpendicular bendable second being bent along the direction of arrangement of the thermoelectric element group comprising a bent piece, mutually adjacent second bending pieces by fixing electrically insulated, and configured to have a wall defining a heat absorbing heat exchanger and the heat radiating heat exchanger . これにより、吸熱電極部材および放熱電極部材からの熱を効率的に取り出して熱交換効率が良好となるとともに、区画壁が形成されることで吸熱部と放熱部との分離が容易にできる構造を備えている(例えば、特許文献1参照)。 Thus, the heat from the heat absorbing electrode member and the heat-dissipating electrode member efficiently take out the heat exchange efficiency becomes good, a structure that the separation can be facilitated between the heat radiating portion and the heat absorbing portion by the partition wall is formed It includes (e.g., see Patent Document 1).
特許第3166228号公報 Patent No. 3166228 Publication

しかしながら、上記特許文献1によれば、熱の発生源であるNP接続部(および、NP接続部)には、その熱を効率的に取り出すために複雑な形状をなす電極部材と熱交換部材とが多数個配設されている。 However, according to Patent Document 1, NP connecting part heat is the source (and, NP connection portion), the electrode member and the heat exchange member having a complicated shape in order to retrieve the heat efficiently There are a large number arranged.

つまり、この種の装置に用いられる電極部材および熱交換部材の加工方法や製造方法について詳しくは記載されていないが、一般的に、単品で所定の形状に形成して必要個数分を製造するためには多大な加工工数を要する。 That is, although details are not described methods for processing and manufacturing methods of the electrode member and the heat exchange member used in this type of apparatus, generally, for the manufacture of a required number fraction formed in a predetermined shape separately It requires a lot of processing steps in.

さらに、上記特許文献1のように、熱電素子、電極部材、熱電素子の順に交互に積層しその積層させた状態で熱電素子と電極部材とを接合させて構成しているので、この種の熱電素子が極小部品であるため各部品を積層するための組付作業がやり難いとともに、順次積層させて構成しているため組み付け工数が多大となる問題がある。 Further, as in Patent Document 1, the thermoelectric element, the electrode members, since this structure is constructed by joining the thermoelectric element and the electrode member in a state of being alternately stacked to the lamination in the order of the thermoelectric device, the thermoelectric of this kind elements with hard spear assembly work for laminating the respective components for a minimum part, there is a problem of assembly man-hours is significant because it constituted by sequentially stacking.

そこで、本発明の目的は、上記点を鑑みたものであり、複数個の電極部材を同時に成形加工するとともに複数個の熱電素子への組み付けを行なえるように構成させることで、製造工数の低減が図れる熱電変換装置およびその熱電変換装置の製造方法を提供することにある。 An object of the present invention has in view of the above points, by constituting the assembly of the plurality of thermoelectric elements so performed as to simultaneously molding a plurality of electrode members, a reduction in manufacturing steps It is to provide a method of manufacturing a thermoelectric conversion device and a thermoelectric converter attained is.

上記、目的を達成するために、請求項1ないし請求項10に記載の技術的手段を採用する。 Above, in order to achieve the object, adopting the technical means according to claims 1 to 10. すなわち、請求項1に記載の発明では、絶縁材料からなる第1絶縁基板(11)に、P型熱電素子(12)およびN型熱電素子(13)を交互に複数個配列してなる熱電素子群を列設して構成された熱電素子基板(10)と、平板状の導電性材料から形成され、熱電素子基板(10)に隣接して配列されたP型熱電素子(12)とN型熱電素子(13)とを電気的に接続する電極部(25)、およびその電極部(25)より伝熱される熱を吸熱、放熱する熱交換部(26)を有する電極部材(20)とを備え、隣接するP型熱電素子(12)とN型熱電素子(13)との両端に電極部(25)を直列的に接続するように複数個の電極部材(20)を配設する熱電変換装置であって、 That is, in the invention described in claim 1, the first insulating substrate made of an insulating material (11), P-type thermoelectric element (12) and the N-type thermoelectric element thermoelectric elements formed by arranging a plurality (13) alternately a thermoelectric element substrate formed by arrayed a group (10) is formed of a flat conductive material, the thermoelectric element substrate (10) to be arranged adjacent the P-type thermoelectric element (12) and N-type electrode portion for electrically connecting the thermoelectric elements (13) (25), and its electrode portion (25) absorbs the more heat that is heat transfer, heat exchanger for dissipating the electrode member (20) having (26) provided, adjacent P-type thermoelectric element (12) and across the thermoelectric electrode portion (25) arranging a plurality of electrode members (20) so as to serially connected conversion between the N-type thermoelectric element (13) an apparatus,
電極部材(20)は、その外郭同士間で電気的に絶縁可能な絶縁部材(21)を介して電極部(25)および熱交換部(26)を所定の形状に形成される前の状態の金属板を少なくとも複数個連結するように一体に形成した後に、それぞれの金属板に電極部(25)および熱交換部(26)を所定の形状に複数個同時に形成できるように構成したことを特徴としている。 Electrode member (20) is in a state before being formed electrode unit via an electrically insulating insulating element (21) between its outer each other (25) and the heat exchange section (26) into a predetermined shape after forming together to at least a plurality connecting a metal plate, characterized by being configured as a plurality can be formed at the same time the electrode unit (25) and the heat exchange section (26) into a predetermined shape in each of the metal plate It is set to.

請求項1に記載の発明によれば、多数個配設される電極部材(20)を複数個同時に形成できるように構成したことにより、所定の形状に形成する加工工数が大幅に低減できる。 According to the invention described in claim 1, by constructing the electrode member (20) which is a large number arranged so as to form a plurality simultaneously, the number of processing steps to be formed in a predetermined shape can be greatly reduced. これにより、製造工数の低減が図れる。 Thus, it can be reduced the number of manufacturing steps. また、電極部材(20)の外郭同士間を絶縁可能な絶縁部材(21)を介することにより隣接する電極部材(20)が確実に電気的に絶縁できる。 The electrode member (20) adjacent the interposing an insulating insulating element between the outer ends of the electrode member (20) (21) is electrically and securely be insulated.

請求項2に記載の発明では、電極部材(20)は、平板状の絶縁材料からなる絶縁部材(21)に所定の間隔で形成された複数個の嵌合穴に金属板がそれぞれ配設されていることを特徴としている。 In the invention described in claim 2, the electrode member (20), the metal plate is disposed respectively on the plurality of fitting holes formed at predetermined intervals in the insulating member consisting of a flat plate-like insulating material (21) it is characterized in that. 請求項2に記載の発明によれば、具体的には、絶縁部材(21)を介して所定の間隔を有して複数個の金属板を連結させることで複数個の電極部材(20)を同時に所定の形状に形成できる。 According to the invention described in claim 2, specifically, a plurality of electrode members by linking the plurality of metal plates with a predetermined gap via an insulating member (21) and (20) At the same time it can be formed into a predetermined shape.

請求項3に記載の発明では、電極部材(20)は、成形型に複数個の電極部材(20)を所定の間隔に配置して、絶縁材料をモールドするモールド加工によって絶縁部材(21)に構成したことを特徴としている。 In the invention described in claim 3, the electrode member (20) includes a plurality of electrode members (20) arranged at predetermined intervals in the mold, with mold processing for molding the insulating material in the insulating member (21) It is characterized in that the configuration was. 請求項3に記載の発明によれば、より具体的にはモールド加工によって隣接する電極部材(20)が確実に電気的に絶縁できることで、複数個の電極部材(20)を同時に所定の形状に形成できる。 According to the invention of claim 3, further electrode member adjacent the mold machining specifically (20) that can reliably electrically insulated, a plurality of electrode members (20) simultaneously into a predetermined shape It can be formed.

請求項4に記載の発明では、電極部材(20)は、絶縁材料に複数個の電極部材(20)を所定の間隔に配置して、絶縁材料に貼り合わせるラミネート加工によって絶縁部材(21)に構成したことを特徴としている。 In the invention described in claim 4, the electrode member (20) is arranged plurality of electrode members (20) at predetermined intervals in the insulating material, the lamination bonding to the insulating material in the insulating member (21) It is characterized in that the configuration was. 請求項4に記載の発明によれば、より具体的にはラミネート加工によって隣接する電極部材(20)が確実に電気的に絶縁できることで、複数個の電極部材(20)を同時に所定の形状に形成できる。 According to the invention of claim 4, further electrode member adjacent the lamination specifically (20) that can reliably electrically insulated, a plurality of electrode members (20) simultaneously into a predetermined shape It can be formed.

請求項5に記載の発明では、電極部材(20)は、電極部(25)から外方に延出された平面に、ルーバー状、スリット状、オフセット状のいずれかの形状からなる熱交換部(26)を有することを特徴としている。 In the invention described in claim 5, the electrode member (20) is in a plane which extends outwardly from the electrode portion (25), louvered, slit-shaped, the heat exchange unit consisting of either form of the offset shape is characterized by having a (26). 請求項5に記載の発明によれば、これらの形状であれば、平板状の金属板を、例えば、プレス加工やローラ成形などの塑性加工により複数個の電極部(25)および熱交換部(26)を容易に加工することができる。 According to the invention of claim 5, if these shapes, a flat metal plate, for example, a plurality of electrode portions by plastic working such as pressing or roller molding (25) and the heat exchange section ( 26) can be easily processed.

請求項6に記載の発明では、電極部材(20)には、電極部(25)の背面側に冷却流体もしくは被冷却流体が流通したときに、渦流を発生する伝熱促進部(25a)が形成されていることを特徴としている。 In the invention described in claim 6, the electrode member (20), when the cooling fluid or the cooled fluid to the back side of the electrode portion (25) is circulated, the heat transfer enhancement unit for generating a vortex flow (25a) is It is characterized by being formed. 請求項6に記載の発明によれば、電極部(25)の背面側に、例えば、切り起こしなどの伝熱促進部(25a)を形成すると、熱の発生源からじかにその熱を効率的に取り出すことができる。 According to the invention described in claim 6, the back side of the electrode portion (25), for example, to form a heat transfer enhancing portion (25a), such as cutting and bending, directly the heat efficiently from the heat sources it can be taken out. これにより、切り起こしなどの成形加工は複数個同時に容易に加工することができる。 Accordingly, molding process such as cutting and bending can be processed several at the same time easily.

請求項7に記載の発明では、P型熱電素子(12)およびN型熱電素子(13)を摘んで、予め設置された絶縁材料からなる第1絶縁基板(11)に略碁盤目状に形成された基板穴に、P型熱電素子(12)およびN型熱電素子(13)を交互に複数個配列してなる熱電素子群を列設する熱電素子基板(10)の熱電素子組み付け工程と、 In the invention described in claim 7, picking P-type thermoelectric element (12) and the N-type thermoelectric element (13), formed in a substantially grid pattern on the first insulating substrate made of pre-installed insulating material (11) the substrate hole is a step of assembling the thermoelectric elements of P-type thermoelectric element (12) and the N-type thermoelectric element thermoelectric element substrate for column set the thermoelectric element group formed by arranging a plurality (13) alternately (10),
平板状の導電性材料に、隣接して配列されたP型熱電素子(12)とN型熱電素子(13)とを電気的に接続する平面状の電極部(25)、およびその電極部(25)から伝熱される熱を吸熱、放熱する熱交換部(26)を有する電極部材(20)を所定の形状に形成する前の状態となる平板状の金属板を外形抜き加工で成形する金属板成形工程と、 A plate-shaped conductive material, a planar electrode portion for electrically connecting the adjacent P-type thermoelectric elements arranged (12) and the N-type thermoelectric elements (13) (25), and its electrode portion ( metal forming the heat heat is transferred from the 25) endothermic, the flat metal plate with a state before forming the heat exchange unit for dissipating electrode member (20) having (26) into a predetermined shape in outline punching a sheet forming step,
金属板成形工程で成形された金属板を所定の間隔に少なくとも複数個配置し、その外郭同士間で電気的に絶縁可能な絶縁部材(21)を介して連結するように一体に形成する電極部材組み付け工程と、 Electrode member formed integrally to the metal plate that is formed of a metal plate forming step at least a plurality arranged in a predetermined interval, linked via an electrically insulating insulating element (21) between its outer each other and the assembly process,
電極部材組み付け工程で形成された複数個の金属板に電極部(25)および熱交換部(26)を所定の形状に成形加工により複数個同時に形成する成形加工工程と、 A forming step of forming a plurality simultaneously by molding the electrode portion into a plurality of metal plate formed by the electrode member assembling step (25) and the heat exchange section (26) into a predetermined shape,
成形加工工程で所定の形状に形成された電極部材(20)を摘んで、予め設置された絶縁材料からなる第2絶縁基板(27)に略碁盤目状に形成された嵌合穴に、電極部(25)を設置して一体に構成して、熱電素子基板(10)に組み付けられた熱電素子(12、13)の端面にそれぞれの電極部(25)を設置し、その後、電極部(25)と熱電素子(12、13)の端面とを接合する接合工程とを備えることを特徴としている。 Picking at forming step is formed into a predetermined shape the electrode members (20), the fitting hole formed in a substantially grid pattern on the second insulating substrate made of pre-installed insulating material (27), the electrode constitute integral parts (25) installed, respectively installed in the electrode portion on the end face of the assembled to the thermoelectric element substrate (10) thermoelectric elements (12, 13) and (25), then, the electrode unit ( It is characterized in that it comprises a joining step of joining the end surfaces 25) and the thermoelectric element (12, 13).

請求項7に記載の発明によれば、電極部材組み付け工程と複数個同時に形成する成形加工工程とを有することにより、電極部材(20)の外郭同士間を絶縁可能な絶縁部材(21)を介することで隣接する電極部材(20)が確実に電気的に絶縁できる。 According to the invention described in claim 7, by having a forming step of forming the electrode member assembling step a plurality simultaneously, via an insulating insulating element between the outer ends of the electrode member (20) (21) adjacent electrode members (20) are securely electrically be insulated by. また、多数個配設される電極部材(20)を複数個同時に形成できることで、所定の形状に形成する加工工数が大幅に低減できる。 Further, by the electrode member (20) which is a large number arranged can be formed a plurality simultaneously, the number of processing steps to be formed in a predetermined shape can be greatly reduced. これにより、製造工数の低減が図れる。 Thus, it can be reduced the number of manufacturing steps.

また,熱電素子(12、13)の端面にそれぞれの電極部(25)を設置し、その後、電極部(25)と熱電素子(12、13)の端面とを接合する接合工程により、熱電素子(12、13)に電極部材(20)を複数個同時に組み付けができる。 Further, each of the electrode portions on the end face of the thermoelectric elements (12, 13) and (25) is installed, then the bonding step of bonding the electrode portion (25) and the end face of the thermoelectric elements (12, 13), the thermoelectric element the electrode member (20) can assembled plurality simultaneously (12, 13). 従って、組み付け工数の低減が図れる。 Therefore, reduction of assembling steps can be reduced. これにより、製造工数の低減が図れる。 Thus, it can be reduced the number of manufacturing steps.

請求項8に記載の発明では、電極部材組み付け工程は、平板状の絶縁材料からなる絶縁部材(21)に所定の間隔で形成された複数個の嵌合穴にそれぞれ金属板を配設することを特徴としている。 In the invention described in claim 8, the electrode member assembling step, by disposing the respective metal plate into a plurality of fitting holes formed in the insulating member (21) comprising a plate-shaped insulating material at a predetermined interval It is characterized in. 請求項8に記載の発明によれば、絶縁部材(21)を介して所定の間隔を有して複数個の金属板を連結させることで複数個の電極部材(20)を同時に所定の形状に形成できる。 According to the invention described in claim 8, at the same time a predetermined shape a plurality of electrode members (20) by linking a plurality of metal plates with a predetermined gap via an insulating member (21) It can be formed.

請求項9に記載の発明では、電極部材組み付け工程は、成形型に複数個の金属板を所定の間隔に配置して、絶縁材料をモールドするモールド加工によって絶縁部材(21)に一体構成したことを特徴としている。 It In the invention described in claim 9, the electrode member assembling step, a plurality of metal plates arranged at predetermined intervals in the mold and integrally formed in the insulating member (21) with a molding process for molding the insulating material It is characterized in. 請求項9に記載の発明によれば、モールド加工によって隣接する電極部材(20)が確実に電気的に絶縁できることで、複数個の電極部材(20)を同時に所定の形状に形成できる。 According to the invention described in claim 9, the electrode member adjacent the mold processing (20) that can reliably electrically insulated, a plurality of electrode members (20) can be simultaneously formed in a predetermined shape.

請求項10に記載の発明では、電極部材組み付け工程は、絶縁材料に複数個の金属板を所定の間隔に配置して、絶縁材料に貼り合わせるラミネート加工によって絶縁部材(21)に一体構成したことを特徴としている。 It In the invention described in claim 10, assembling process electrode members, which are arranged a plurality of metal plate to a predetermined distance in the insulating material and integrally formed in the insulating member (21) by lamination bonding to the insulating material It is characterized in. 請求項10に記載の発明によれば、ラミネート加工によって隣接する電極部材(20)が確実に電気的に絶縁できることで、複数個の電極部材(20)を同時に所定の形状に形成できる。 According to the invention described in claim 10, the electrode member adjacent the laminating (20) that can reliably electrically insulated, a plurality of electrode members (20) can be simultaneously formed in a predetermined shape.

なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。 BRIEF DESCRIPTION OF THE DRAWINGS The above means, are intended to show the correspondence with specific means of embodiments which will be described later.

(第1実施形態) (First Embodiment)
以下、本発明の第1実施形態における熱電変換装置を図1ないし図5に基づいて説明する。 Hereinafter, the thermoelectric conversion device according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5. 図1は本実施形態における熱電変換装置の全体構成を示す模式図、図2は熱電変換装置の主要部の構成を示す分解模式図である。 Figure 1 is a schematic diagram showing the overall structure of a thermoelectric conversion device of this embodiment, FIG. 2 is an exploded schematic view showing a configuration of a main part of the thermoelectric converter. 図3は図1に示すA−A断面図である。 Figure 3 is an A-A sectional view shown in FIG. 図4は電極部材20の形状を示す構成図、図5は電極部材20の製造方法を示す説明図である。 Figure 4 is block diagram showing a shape of the electrode member 20, FIG. 5 is an explanatory diagram showing a method of manufacturing the electrode member 20.

本実施形態の熱電変換装置は、図1および図2に示すように、熱電素子基板10、複数個の電極部材20および一対のケース部材28、29とから構成している。 The thermoelectric conversion device of this embodiment, as shown in FIGS. 1 and 2, the thermoelectric element substrate 10, and composed of a plurality of electrode members 20 and the pair of case members 28 and 29 Metropolitan. 熱電素子基板10は、図3に示すように、平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂、もしくはPET樹脂など)からなる第1絶縁基板11に、P型熱電素子12およびN型熱電素子13を交互に複数個配列してなる熱電素子群を列設して一体構成にしたものである。 Thermoelectric element substrate 10, as shown in FIG. 3, a flat plate-like insulating material (e.g., glass epoxy, PPS resin, LCP resin or PET resin) on the first insulating substrate 11 made of, 12 and P-type thermoelectric element it is obtained by integrally configured with arrayed the thermoelectric element group formed by arranging a plurality N-type thermoelectric elements 13 are alternately.

そして、P型熱電素子12はBi−Te系化合物からなるP型半導体により構成され、N型熱電素子13はBi−Te系化合物からなるN型半導体により構成された極小部品である。 Then, P-type thermoelectric element 12 is composed of a P-type semiconductor made of Bi-Te-based compounds, N-type thermoelectric element 13 is a minimum part that is composed of N-type semiconductor made of Bi-Te-based compounds. また、熱電素子基板10は、P型熱電素子12およびN型熱電素子13を第1絶縁基板11に碁盤目状に配列するように一体成形で形成している。 Further, the thermoelectric element substrate 10 is formed by integral molding so as to be arranged in a grid pattern the P-type thermoelectric element 12 and the N-type thermoelectric element 13 to the first insulating substrate 11. このときに、P型熱電素子12およびN型熱電素子13は、絶縁基板よりも上端面、下端面が突き出すように形成されている。 At this time, P-type thermoelectric element 12 and the N-type thermoelectric element 13 has an upper end face than the insulating substrate is formed to the lower end face protrudes.

そして、電極部材20は、熱電素子基板10に配列された熱電素子群のうち、隣接するP型熱電素子12およびN型熱電素子13を電気的に接続する電極基板であり、隣接するP型熱電素子12およびN型熱電素子13の両端に電極部25が直列的に接続するように複数個配設している。 Then, the electrode member 20, of the thermoelectric element group arranged in the thermoelectric element substrate 10, an electrode substrate for electrically connecting the P-type thermoelectric element 12 and the N-type thermoelectric element 13 adjacent the adjacent P-type thermoelectric ends to the electrode portion 25 of the element 12 and the N-type thermoelectric element 13 has a plurality arranged to serially connected.

電極部材20は、銅材などの導電性金属からなる板材で形成したもので、図4(a)ないし図4(c)に示すように、断面がU字状からなり底部に平面状の電極部25を形成している。 Electrode member 20, which was formed of a plate material made of a conductive metal such as copper material, as shown in FIG. 4 (a) to FIG. 4 (c), the planar electrode on the bottom will cross section from the U-shaped forming a part 25. そして、電極部25から外方に延出された平面には熱交換部であるルーバー26が形成されて一体に構成している。 Then, the electrode portion 25 to extend out the plane outward are formed louvers 26 is a heat exchanging portion is constituted integrally.

本実施形態のルーバー26は、電極部25で発生した熱を吸熱、放熱するためのフィンであって、平板状の平面を切り起こしなどの成形加工により形成している。 Louvers 26 of this embodiment, the heat generated in the electrode unit 25 absorbs heat, a fin for heat dissipation, are formed by a molding process such as cutting and bending a flat plane. また、互いに隣接する電極部材20同士は、詳しくは後述するが電気的に絶縁させるために絶縁材料からなる絶縁部材21で連結して製造している。 Further, between the electrode member 20 adjacent to each other, as will be described later in detail are prepared by coupling an insulating member 21 made of an insulating material to electrically insulate.

さらに、絶縁部材21で連結された電極部材20を図1および図2に示すように、一端の電極部25側が平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂、もしくはPET樹脂など)からなる第2絶縁基板27に結合するように構成され、電極部25と対向する側には絶縁部材21を含めて電極部材20の末端が平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂、もしくはPET樹脂など)からなるケース部材28に結合している。 Furthermore, the electrode member 20 which is connected with the insulating member 21 as shown in FIGS. 1 and 2, plate-shaped insulating material is the electrode unit 25 side of the end (for example, glass epoxy, PPS resin, LCP resin or PET resin, etc. ) is configured to coupled to the second insulating substrate 27 made of, end of the side opposed to the electrode portion 25 including the insulating member 21 electrode member 20 is plate-shaped insulating material (e.g., glass epoxy, PPS resin , it is attached to the case member 28 made of LCP resin or PET resin).

より具体的には、第2絶縁基板27には、電極部25が嵌合する基板穴(図示せず)を形成し、その基板穴に電極部25を挿入して電極部材20と第2絶縁基板27とを一体に構成する。 More specifically, the second insulating substrate 27, to form a substrate hole which the electrode portions 25 are fitted (not shown), and the electrode member 20 by inserting the electrode portion 25 to the substrate hole second insulation and a substrate 27 formed integrally. そして、ケース部材28には電極部材20の末端が嵌め合う溝部を形成し、その溝部に絶縁部材21を含めて電極部材20を結合させて構成する。 Then, the case member 28 to form a groove end of the electrode member 20 mate, configure the electrode member 20 is bonded, including an insulating member 21 in the groove portion.

また、図中に示す左右端に配設される電極部材20の末端には、それぞれ端子24a、24bが設けられ、その端子24a、24bには、図示しない直流電源の正側端子を端子24aに接続し、負側端子を端子24bに接続するようにしている。 Also, the end of the electrode member 20 disposed on the left and right end shown in the figure, each terminal 24a, 24b are provided, the terminals 24a, the 24b, the positive terminal of the DC power supply (not shown) to the terminal 24a connect, and to connect the negative terminal to the terminal 24b.

これにより、上方側に配設される電極部材20は、図中に示す左端からP型熱電素子12、N型熱電素子13、P型熱電素子12の順に電気的に接続するように複数個配設され、下方側に配設される電極部材20は、N型熱電素子13、P型熱電素子12、N型熱電素子13の順に電気的に接続するように複数個配設されるように構成している。 Thereby, the electrode member 20 disposed on the upper side, the plurality distribution so as to be electrically connected in the order of P-type thermoelectric element 12, N-type thermoelectric element 13, P-type thermoelectric element 12 from the left end shown in FIG. is set, the electrode member 20 disposed on the lower side is configured as a plurality arranged so as to be electrically connected in the order of N-type thermoelectric element 13, P-type thermoelectric element 12, N-type thermoelectric element 13 are doing.

因みに、端子24aから入力された直流電源は、図中に示す左端のP型熱電素子12から上側の電極部材20を介してN型熱電素子13に直列的に流れ、次に、このN型熱電素子13から下方に配設された電極部材20を介してP型熱電素子12に直列的に流れるように構成している。 Incidentally, DC power inputted from the terminal 24a is serially flows through the N-type thermoelectric element 13 from the left end of the P-type thermoelectric element 12 through the upper electrode member 20 shown in the figure, then the N-type thermoelectric through the electrode member 20 disposed downwardly from the element 13 are configured to flow in series to the P-type thermoelectric element 12. つまり、熱電素子12、13の両端に直流電流が直列的に流れるように接続される。 That is, direct current is connected to flow in series to both ends of the thermoelectric elements 12 and 13.

このときに、PN接合部を構成する二つの電極部25は、ペルチェ効果によって高温の状態となり、NP接合部を構成する二つの電極部25は低温の状態となる。 In this case, two electrode portions 25 constituting the PN junction becomes a high-temperature state by the Peltier effect, the two electrode portions 25 constituting the NP junction becomes cold state. つまり、上方側に形成されたルーバー26は放熱部である放熱熱交換部を形成して高温の状態が伝熱されて冷却流体が接触され、下方側に形成されたルーバー26は吸熱部である吸熱熱交換部を形成して低温の状態が伝熱されて被冷却流体が接触される。 In other words, the louvers 26 formed in the upper side to form a heat radiating heat exchanger is the heat radiating portion is a high temperature state is contact cooling fluid is the heat transfer, louvers 26 formed in the lower side is an endothermic portion the cooling fluid is contacted with a low temperature state is the heat transfer by forming a heat absorption heat exchanger.

言い換えれば、図1に示すように、熱電素子基板10を区画壁として、ケース部材28、29により、熱電素子基板10の両側に送風通路を形成して、その送風通路に空気を流通することで、ルーバー26と空気とが熱交換され、熱電素子基板10を区画壁として、上側のルーバー26で空気を加熱することができ、下側のルーバー26で空気を冷却することができる。 In other words, as shown in FIG. 1, the thermoelectric element substrate 10 as a partition wall, the casing members 28 and 29, to form the air passage on each side of the thermoelectric element substrate 10, by circulating air to the air passage , louvers 26 and the air is heat-exchanged, the thermoelectric element substrate 10 as a partition wall, the upper louver 26 can be heated air, it is possible to cool the air below the louvers 26.

なお、本実施形態では、図示しない直流電源の正側端子を端子24a側に接続し、負側端子を端子24b側に接続して端子24aに直流電源を入力させたが、これに限らず、図示しない直流電源の正側端子を端子24b側に接続し、負側端子を端子24a側に接続して端子24bに直流電源を入力させても良い。 In the present embodiment, by connecting the positive terminal of the DC power supply (not shown) to the terminal 24a side, but was entered DC power to terminals 24a to connect the negative terminal to the terminal 24b side, not limited to this, connect the positive terminal (not shown) the DC power supply to the terminal 24b side, it may be input DC power to the terminal 24b by connecting the negative terminal to the terminal 24a side. ただし、このときには、上側の電極部材20側が吸熱熱交換部を形成し、下側の電極部材20側が放熱熱交換部を形成するようになる。 However, in this case, 20-side upper electrode member forms a heat absorbing heat exchanger, the electrode member 20 side of the lower side is to form a heat radiating heat exchanger.

次に、本発明の要部である電極部材20の製造方法と本実施形態の組み付け方法について説明する。 Next, a method of assembling the manufacturing method and the embodiment of the electrode member 20 is an essential part of the invention. 本実施形態では、まず、熱電素子12、13は、図3に示すように、第1絶縁基板11に設けられた基板穴にP型とN型を交互に略碁盤目状に複数個配列して熱電素子基板10を一体に構成する。 In this embodiment, first, the thermoelectric elements 12 and 13, as shown in FIG. 3, a plurality sequences to substantially tessellated alternately P-type and N-type substrate hole provided on the first insulating substrate 11 integrally constructing the thermoelectric element substrate 10 Te. なお、このときは、半導体、電子部品などを制御基板に組み付けるための製造装置であるマウンター装置を用いて製造してもよい。 In this case, the semiconductor, the mounter device may be manufactured using a manufacturing apparatus for assembling such as the control board electronic components.

そして、この熱電素子基板10に隣接して配列された熱電素子12、13の両端に配設する電極部材20は、少なくとも複数個同時に電極部25、ルーバー26を有する形状に形成するとともに、熱電素子12、13の端面に同時に組み付けるように構成していることを特徴としている。 Then, the electrode member 20 disposed at both ends of the thermoelectric element thermoelectric elements 12, 13 arranged adjacent to the substrate 10, at least plurality simultaneously electrode portion 25, so as to form into a shape having a louver 26, the thermoelectric element is characterized by being configured to assemble simultaneously on the end face 12, 13.

これを具体的に図5(a)ないし図5(d)に基づいて説明すると、まず、図5(a)に示すように、薄板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂、もしくはPET樹脂など)からなる絶縁部材21に、電極部25およびルーバー26を所定の形状に形成する前の状態の金属板20aを所定の間隔を隔てて一体に構成する。 When this specifically described with reference to FIGS. 5 (a) through FIG. 5 (d), the first, as shown in FIGS. 5 (a), a thin plate of insulating material (e.g., glass epoxy, PPS resin, LCP resin or an insulating member 21 made of PET resin or the like), constituting the metal plate 20a in a state before forming the electrode portions 25 and the louvers 26 in a predetermined shape together with a predetermined interval.

言い換えれば、平板状の導電性材料を電極部25およびルーバー26を所定の形状に形成する前の状態の金属板20aを所定の大きさに外形抜き加工で成形する。 In other words, molded in a contour punching a metal plate 20a in a state before a predetermined size to form a plate-shaped conductive material of the electrode portions 25 and the louvers 26 in a predetermined shape. これを金属板成形工程と称する。 This is referred to as metal plate forming step.

そして、図5(a)に示すように、上述した絶縁部材21に金属板成形工程で製造した金属板20aを複数個配置して絶縁材料を介して連結する。 Then, as shown in FIG. 5 (a), a metal plate 20a which is made of metal plate forming step in the insulating member 21 described above with a plurality disposed linked via an insulating material. これを電極部材組み付け工程と称する。 This is referred to as the electrode member assembly process. これにより、金属板20a同士は電気的に絶縁部材21で絶縁されることになる。 Thus, the metal plate 20a to each other will be insulated by the electrically insulating member 21. なお、絶縁部材21と金属板20aとは、接着剤を用いて接合させても良い。 Note that the insulating member 21 and the metal plate 20a, may be bonded by using an adhesive.

また、接着剤のほかに、絶縁部材21の熱収縮を応用して金属板20aを固定させるようにしても良い。 In addition to the adhesive, it may be by applying a heat shrinkage of the insulating member 21 so as to fix the metal plate 20a. また、接着剤に接着効果を持たせておいて高温で金属板20aと絶縁部材21とを接合しても良い。 Also, it allowed to have a bonding effect to the adhesive may be bonded to the metal plate 20a and the insulating member 21 at a high temperature. なお、図中に示す2点鎖線は次の工程において折り曲げ位置となる部位を示している。 Incidentally, a two-dot chain line shown in the figure represents a portion to be a bending position in the next step.

そして、図5(b)に示すように、複数個の金属板20aから電極部25、ルーバー26を所定の形状になるように折り曲げ、切り起こしなどの成形加工により複数個同時に形成する。 Then, as shown in FIG. 5 (b), a plurality of metal plates 20a electrode portion 25 from bending so that the louver 26 to a predetermined shape to a plurality simultaneously formed by a molding process such as cutting and bending. これにより、電極部材20が絶縁部材21により複数個連結される。 Thereby, the electrode member 20 is a plurality connected by the insulating member 21. これを成形加工工程と称する。 This is called forming step.

なお、このときに、図中に示すB矢視からの形状は、図5(d)のように、絶縁部材21で連結してコルゲート状(波型)に形成している。 Incidentally, in this case, the shape of the arrow B shown in the figure, as shown in FIG. 5 (d), the form in corrugated (corrugated) by connecting with the insulating member 21. そして、図5(c)に示すように、第2絶縁基板27に設けられた嵌合穴に一端の電極部25を略碁盤目状に複数個配列して一体に構成する。 Then, as shown in FIG. 5 (c), integrally formed by arranging a plurality one of the electrode portions 25 in a substantially checkerboard pattern in a fitting hole provided on the second insulating substrate 27.

そして、熱電素子基板10に組みつけられた熱電素子12、13の両端面に電極部25を設置し、その後、電極部25と熱電素子12、13の両端面とを半田付けにより接合する。 Then, the electrode unit 25 placed on both end faces of the thermoelectric elements 12, 13 which are assembled to the thermoelectric element substrate 10, then joining the both end surfaces of the electrode portions 25 and the thermoelectric elements 12, 13 by soldering. これを接合工程と称する。 This is called bonding process. なお、この接合工程は片面ごとに行ない、他方の片面は熱電素子基板10を反転した後に、他方の片面を接合するようにしている。 Incidentally, the bonding step is performed for each one side and the other one side after reversing the thermoelectric element substrate 10, so that joining of the other one side. また、熱電素子12、13の端面の接合面には、予めペーストハンダなどをスクリーン印刷で薄く均一に塗っておいてから接合工程を行なうと半田付けが容易にできる。 Also, the bonding surface of the end face of the thermoelectric elements 12 and 13 can be such a thin keep painted uniform soldering can be easily performed a bonding step from a screen printing in advance a paste solder.

これにより、上方側に配設される電極部材20が隣接して配列されたP型熱電素子12とN型熱電素子13とを直列的に接続されるとともに、下方側に配設される電極部材20が隣接して配列されたN型熱電素子13とP型熱電素子12とを直列的に接続される。 Thereby, the electrode member 20 disposed on the upper side is connected to and the P-type thermoelectric elements 12 are arranged adjacent N-type thermoelectric element 13 in series, the electrode member disposed on the lower side 20 is connected to the N-type thermoelectric element 13 and the P-type thermoelectric elements 12 that are arranged adjacent serially.

そして、ケース部材28、29を組み付けて空気通路を形成することで上方側に放熱熱交換部が形成され、下方側に吸熱熱交換部が形成されて、これに空気を流通させることで冷風、温風を得ることが可能となる。 Then, a heat radiating heat exchanger to the upper side by forming an air passage by assembling the case members 28 and 29 are formed, cool air by which the heat absorbing heat exchanger portion is formed on the lower side, this circulating air, it is possible to obtain a hot air. 従って、従来は単品で形成していた電極部材20が、複数個同時に所定の形状に形成できることで製造工数の大幅な低減が図れる。 Therefore, conventionally, the electrode member 20 which has been formed separately is attained at a significantly reduced manufacturing steps by it can be formed into a plurality at the same time a predetermined shape.

また、熱電素子基板10に組みつけられた熱電素子12、13の両端面に電極部25を設置して接合する組み付けにおいても同時に行なえることで、さらに、製造工数の低減が図れる。 Also, by performed simultaneously in assembling the joint by installing an electrode portion 25 on both end faces of the assembled to the thermoelectric element substrate 10 thermoelectric elements 12 and 13, further, it can be reduced the number of manufacturing steps.

以上の第1実施形態による熱電変換装置によれば、電極部25とルーバー26とを有する電極部材20を、その外郭同士間で電気的に絶縁可能な絶縁部材21を介して電極部25およびルーバー26を所定の形状に形成される前の状態の金属板20aを少なくとも複数個連結するように一体に形成した後に、それぞれの金属板20aに電極部25およびルーバー26を所定の形状に複数個同時に形成できるように構成したことにより、所定の形状に形成する加工工数が大幅に低減できる。 According to the thermoelectric conversion device according to the first embodiment described above, the electrode portions 25 and the electrode member 20 having a louver 26, the electrode portions 25 and the louvers through the electrically insulating insulating element 21 between its outer each other the metal plate 20a in a state before being formed 26 into a predetermined shape after forming integrally to at least several connecting a plurality simultaneously electrode portion 25 and the louvers 26 in a predetermined shape on each of the metal plates 20a with the arrangements so as to form, the number of processing steps to be formed in a predetermined shape can be greatly reduced. これにより、製造工数の低減が図れる。 Thus, it can be reduced the number of manufacturing steps.

電極部材20は、平板状の絶縁材料からなる絶縁部材21に所定の間隔で形成された複数個の嵌合穴に金属板20aがそれぞれ配設されていることにより、絶縁部材21を介して所定の間隔を有して複数個の金属板を連結させることで複数個の電極部材20を同時に所定の形状に形成できる。 Electrode member 20, by a metal plate 20a are respectively disposed in a plurality of fitting holes formed in the insulating member 21 made of a plate-shaped insulating material at predetermined intervals, through the insulation member 21 a predetermined a plurality of electrode members 20 can be simultaneously formed in a predetermined shape by linking a plurality of metal plates with a gap. また、電極部材20の外郭同士間を絶縁可能な絶縁部材21を介することにより隣接する電極部材20が確実に電気的に絶縁できる。 Moreover, it can be electrically insulated securely the electrode member 20 adjacent the interposing an insulating member 21 that can insulate the outer ends of the electrode member 20.

電極部材組み付け工程と複数個同時に形成する成形加工工程とを有することにより、電極部材20の外郭同士間を絶縁可能な絶縁部材21を介することで隣接する電極部材20が確実に電気的に絶縁できる。 By having a forming step of forming the electrode member assembling step a plurality simultaneously, between the outer ends of the electrode member 20 adjacent electrode members 20 can be electrically insulated securely by via an insulating member 21 that can be insulated . また、多数個配設される電極部材20を複数個同時に形成できることで、所定の形状に形成する加工工数が大幅に低減できる。 Moreover, the ability to form an electrode member 20 which is a large number arranged plurality simultaneously, the number of processing steps to be formed in a predetermined shape can be greatly reduced. これにより、製造工数の低減が図れる。 Thus, it can be reduced the number of manufacturing steps.

また,熱電素子12、13の端面にそれぞれの電極部25を設置し、その後、電極部25と熱電素子12、13の端面とを接合する接合工程により、熱電素子12、13に電極部材20を複数個同時に組み付けができる。 We have also established the respective electrode portions 25 to the end surface of the thermoelectric elements 12 and 13, then the bonding step of bonding the end surface of the electrode portion 25 and the thermoelectric elements 12 and 13, the electrode member 20 to the thermoelectric elements 12, 13 plurality may assembled simultaneously. 従って、組み付け工数の低減が図れる。 Therefore, reduction of assembling steps can be reduced. これにより、製造工数の低減が図れる。 Thus, it can be reduced the number of manufacturing steps.

(第2実施形態) (Second Embodiment)
以上の第1実施形態では、平板状の絶縁材料からなる絶縁部材21に所定の間隔で形成された複数個の嵌合穴に金属板20aがそれぞれ配設する電極部材組み付け工程で製造したが、これに限らず、成形型に複数個の金属板20aを所定の間隔に配置して、絶縁材料をモールドするモールド加工によって絶縁部材21に一体構成するように製造しても良い。 In the above first embodiment, the metal plate 20a is prepared in each arrangement to the electrode member assembly process into a plurality of fitting holes formed at predetermined intervals in the insulating member 21 made of a plate-shaped insulating material, not limited thereto, a plurality of metal plates 20a arranged at predetermined intervals in the mold may be fabricated to integrally constructed with the insulating member 21 by a mold process for molding the insulating material.

これによれば、モールド加工によって隣接する電極部材20が確実に電気的に絶縁できることで、複数個の電極部材20を同時に所定の形状に形成できる。 According to this, since the electrode member 20 adjacent the mold processing can be reliably electrically insulated, a plurality of electrode members 20 can be simultaneously formed in a predetermined shape.

また、これらの方法の他に、絶縁材料に複数個の金属板20aを所定の間隔に配置して、絶縁材料に貼り合わせるラミネート加工によって絶縁部材21に一体構成するように製造しても良い。 In addition to these methods, by arranging a plurality of metal plates 20a at predetermined intervals in the insulating material may be prepared as integrally formed with the insulating member 21 by lamination bonding to the insulating material.

(第3実施形態) (Third Embodiment)
以上の実施形態では、電極部材20を上方側もしくは下方側の全ての個数をまとめて絶縁部材21に一体に構成するようにしたが、これに限らず、図6(a)および図6(b)に示すように、図中に示すように、A、B、Cの列数ごとに複数個を分割させて1列ごとに複数個構成しても良い。 In the above embodiments, although so as to constitute the electrode member 20 integrally with the insulating member 21 together all of the number of upper side or lower side, not limited to this, FIGS. 6 (a) and 6 (b as shown in), as shown in FIG., a, B, may be multiple configurations in each column by dividing the plurality for each number of columns C.

また、以上の実施形態では、金属板20aを電極部25およびルーバー26を所定の形状に形成する前の状態で外形抜き加工により形成して絶縁部材21に一体構成させたが、これに限らず、図7に示すように、金属板20a形成する外形抜き加工において、同時にルーバー26を所定の形状に形成した金属板20aを絶縁部材21に一体構成させても良い。 In the above embodiments, although is integrally constructed with the insulating member 21 formed by the outer shape punching in a state before forming the metal plate 20a of the electrode 25 and the louvers 26 in a predetermined shape, not limited to this as shown in FIG. 7, the outer shape punching the metal plate 20a formed, it may be integrally formed with the metal plate 20a formed with louvers 26 into a predetermined shape at the same time the insulating member 21.

(他の実施形態) (Other embodiments)
以上の実施形態では、熱交換部の形状をルーバー26で形成したが、これに限らず、電極部25から外方に延出された平面にスリット孔を形成するスリット状にしても良い。 In the above embodiment, although the shape of the heat exchange portion is formed in the louver 26 is not limited thereto, may be from the electrode portion 25 in a slit shape for forming a slit in the rolled out the plane outward. また、電極部25から外方に延出された平面に対して交互に突き出ように形成するオフセット状にしてもよい。 It is also possible to offset shape formed to project alternately to extend out a plane from the electrode portion 25 outward.

また、以上の実施形態では、電極部25を平面状に形成したが、図8に示すように、電極部25の背面側に、例えば、三角状に切り起こしを形成させて、電極部25の背面側で渦流を発生させる伝熱促進部25aを形成させても良い。 In the above embodiment has formed the electrode portions 25 in a planar shape, as shown in FIG. 8, the back side of the electrode portion 25, for example, by forming a cut and raised in a triangular shape, the electrode portion 25 it may form a heat transfer enhancing portion 25a for generating a vortex in the rear side.

これによれば、熱の発生源となる電極部25からじかにその熱を効率的に取り出すことができる。 According to this, it is possible to retrieve directly the heat efficiently from the electrode portion 25 serving as a heat generating source. これにより、切り起こしなどの成形加工は複数個同時に容易に加工することができる。 Accordingly, molding process such as cutting and bending can be processed several at the same time easily.

また、以上の実施形態では、電極部材20の断面を略U字状に形成し、その底部を電極部25およびその電極部25から外方に延出された平面にルーバー26を形成した形状で構成したが、これに限らず、図9に示すように、電極部材20を略櫛歯状に形成し、その略櫛歯状の一端に二つの電極部25と、その二つの電極部25とを電気的に接続する接続部23を形成し、さらに、電極部25から外方に延出された平面にルーバー26を形成する形状であっても良い。 Further, in the above embodiment, the cross section of the electrode member 20 is formed into a substantially U-shape, a shape of forming the louvers 26 extending out the plane outwardly the bottom from the electrode portion 25 and the electrode portion 25 configuration was, but not limited thereto, as shown in FIG. 9, to form the electrode member 20 in a comb shape, and two electrodes 25 on its comb-shaped end, and its two electrodes 25 the forming the connecting portion 23 for electrically connecting, further to a plane that extends outward from the electrode portion 25 may be shaped to form a louver 26. これによれば、以上の実施形態よりも放熱部の放熱面積を大きく取れる。 According to this, it takes a large heat radiating area of ​​the heat radiating portion than above embodiment.

本発明の第1実施形態における熱電変換装置の全体構成を示す模式図である。 It is a schematic diagram showing the overall structure of a thermoelectric conversion device according to the first embodiment of the present invention. 本発明の第1実施形態における熱電変換装置の主要部の構成を示す分解模式図である。 Is an exploded schematic view showing a configuration of a main part of the thermoelectric conversion device according to the first embodiment of the present invention. 図1に示すA−A断面図である。 It is an A-A cross-sectional view shown in FIG. 本発明の第1実施形態における電極部材20の全体構成を示す(a)は正面図、(b)は側面図、(c)は(a)に示すA−A断面図である。 Showing the overall structure of the electrode member 20 in the first embodiment of the present invention (a) is a front view, (b) is a side view, an A-A cross-sectional view shown in (c) is (a). (a)ないし(c)は本発明の第1実施形態における電極部材20の製造工程を示す説明図、(d)は(b)に示すB矢視図である。 (A) through (c) are explanatory views showing a manufacturing process of the electrode member 20 in the first embodiment of the present invention, (d) is a B arrow view shown in (b). (a)および(b)は本発明の第3実施形態における電極部材20と絶縁部材21との構成を示す構成図である。 (A) and (b) is a block diagram showing the configuration of the electrode member 20 and the insulating member 21 in the third embodiment of the present invention. 本発明の第3実施形態の変形例における熱電電極部材20と絶縁部材21との構成を示す構成図である。 The configuration of the thermoelectric electrode member 20 in a modification of the third embodiment of the present invention and the insulating member 21 is a configuration diagram showing. 他の実施形態における電極部材20の構成を示す模式図である。 It is a schematic diagram showing the structure of the electrode member 20 in other embodiments. 他の実施形態の変形例における熱電変換装置の全体構成を示す模式図である。 It is a schematic diagram showing the overall structure of a thermoelectric conversion device according to a modification of the other embodiment.

符号の説明 DESCRIPTION OF SYMBOLS

10…熱電素子基板 11…第1絶縁基板 12…P型熱電素子 13…N型熱電素子 20…電極部材 21…絶縁部材 25…電極部 25a…伝熱促進部 26…ルーバー(熱交換部) 10 ... thermoelectric element substrate 11 ... first insulating substrate 12 ... P-type thermoelectric element 13 ... N-type thermoelectric element 20 ... electrode member 21 ... insulating member 25 ... electrode portions 25a ... heat transfer enhancing portion 26 ... louver (heat exchanger)
27…第2絶縁基板 27 ... second insulating substrate

Claims (10)

  1. 絶縁材料からなる第1絶縁基板(11)に、P型熱電素子(12)およびN型熱電素子(13)を交互に複数個配列してなる熱電素子群を列設して構成された熱電素子基板(10)と、 The first insulating substrate made of an insulating material (11), P-type thermoelectric element (12) and the N-type thermoelectric element (13) is constituted by arrayed the thermoelectric element group formed by arranging a plurality alternately thermoelectric element and the substrate (10),
    平板状の導電性材料から形成され、前記熱電素子基板(10)に隣接して配列された前記P型熱電素子(12)と前記N型熱電素子(13)とを電気的に接続する電極部(25)、およびその電極部(25)より伝熱される熱を吸熱、放熱する熱交換部(26)を有する電極部材(20)とを備え、 It is formed of a flat conductive material, the thermoelectric element substrate (10) on the P-type thermoelectric elements arranged adjacent to (12) wherein the N-type thermoelectric element (13) and the electrode section electrically connecting (25), and provided with heat absorption, heat exchanger for dissipating the electrode member (20) having (26) the heat heat transfer from the electrode portion (25),
    隣接する前記P型熱電素子(12)と前記N型熱電素子(13)との両端に前記電極部(25)を直列的に接続するように複数個の前記電極部材(20)を配設する熱電変換装置であって、 Disposing a plurality of said electrode member (20) to connect both ends to the electrode portion between adjacent said P-type thermoelectric element (12) and the N-type thermoelectric element (13) to (25) serially a thermoelectric conversion device,
    前記電極部材(20)は、その外郭同士間で電気的に絶縁可能な絶縁部材(21)を介して前記電極部(25)および前記熱交換部(26)を所定の形状に形成される前の状態の金属板を少なくとも複数個連結するように一体に形成した後に、それぞれの前記金属板に前記電極部(25)および前記熱交換部(26)を所定の形状に複数個同時に形成できるように構成したことを特徴とする熱電変換装置。 Said electrode member (20) is pre-formed the electrode portions through the electrically insulating insulating element (21) (25) and said heat exchange section (26) into a predetermined shape between its outer each other the state of the metal plate after forming integrally to at least several coupling, so that the electrode portions to each of said metal plate (25) and said heat exchange section (26) can be a plurality simultaneously formed in a predetermined shape thermoelectric conversion device characterized by being configured to.
  2. 前記電極部材(20)は、平板状の絶縁材料からなる前記絶縁部材(21)に所定の間隔で形成された複数個の嵌合穴に前記金属板がそれぞれ配設されていることを特徴とする請求項1に記載の熱電変換装置。 It said electrode member (20) has a feature in that the metal plate are respectively disposed a plurality of fitting holes formed at predetermined intervals in the insulating member made of a flat insulating material (21) the thermoelectric conversion device according to claim 1.
  3. 前記電極部材(20)は、成形型に複数個の前記電極部材(20)を所定の間隔に配置して、絶縁材料をモールドするモールド加工によって前記絶縁部材(21)に構成したことを特徴とする請求項1に記載の熱電変換装置。 It said electrode member (20) has a feature that the plurality of said electrode member (20) disposed at predetermined intervals in the mold was constructed in the insulating member (21) with a molding process for molding the insulating material the thermoelectric conversion device according to claim 1.
  4. 前記電極部材(20)は、絶縁材料に複数個の前記電極部材(20)を所定の間隔に配置して、絶縁材料に貼り合わせるラミネート加工によって前記絶縁部材(21)に構成したことを特徴とする請求項1に記載の熱電変換装置。 Said electrode member (20) is arranged a plurality of said electrode member (20) at predetermined intervals in the insulating material, and characterized by being configured to the insulating member (21) by lamination bonding to the insulating material the thermoelectric conversion device according to claim 1.
  5. 前記電極部材(20)は、前記電極部(25)から外方に延出された平面に、ルーバー状、スリット状、オフセット状のいずれかの形状からなる前記熱交換部(26)を有することを特徴とする請求項1ないし請求項4のいずれか一項に記載の熱電変換装置。 Said electrode member (20) is in a plane which extends outwardly from said electrode portion (25), louvered, having slit-shaped, the heat exchanging portion comprising any one of the shape of the offset-like (26) the thermoelectric conversion device according to any one of claims 1 to 4, characterized in.
  6. 前記電極部材(20)には、前記電極部(25)の背面側に冷却流体もしくは被冷却流体が流通したときに、渦流を発生する伝熱促進部(25a)が形成されていることを特徴とする請求項5に記載の熱電変換装置。 Said electrode member (20), characterized in that the cooling fluid or the cooled fluid to the back side of the electrode portion (25) when in circulation, the heat transfer enhancement unit for generating a vortex flow (25a) is formed the thermoelectric conversion device according to claim 5,.
  7. P型熱電素子(12)およびN型熱電素子(13)を摘んで、予め設置された絶縁材料からなる第1絶縁基板(11)に略碁盤目状に形成された基板穴に、前記P型熱電素子(12)および前記N型熱電素子(13)を交互に複数個配列してなる熱電素子群を列設する熱電素子基板(10)の熱電素子組み付け工程と、 Picking P-type thermoelectric element (12) and the N-type thermoelectric element (13), the substrate hole formed in a substantially grid pattern on the first insulating substrate made of pre-installed insulating material (11), said P-type a thermoelectric element assembly process of the thermoelectric elements (12) and said N-type thermoelectric element (13) thermoelectric element substrate for column set the thermoelectric element group formed by arranging a plurality alternately (10),
    平板状の導電性材料に、隣接して配列された前記P型熱電素子(12)と前記N型熱電素子(13)とを電気的に接続する平面状の電極部(25)、およびその電極部(25)から伝熱される熱を吸熱、放熱する熱交換部(26)を有する電極部材(20)を所定の形状に形成する前の状態となる平板状の金属板を外形抜き加工で成形する金属板成形工程と、 A plate-shaped conductive material, adjacent the P-type thermoelectric elements arranged between (12) the N-type thermoelectric element (13) and the flat electrode portion for electrically connecting (25), and that electrode forming part of the heat heat is transferred from (25) an endothermic, the flat metal plate with a state before forming the heat exchange unit for dissipating electrode member (20) having (26) into a predetermined shape in outline punching a metal plate forming step of,
    前記金属板成形工程で成形された前記金属板を所定の間隔に少なくとも複数個配置し、その外郭同士間で電気的に絶縁可能な絶縁部材(21)を介して連結するように一体に形成する電極部材組み付け工程と、 At least a plurality are arranged, integrally formed so as to connect through the electrically insulating insulating element (21) between its outer together the metal plate molded with the metal plate forming step to a predetermined distance and the electrode member assembly process,
    前記電極部材組み付け工程で形成された複数個の前記金属板に前記電極部(25)および前記熱交換部(26)を所定の形状に成形加工により複数個同時に形成する成形加工工程と、 A forming step of forming a plurality simultaneously by molding said electrode portion (25) and said heat exchange section (26) into a predetermined shape into a plurality of said metal plate formed by the electrode member assembling step,
    前記成形加工工程で所定の形状に形成された前記電極部材(20)を摘んで、予め設置された絶縁材料からなる第2絶縁基板(27)に略碁盤目状に形成された嵌合穴に、前記電極部(25)を設置して一体に構成して、前記熱電素子基板(10)に組み付けられた前記熱電素子(12、13)の端面にそれぞれの前記電極部(25)を設置し、その後、前記電極部(25)と前記熱電素子(12、13)の端面とを接合する接合工程とを備えることを特徴とする熱電変換装置の製造方法。 Picking the electrode member formed in a predetermined shape in the forming step (20), to advance the installed fitting hole formed in a substantially grid pattern on the second insulating substrate made of an insulating material (27) , and integrally formed by installing the electrode portion (25), each of the electrode portions on the end face (25) is installed in the thermoelectric device the thermoelectric elements assembled to the substrate (10) (12, 13) , then method for producing a thermoelectric conversion device characterized by comprising a bonding step of bonding the end surface of the electrode portion (25) and the thermoelectric element (12, 13).
  8. 前記電極部材組み付け工程は、平板状の絶縁材料からなる前記絶縁部材(21)に所定の間隔で形成された複数個の嵌合穴にそれぞれ前記金属板を配設することを特徴とする請求項6または請求項7に記載の熱電変換装置の製造方法。 Said electrode member assembling step, claims, characterized in disposing the plate-shaped insulating material said insulating member (21) to each of the metal plate into a plurality of fitting holes formed at predetermined intervals method for producing a thermoelectric conversion device according to 6 or claim 7.
  9. 前記電極部材組み付け工程は、成形型に複数個の前記金属板を所定の間隔に配置して、絶縁材料をモールドするモールド加工によって前記絶縁部材(21)に一体構成したことを特徴とする請求項6または請求項7に記載の熱電変換装置の製造方法。 It said electrode member assembling step, claims a plurality of the metal plate disposed at predetermined intervals in the mold, characterized by being configured integrally with the insulation member (21) with a molding process for molding the insulating material method for producing a thermoelectric conversion device according to 6 or claim 7.
  10. 前記電極部材組み付け工程は、絶縁材料に複数個の前記金属板を所定の間隔に配置して、絶縁材料に貼り合わせるラミネート加工によって前記絶縁部材(21)に一体構成したことを特徴とする請求項6または請求項7に記載の熱電変換装置の製造方法。 It said electrode member assembling step, claims a plurality of the metal plate disposed at predetermined intervals in the insulating material, characterized by being configured integrally with the insulation member (21) by lamination bonding to the insulating material method for producing a thermoelectric conversion device according to 6 or claim 7.
JP2004309942A 2004-10-25 2004-10-25 Method for producing a thermoelectric conversion device and a thermoelectric converter Expired - Fee Related JP4626263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309942A JP4626263B2 (en) 2004-10-25 2004-10-25 Method for producing a thermoelectric conversion device and a thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309942A JP4626263B2 (en) 2004-10-25 2004-10-25 Method for producing a thermoelectric conversion device and a thermoelectric converter

Publications (2)

Publication Number Publication Date
JP2006121006A true true JP2006121006A (en) 2006-05-11
JP4626263B2 JP4626263B2 (en) 2011-02-02

Family

ID=36538571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309942A Expired - Fee Related JP4626263B2 (en) 2004-10-25 2004-10-25 Method for producing a thermoelectric conversion device and a thermoelectric converter

Country Status (1)

Country Link
JP (1) JP4626263B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053686A (en) * 2006-07-27 2008-03-06 Denso Corp Method of manufacturing thermoelectric conversion device
US8471139B2 (en) 2008-07-02 2013-06-25 Murata Manufacturing Co., Ltd. Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205451A (en) * 1988-02-10 1989-08-17 Nippon Denso Co Ltd Thermoelectric cooling device
JPH03263382A (en) * 1989-04-17 1991-11-22 Nippondenso Co Ltd Thermoelectric conversion device
JPH0997930A (en) * 1995-07-27 1997-04-08 Aisin Seiki Co Ltd Thermoelectric cooling module and manufacture thereof
JPH1187786A (en) * 1997-09-08 1999-03-30 Moritsukusu Kk Electron cooling/heating apparatus
WO2004001865A1 (en) * 2002-06-19 2003-12-31 Kabushiki Kaisha Toshiba Thermoelectric element and electronic component module and portable electronic apparatus using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205451A (en) * 1988-02-10 1989-08-17 Nippon Denso Co Ltd Thermoelectric cooling device
JPH03263382A (en) * 1989-04-17 1991-11-22 Nippondenso Co Ltd Thermoelectric conversion device
JPH0997930A (en) * 1995-07-27 1997-04-08 Aisin Seiki Co Ltd Thermoelectric cooling module and manufacture thereof
JPH1187786A (en) * 1997-09-08 1999-03-30 Moritsukusu Kk Electron cooling/heating apparatus
WO2004001865A1 (en) * 2002-06-19 2003-12-31 Kabushiki Kaisha Toshiba Thermoelectric element and electronic component module and portable electronic apparatus using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053686A (en) * 2006-07-27 2008-03-06 Denso Corp Method of manufacturing thermoelectric conversion device
US8471139B2 (en) 2008-07-02 2013-06-25 Murata Manufacturing Co., Ltd. Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Also Published As

Publication number Publication date Type
JP4626263B2 (en) 2011-02-02 grant

Similar Documents

Publication Publication Date Title
US3213630A (en) Thermoelectric apparatus
US5724818A (en) Thermoelectric cooling module and method for manufacturing the same
US5038569A (en) Thermoelectric converter
US20100031987A1 (en) Enhanced thermally isolated thermoelectrics
US20070009787A1 (en) Method and apparatus for mounting, cooling, connecting and protecting batteries
US20090107655A1 (en) Semiconductor cooling apparatus
US4730459A (en) Thermoelectric modules, used in thermoelectric apparatus and in thermoelectric devices using such thermoelectric modules
JP2004119667A (en) Semiconductor device for electric power
US6855880B2 (en) Modular thermoelectric couple and stack
JP2006202899A (en) Semiconductor cooling apparatus
US20090293499A1 (en) Thermoelectric heat pump
US5254178A (en) Thermoelectric transducer apparatus comprising N- and P-type semiconductors and having electronic control capabilities
US20080055855A1 (en) Heat sink for electronic components
US5279128A (en) Dehumidifying apparatus with electronic refrigeration unit
JP2005073374A (en) Power conversion apparatus
US6400013B1 (en) Thermoelectric module with interarray bridges
JP2006287108A (en) Laminated coolers
JP2005045960A (en) Power converter
JP2005079210A (en) Thermoelectric conversion device
JP2005150277A (en) Terminal box for solar cell module
JP2010010418A (en) Laminated cooler
JP2005333008A (en) Electric power conversion unit
JP2012049167A (en) Power semiconductor device
JP2008294069A (en) Semiconductor module and inverter
JP2008198750A (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees