JP2006120401A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery Download PDF

Info

Publication number
JP2006120401A
JP2006120401A JP2004305509A JP2004305509A JP2006120401A JP 2006120401 A JP2006120401 A JP 2006120401A JP 2004305509 A JP2004305509 A JP 2004305509A JP 2004305509 A JP2004305509 A JP 2004305509A JP 2006120401 A JP2006120401 A JP 2006120401A
Authority
JP
Japan
Prior art keywords
positive electrode
aluminum
current collector
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004305509A
Other languages
Japanese (ja)
Inventor
Hiroyuki Akitani
弘之 秋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004305509A priority Critical patent/JP2006120401A/en
Publication of JP2006120401A publication Critical patent/JP2006120401A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery wherein reliability for a long period is improved by preventing corrosion of aluminum even in an environment that an electrolyte contains much water. <P>SOLUTION: Organic electrolyte secondary battery is provided with a positive electrode, a negative electrode and the electrolyte. The positive electrode has a positive electrode active material, a positive electrode outer package can and a positive electrode current collector. The positive electrode active material is at least one kind of compounds selected from a group comprising compounds which can store and release light metal and whose positive electrode potential is 4 V or more. The positive electrode outer package can is made of aluminum or stainless steel having an aluminum layer on a surface contacting the positive electrode. The positive electrode current collector is made of aluminum or an aluminum alloy and has a network projection shape. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機電解液二次電池に関するものである。   The present invention relates to an organic electrolyte secondary battery.

近年においては、高出力、高エネルギー密度の電池として、非水電解液を用いた電池であるリチウム電池やリチウム二次電池が多くの電子機器などの電源として用いられている。これらの非水電解液電池は、電解液が水溶液である電池に比べて、放電電圧が高く、低温特性や長期保存特性が優れている特徴があり、様々な形状のものが販売されている。それらの中で、コイン形形状を有したものは、小型かつ軽量であり、またその構成部品が少なく製造が容易であることから大量生産されている。最近では、充放電が可能であるコイン形リチウム二次電池が多く開発されており、例えば、エネルギー密度の向上から正極活物質としてコバルト酸リチウム、外装ケースにアルミニウムを用いたコイン形有機電解液二次電池があり、腕時計などの主電源用途のほかに、電子機器のバックアップ用途などで広く用いられている。   In recent years, lithium batteries and lithium secondary batteries, which are batteries using a non-aqueous electrolyte, have been used as power sources for many electronic devices as batteries with high output and high energy density. These non-aqueous electrolyte batteries are characterized by high discharge voltage, excellent low-temperature characteristics and long-term storage characteristics as compared with batteries in which the electrolyte solution is an aqueous solution, and are available in various shapes. Among them, those having a coin-shaped shape are mass-produced because they are small and light and have few components and are easy to manufacture. Recently, many coin-type lithium secondary batteries that can be charged and discharged have been developed. For example, a coin-type organic electrolyte solution that uses lithium cobaltate as a positive electrode active material and aluminum as an outer case for improving energy density. There is a secondary battery, and it is widely used for backup of electronic devices in addition to the main power supply for watches and the like.

このコイン形有機電解液二次電池は、通常、以下のような構造をしている。   This coin-type organic electrolyte secondary battery usually has the following structure.

上部が開口する負極側の外装缶の中に、負極ペレットとセパレータと正極ペレットとが積層され、更に所定の非水電解液が収容されていて、負極側の外装缶の開口は、電気絶縁性のガスケットを介して正極側の外装ケースにより密閉されている。また電極からの集電方式は、電極と外装缶とを集電体を介して接触する方式が一般である。そして集電体としては、導電性を向上させるためにカーボンペーストを塗布したことにより形成されるカーボン薄膜層を用いた方式や、特許文献1に示されるような網目構造が用いられるものがある。
特開平7−111160号公報
A negative electrode pellet, a separator, and a positive electrode pellet are laminated in a negative electrode-side outer can that is open at the top, and a predetermined non-aqueous electrolyte is accommodated. The opening of the negative electrode-side outer can is electrically insulating. It is sealed by an outer case on the positive electrode side through a gasket. The current collecting method from the electrodes is generally a method in which the electrode and the outer can are brought into contact with each other through a current collector. As a current collector, there is a method using a carbon thin film layer formed by applying a carbon paste to improve conductivity, or a network structure as shown in Patent Document 1.
Japanese Unexamined Patent Publication No. 7-111160

しかしながら、外装ケースにアルミニウムを用い、正極集電体にカーボンペーストを塗布した事より形成されるカーボン薄膜層を有した電池系で、正極電位が4V(リチウム基準電位)以上となる状態では、カーボン薄膜層とアルミニウム面との間でアルミニウムの溶解反応が起こり、同時に酸化皮膜を生成する反応も起こっている。その結果、酸化皮膜生成のための酸素濃度が低下し、その反応が律速になった時アルミニウム面が表面に露出する。そして、電解液中に水分が多い環境では、電解液中に酸を生じ、表面に露出しているアルミニウム面を腐蝕し、長期信頼性を損なってしまうため、アルミニウムの腐食を防止する対策を講じる必要性があった。   However, in a battery system having a carbon thin film layer formed by applying aluminum paste to the positive electrode current collector and applying a carbon paste to the positive electrode current collector, in a state where the positive electrode potential is 4 V (lithium reference potential) or more, carbon A dissolution reaction of aluminum occurs between the thin film layer and the aluminum surface, and at the same time, a reaction that forms an oxide film also occurs. As a result, the oxygen concentration for forming the oxide film decreases, and when the reaction becomes rate-limiting, the aluminum surface is exposed on the surface. And in an environment where there is a lot of moisture in the electrolytic solution, acid is generated in the electrolytic solution, and the aluminum surface exposed on the surface is corroded and the long-term reliability is impaired. Therefore, measures are taken to prevent corrosion of aluminum. There was a need.

上記課題を解決するために、本発明の有機電解液二次電池は、正極、負極、電解液およびセパレータを備え、前記正極が、正極活物質と正極外装缶と正極集電体を有し、前記正極活物質が、軽金属を吸蔵および離脱することが可能で正極電位が4V(リチウム基準)
以上である化合物からなる群より選ばれる少なくとも1種の化合物であり、前記正極外装缶が、アルミニウムあるいは正極と接する面にアルミニウム層を有したステンレスからなり、前記正極集電体が、アルミニウムあるいはアルミニウム合金からなるとともに網目突起形状を有することを特徴とする。
In order to solve the above problems, an organic electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the positive electrode includes a positive electrode active material, a positive electrode outer can, and a positive electrode current collector, The positive electrode active material can occlude and release light metals, and the positive electrode potential is 4 V (lithium reference).
It is at least one compound selected from the group consisting of the above compounds, and the positive electrode outer can is made of aluminum or stainless steel having an aluminum layer on the surface in contact with the positive electrode, and the positive electrode current collector is aluminum or aluminum. It is made of an alloy and has a mesh projection shape.

以下、本発明の実施の形態を、図面を参照しながら説明をする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係る二次電池の断面構造を表すものである。この二次電池はいわゆるコイン型といわれるものであり、外装缶11内に収容された円板状の負極ペレット12と外装ケース13に収容された円板状の正極ペレット14とがセパレータ15を介して対向に配置されている。外装缶11および外装ケース13の内部は電解液(図示せず)により満たされており、外装缶11および外装ケース13の周縁部は絶縁ガスケット17を介してかしめられることにより密閉されている。外装缶11および外装ケース13は、アルミニウムあるいはステンレスなどの金属によりそれぞれ構成されている。   FIG. 1 shows a cross-sectional structure of a secondary battery according to an embodiment of the present invention. This secondary battery is a so-called coin-type battery, and a disk-shaped negative electrode pellet 12 accommodated in an outer can 11 and a disk-shaped positive electrode pellet 14 accommodated in an outer case 13 are interposed via a separator 15. Are arranged opposite to each other. The interiors of the outer can 11 and the outer case 13 are filled with an electrolytic solution (not shown), and the peripheral portions of the outer can 11 and the outer case 13 are sealed by caulking through an insulating gasket 17. The outer can 11 and the outer case 13 are each made of a metal such as aluminum or stainless steel.

また負極集電体18は、負極ペレット12と外装缶11の間に外装缶11に接して配置されており、負極集電体18は、カーボンペーストを塗布した事より形成されるカーボン薄膜層により構成されている。   The negative electrode current collector 18 is disposed between the negative electrode pellet 12 and the outer can 11 in contact with the outer can 11, and the negative electrode current collector 18 is formed of a carbon thin film layer formed by applying a carbon paste. It is configured.

一方正極集電体19は、正極ペレット14と外装ケース13の間に外装ケース13に接して配置されており、正極集電体19は、カーボンペーストを塗布した事より形成されるカーボン薄膜層により構成されている。   On the other hand, the positive electrode current collector 19 is disposed in contact with the outer case 13 between the positive electrode pellet 14 and the outer case 13, and the positive electrode current collector 19 is formed by a carbon thin film layer formed by applying a carbon paste. It is configured.

負極ペレット12は、例えば、負極活物質として軽金属であるリチウムを吸蔵および離脱することが可能な負極材料のいずれか1種または2種以上を含んでおり、必要に応じて黒鉛などの導電剤およびポリフッ化ビニリデンなどの結着剤を含んでいてもよく、リチウムを吸蔵および離脱することが可能な負極材料としては、例えば、黒鉛、チタン酸リチウムなどが挙げられる。   The negative electrode pellet 12 includes, for example, any one or two or more negative electrode materials capable of inserting and extracting lithium, which is a light metal, as a negative electrode active material. Examples of the negative electrode material that may contain a binder such as polyvinylidene fluoride and can occlude and release lithium include graphite and lithium titanate.

正極ペレット14は、例えば、正極活物質として軽金属であるリチウムを吸蔵および離脱することが可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて黒鉛などの導電剤およびポリフッ化ビニリデンなどの結着剤を含んでいてもよく、正極活物質としては、一般式LixMO2で表されるリチウム複合酸化物あるいはリチウムを含んだ層間化合物が好ましい。なお、Mは1種類以上の遷移金属であり、例えば、コバルト、ニッケル、マンガンのうち少なくとも1種類が好ましい。xは電池の充放電状態によって異なり、通常0.05≦x≦1.00の範囲内の値である。このようなリチウム複合酸化物の具体例としては、LiCoO2,LiNiO2あるいはスピネル型構造を有するLiMn24などが挙げられる。 The positive electrode pellet 14 includes, for example, any one or more of positive electrode materials capable of inserting and extracting lithium, which is a light metal, as a positive electrode active material, and a conductive agent such as graphite and the like, if necessary. A binder such as polyvinylidene fluoride may be included, and the positive electrode active material is preferably a lithium composite oxide represented by the general formula Li x MO 2 or an intercalation compound containing lithium. M is one or more transition metals, and for example, at least one of cobalt, nickel, and manganese is preferable. x varies depending on the charge / discharge state of the battery, and is usually a value in the range of 0.05 ≦ x ≦ 1.00. Specific examples of such a lithium composite oxide include LiCoO 2 , LiNiO 2 or LiMn 2 O 4 having a spinel structure.

セパレータ15は、負極ペレット12と正極ペレット14とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータ15は、例えば、ポリエチレン、ポリプロピレンなどによる合成樹脂製の多孔質膜、不織布、またはセラミック製の無機材料よりなる多孔質膜により構成されており、これら2種類以上の多孔質膜を積層した構造とされていてもよい。   The separator 15 separates the negative electrode pellet 12 and the positive electrode pellet 14 and allows lithium ions to pass through while preventing a short circuit due to contact between both electrodes. The separator 15 is made of, for example, a porous film made of a synthetic resin made of polyethylene, polypropylene, or the like, a non-woven fabric, or a porous film made of a ceramic inorganic material, and these two or more kinds of porous films are laminated. It may be a structure.

電解液は、溶媒に電解質塩としてリチウム塩を溶解させたものであり、リチウム塩が電離することによりイオン伝導性を示すようになっている。リチウム塩としては、LiPF6が好ましく電解質の塩濃度は良好なイオン伝導度が得られるように0.1〜2.0mol/lとすることが好ましい。また、溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1・2−ジメトキシエタン、ガンマーブチルラクトンなどの非水溶媒が好ましく、これらのうちいずれか1種または2種以上が混合して用いられる。 The electrolytic solution is obtained by dissolving a lithium salt as an electrolyte salt in a solvent, and exhibits ion conductivity when the lithium salt is ionized. As the lithium salt, LiPF 6 is preferable, and the salt concentration of the electrolyte is preferably 0.1 to 2.0 mol / l so that good ionic conductivity is obtained. The solvent is preferably a non-aqueous solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, gamma-butyl lactone, and any one or two of them. The above is mixed and used.

この二次電池は、例えば、次のようにして製造することができる。   For example, the secondary battery can be manufactured as follows.

まず、正極活物質と導電剤と結着剤とを混合して正極合剤を調整した後、この正極合剤を圧縮成型してペレット形状とすることにより正極ペレット14を作製する。   First, a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and then the positive electrode mixture is compression-molded into a pellet shape to produce a positive electrode pellet 14.

続いて、負極活物質と導電剤と結着剤とを混合して負極合剤を調整した後、この負極合剤を圧縮成型してペレット形状とすることにより負極ペレット12を作製する。   Subsequently, a negative electrode active material, a conductive agent, and a binder are mixed to prepare a negative electrode mixture, and then the negative electrode mixture is compression-molded to form a pellet, thereby preparing the negative electrode pellet 12.

その後に、外装缶11の中に、負極ペレット12、セパレータ15および正極ペレット14を積層させ、電解液を注入した後、ガスケット17を介して外装缶11と外装ケース13とをかしめる。これにより、図1に示されるような二次電池が形成される。   Thereafter, the negative electrode pellet 12, the separator 15, and the positive electrode pellet 14 are laminated in the outer can 11, and after the electrolyte is injected, the outer can 11 and the outer case 13 are caulked through the gasket 17. Thereby, a secondary battery as shown in FIG. 1 is formed.

本発明のより具体的な実施の形態について、以下に説明する。正極活物質としてリチウム・コバルト複合酸化物(LiCoO2)90質量部と、導電剤であるグラファイト5質量部と、結着剤であるポリフッ化ビニリデン5質量部とを混合して正極合剤を調整した。 More specific embodiments of the present invention will be described below. A positive electrode mixture is prepared by mixing 90 parts by mass of lithium-cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, 5 parts by mass of graphite as a conductive agent, and 5 parts by mass of polyvinylidene fluoride as a binder. did.

また、正極集電体19は、図2に示されるような網目厚み(t1)0.15mm、網目幅(w1)0.15mm、各交点での集電体高さ(h1)0.30μm、交点間の幅(d1)2mm、直径(φ1)7mmである網目状突起を有したものを用いる。なお、この集電体の作製方法は、網目状突起形状と同様の構造を有する鋳型に、加熱し融解した金属アルミニウムを流し込んで冷却した後に、直径7mmの打抜きで抜くことにより作製を行った。   The positive electrode current collector 19 has a mesh thickness (t1) of 0.15 mm, a mesh width (w1) of 0.15 mm, and a current collector height (h1) of 0.30 μm at each intersection as shown in FIG. One having a mesh-like projection having a width (d1) of 2 mm and a diameter (φ1) of 7 mm is used. The current collector was manufactured by pouring metal aluminum that had been heated and melted into a mold having the same structure as that of the mesh-like protrusions, cooling, and then punching out by punching with a diameter of 7 mm.

正極集電体19と正極合剤を同時に圧縮成型することで直径10mm、厚み0.5mmの正極ペレット14を作製した。   A positive electrode pellet 14 having a diameter of 10 mm and a thickness of 0.5 mm was produced by simultaneously compression-molding the positive electrode current collector 19 and the positive electrode mixture.

また、負極活物質として黒鉛90質量部と、導電剤であるグラファイト5質量部と、結着剤であるポリフッ化ビニリデン5質量部とを混合して負極合剤を調整した。この負極合剤を圧縮成型して直径10mmの負極ペレット12を作製した。   Further, 90 parts by mass of graphite as a negative electrode active material, 5 parts by mass of graphite as a conductive agent, and 5 parts by mass of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture. This negative electrode mixture was compression molded to prepare a negative electrode pellet 12 having a diameter of 10 mm.

厚さ25μmのポリプロピレン不織布からなるセパレータ15を用意し、外装缶11内に挿入した後、負極ペレット12、セパレータ15および正極ペレット14を順に積層し、電解液を注入した。電解液には、エチレンカーボネートとエチルメチルカーボネートを1:3の質量比で混合した溶媒に電解質塩としてLiPF6を1.25mol/lの含有量で溶解させたものを用いた。 A separator 15 made of a polypropylene nonwoven fabric having a thickness of 25 μm was prepared and inserted into the outer can 11. Then, the negative electrode pellet 12, the separator 15, and the positive electrode pellet 14 were sequentially laminated, and an electrolyte solution was injected. As the electrolytic solution, a solution obtained by dissolving LiPF 6 as an electrolyte salt at a content of 1.25 mol / l in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a mass ratio of 1: 3 was used.

また、外装ケース13には、内面に50μmのアルミニウム層を有したステンレス材を用いた。   For the outer case 13, a stainless material having an aluminum layer of 50 μm on the inner surface was used.

負極集電体18は、カーボンペーストを塗布した事より形成されるカーボン薄膜層を外装缶11の負極ペレット12と接触する面に作製し、外装缶11aとした。
その後、ガスケット17を介して外装缶11aと外装ケース13とをかしめて封止し図1に示されるような直径16mm、高さ1.6mmのコイン形有機電解液二次電池を作製した。
As the negative electrode current collector 18, a carbon thin film layer formed by applying a carbon paste was prepared on the surface of the outer can 11 in contact with the negative electrode pellet 12 to obtain an outer can 11 a.
Thereafter, the outer can 11a and the outer case 13 were caulked through a gasket 17 and sealed to produce a coin-shaped organic electrolyte secondary battery having a diameter of 16 mm and a height of 1.6 mm as shown in FIG.

比較例1の電池として、正極集電体にカーボンペーストを塗布したことにより形成されるカーボン薄膜層を外装ケース13と正極ペレット14と接触する面に作製した以外は本実施例の電池と同様にしてコイン形有機電解液二次電池を作製した。   The battery of Comparative Example 1 was the same as the battery of this example, except that a carbon thin film layer formed by applying a carbon paste to the positive electrode current collector was formed on the surface in contact with the outer case 13 and the positive electrode pellet 14. Thus, a coin-type organic electrolyte secondary battery was produced.

比較例2の電池として、正極集電体を取り除いた以外は本実施例の電池と同様にしてコイン形有機電解液二次電池を作製した。   As a battery of Comparative Example 2, a coin-type organic electrolyte secondary battery was produced in the same manner as the battery of this example except that the positive electrode current collector was removed.

比較例3の電池として、正極集電体に網目状突起を有したステンレスを用いたこと以外は本実施例の電池と同様にしてコイン形有機電解液二次電池を作製した。   As the battery of Comparative Example 3, a coin-type organic electrolyte secondary battery was produced in the same manner as the battery of this example, except that stainless steel having a net-like protrusion was used for the positive electrode current collector.

比較例4の電池として、正極集電体に図3に示されるような円板状アルミニウムを用いたこと以外は、本実施例の電池と同様にしてコイン形有機電解液二次電池を作製した。   As the battery of Comparative Example 4, a coin-shaped organic electrolyte secondary battery was produced in the same manner as the battery of this Example, except that a disc-shaped aluminum as shown in FIG. 3 was used for the positive electrode current collector. .

得られた実施例および比較例1〜4の電池について、2.6Vの定電圧で充電を行った後、多湿(湿度90%)、高温(60℃)下で保存試験を行った。保存日数が20・30・40日目である時に、それぞれの電池の内部抵抗および外装ケース13のアルミニウム面での腐食の発生を調べた。得られた結果を表1に示す。   About the battery of the obtained Example and Comparative Examples 1-4, after charging with the constant voltage of 2.6V, the storage test was performed under high humidity (90% of humidity) and high temperature (60 degreeC). When the storage days were 20, 30, and 40 days, the internal resistance of each battery and the occurrence of corrosion on the aluminum surface of the outer case 13 were examined. The obtained results are shown in Table 1.

表1から明らかなように、本実施例の電池ではアルミニウム面での腐食は発生せず、電池の内部抵抗も安定していた。しかしながら、カーボン薄膜層を正極集電体とした比較例1の電池では、アルミニウム面での腐食が発生し電池の内部抵抗の上昇が確認された。また、正極集電体を取り除いた比較例2の電池では、アルミニウム面での腐食は確認されなかったものの、集電性の低下から初期において電池の内部抵抗が高かった。さらに比較例3の電池では、正極集電体とした網目状突起ステンレスが腐食し、電池の内部抵抗の上昇も確認された。また比較例4の電池では、アルミニウム面での腐食は確認されなかったが、初期において電池の内部抵抗が高かった。   As is apparent from Table 1, the battery of this example did not corrode on the aluminum surface, and the internal resistance of the battery was stable. However, in the battery of Comparative Example 1 using the carbon thin film layer as the positive electrode current collector, corrosion on the aluminum surface occurred, and an increase in the internal resistance of the battery was confirmed. Further, in the battery of Comparative Example 2 from which the positive electrode current collector was removed, although corrosion on the aluminum surface was not confirmed, the internal resistance of the battery was high in the initial stage due to the decrease in current collecting performance. Furthermore, in the battery of Comparative Example 3, the mesh protrusion stainless steel used as the positive electrode current collector was corroded, and an increase in the internal resistance of the battery was also confirmed. In the battery of Comparative Example 4, corrosion on the aluminum surface was not confirmed, but the internal resistance of the battery was high in the initial stage.

本発明の有機電解液二次電池は、アルミニウムの腐食を防止し長期信頼性を向上させることができるため、多湿環境化における有機電解液二次電池として有用である。   Since the organic electrolyte secondary battery of the present invention can prevent corrosion of aluminum and improve long-term reliability, it is useful as an organic electrolyte secondary battery in a humid environment.

本発明の実施例にかかる二次電池の断面図Sectional drawing of the secondary battery concerning the Example of this invention 本発明の実施例にかかる網目状突起集電体を示す図The figure which shows the mesh-shaped protrusion electrical power collector concerning the Example of this invention. 本発明の比較例にかかる円板状集電体を示す図The figure which shows the disk shaped electrical power collector concerning the comparative example of this invention

符号の説明Explanation of symbols

11 外装缶
12 負極ペレット
13 外装ケース
14 正極ペレット
15 セパレータ
17 ガスケット
18 負極集電体
19 正極集電体
DESCRIPTION OF SYMBOLS 11 Exterior can 12 Negative electrode pellet 13 Exterior case 14 Positive electrode pellet 15 Separator 17 Gasket 18 Negative electrode current collector 19 Positive electrode current collector

Claims (1)

正極、負極、電解液およびセパレータを備えた有機電解液二次電池であって、
前記正極が、正極活物質と正極外装缶と正極集電体を有し、
前記正極活物質が、軽金属を吸蔵および離脱することが可能で正極電位が4V以上である
化合物からなる群より選ばれる少なくとも1種の化合物であり、
前記正極外装缶が、アルミニウムあるいは正極と接する面にアルミニウム層を有したステンレスからなり、
前記正極集電体が、アルミニウムあるいはアルミニウム合金からなるとともに網目突起形状を有することを特徴とする有機電解液二次電池。
An organic electrolyte secondary battery comprising a positive electrode, a negative electrode, an electrolyte and a separator,
The positive electrode has a positive electrode active material, a positive electrode outer can and a positive electrode current collector,
The positive electrode active material is at least one compound selected from the group consisting of compounds capable of inserting and extracting light metals and having a positive electrode potential of 4 V or more;
The positive electrode outer can is made of aluminum or stainless steel having an aluminum layer on the surface in contact with the positive electrode,
An organic electrolyte secondary battery, wherein the positive electrode current collector is made of aluminum or an aluminum alloy and has a mesh protrusion shape.
JP2004305509A 2004-10-20 2004-10-20 Organic electrolyte secondary battery Pending JP2006120401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305509A JP2006120401A (en) 2004-10-20 2004-10-20 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305509A JP2006120401A (en) 2004-10-20 2004-10-20 Organic electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2006120401A true JP2006120401A (en) 2006-05-11

Family

ID=36538107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305509A Pending JP2006120401A (en) 2004-10-20 2004-10-20 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2006120401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745525A (en) * 2021-06-16 2021-12-03 浙江柔震科技有限公司 Flexible composite plastic film and preparation and test method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745525A (en) * 2021-06-16 2021-12-03 浙江柔震科技有限公司 Flexible composite plastic film and preparation and test method thereof

Similar Documents

Publication Publication Date Title
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
JP2001325988A (en) Charging method of non-aqueous electrolyte secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2007179765A (en) Negative electrode and battery
JP2004220819A (en) Electrolyte, anode, and battery
JP2005071678A (en) Battery
JP3140977B2 (en) Lithium secondary battery
JP3819663B2 (en) Lithium secondary battery charge / discharge method and lithium secondary battery
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JP2006134758A (en) Secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP2005093371A (en) Nonaqueous electrolyte secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JP2006086060A (en) Manufacturing method of secondary battery
JP2006120401A (en) Organic electrolyte secondary battery
JPH11214042A (en) Nonaqueous electrolyte secondary battery
JP2010080226A (en) Nonaqueous electrolyte secondary battery
JP2001297762A (en) Secondary cell with nonaqueous electrolyte
JP2002093463A (en) Nonaqueous electrolyte battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2001023615A (en) Flat nonaqueous electrolyte secondary battery