JP2006118572A - Non-slip differential device in linkage with steering device - Google Patents

Non-slip differential device in linkage with steering device Download PDF

Info

Publication number
JP2006118572A
JP2006118572A JP2004305897A JP2004305897A JP2006118572A JP 2006118572 A JP2006118572 A JP 2006118572A JP 2004305897 A JP2004305897 A JP 2004305897A JP 2004305897 A JP2004305897 A JP 2004305897A JP 2006118572 A JP2006118572 A JP 2006118572A
Authority
JP
Japan
Prior art keywords
turning
slip
right drive
gear
left driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004305897A
Other languages
Japanese (ja)
Inventor
Hitoshi Fujisawa
均 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WANDAA KIKAKU KK
Original Assignee
WANDAA KIKAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WANDAA KIKAKU KK filed Critical WANDAA KIKAKU KK
Priority to JP2004305897A priority Critical patent/JP2006118572A/en
Publication of JP2006118572A publication Critical patent/JP2006118572A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Retarders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-slip differential for eliminating the waste of driving force, improving controllability, fuel consumption, travelling stability and road ability and suppressing the wear of a tire by improving a current non-slip differential which cannot determine slip during turn or during straight run when there is a travel distance difference between right and left driving wheels. <P>SOLUTION: The steering angle of a steering device is linked with the movement of the non-slip differential to automatically determine straight run or turn without giving burden to a driver. Right and left driving wheel axles are connected directly to each other during straight run and mechanical rotating load is applied to a side gear on the turning inside corresponding to the steering angle independently of a road travel resistance difference during turn to properly distribute driving fore to the right and left driving wheel axles. Rotation sensors are mounted on the right and left driving wheel axles for comparing an actual rotating speed ratio between the right and left driving wheel axles with a calculated ideal rotating speed ratio and feedbacking an error to the size of the rotating load to actualize an approximately ideal turning track. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

ノン・スリップ・デフに関する   Non-slip differential

自動車などでは駆動力は通常一つの動力源から変速装置,伝導装置などを経て最終減速と差動歯車からなるデフと呼ばれる装置で左右の駆動輪に分配される。差動歯車は自動車が旋回するときに駆動車輪の旋回半径が異なることによる走行距離の差を調整するための装置で,ギヤボックスの中に4つのカサ歯車を互いに向き合わせた差動歯車がドライブピニオンで回転される最終減速のドライブギヤに取付けられているのが基本的な形式である。   In an automobile or the like, the driving force is usually distributed to the left and right drive wheels from a single power source through a transmission, a transmission device, etc., and a device called a differential comprising a final reduction gear and a differential gear. The differential gear is a device for adjusting the difference in mileage due to the difference in the turning radius of the drive wheel when the vehicle turns, and the differential gear that drives the four bevel gears in the gear box drives each other. It is the basic type that is attached to the final reduction drive gear rotated by a pinion.

この形式の差動歯車は,左右の駆動輪の走行抵抗のバランスが崩れないと作動しない。自動車が旋回するとき旋回内側の駆動輪にはブレ−キがかかった状態になり走行抵抗が大きくなり,旋回外側の駆動輪は無理やり回転させられて走行抵抗が小さくなる。走行抵抗の差が大きくなると差動歯車が働き,走行抵抗が大きな駆動輪から走行抵抗が小さな駆動輪に駆動力が分配,移動する。   This type of differential gear will not operate unless the balance of the running resistance of the left and right drive wheels is lost. When the vehicle turns, the driving wheel inside the turn is braked and the running resistance increases, and the driving wheel outside the turning is forcibly rotated to reduce the running resistance. When the difference in running resistance increases, the differential gear works, and the driving force is distributed and moved from the driving wheel with a large running resistance to the driving wheel with a small running resistance.

一般道路の走行時では左右の駆動輪の走行抵抗が微妙に違う場合が多く,直進時,旋回時に係らず走行中の左右の車輪の駆動力の一部は絶えず走行抵抗の大きい方の駆動輪から抵抗の小さい駆動輪に移動している。直進時に限らず旋回時に於いても左右の駆動輪の回転数に不要な小さな誤差がスリップとして発生することで動力のロスやタイヤの摩耗,燃費低下に影響している。   When driving on ordinary roads, the driving resistance of the left and right drive wheels is often slightly different. When driving straight or turning, part of the driving force of the left and right wheels is always the one with the higher driving resistance. To drive wheels with low resistance. Not only when going straight, but also when turning, small unnecessary errors in the rotational speed of the left and right drive wheels are generated as slips, affecting power loss, tire wear, and fuel consumption.

また左右の駆動輪の走行抵抗差が大きくなる不整地や雪道などの走行では抵抗の小さい方の駆動輪に駆動力が流れる結果,左右の駆動輪の走行抵抗差は更に大きくなり,最悪の場合は片輪が空転,自動車が動けなくなることがある。また高速走行中に路面の凸凹や粉塵などにより瞬間的に一方の駆動輪がスリップすると,空転した駆動輪の回転数が瞬間的に増加し,再度接地したときには強い駆動力がかかり走行が安定しない。これらの改善策として,色々なノン・スリップ・デフが開発され実用化している。   Also, when driving on rough terrain or snowy roads where the driving resistance difference between the left and right driving wheels increases, the driving resistance flows to the driving wheel with the lower resistance, resulting in a further increase in the driving resistance difference between the left and right driving wheels. In some cases, one wheel may run idle and the car may become unable to move. Also, if one drive wheel slips momentarily due to road surface irregularities or dust during high-speed driving, the rotational speed of the idle driving wheel momentarily increases, and when it comes in contact again, a strong driving force is applied and running is not stable. . Various non-slip differentials have been developed and put into practical use as measures to improve these.

左右の駆動輪の回転差をスラスト荷重に変え左右の回転軸を機械的に直結・ロックすることで空回転を押さえるクラッチ式,左右の駆動輪の回転差で攪拌されると発熱し膨張する性質の粘性体で左右の車軸を繋げて片輪の空転を押さえるビスカスカップリング式,歯車の噛み合い抵抗を利用したヘリカルギヤを組み合わせた方法,遊星歯車と電磁クラッチを組み合わせた方法などが実用化され市販車に搭載されている。   A clutch type that suppresses idle rotation by changing the rotation difference between the left and right drive wheels into a thrust load and mechanically directly connecting and locking the left and right rotation shafts, and generates heat and expands when stirred by the difference in rotation between the left and right drive wheels A viscous coupling body that connects the left and right axles to prevent idle rotation of one wheel. It is mounted on.

しかし殆どのノン・スリップ・デフは一定の差動量が発生した後に働くという事後処理的な制御で,本来差動装置に必要な旋回とスリップの区別を機械的に判断できる差動装置は現在のところ殆ど見当たらない。スリップを押さえるために左右の駆動輪の回転差を必要以上に制限すれば旋回時に車輪がロックしエンジンや伝導装置に過負荷がかかり安全運転上も機械構造上も問題になる。また現在市場に見られるノン・スリップ・デフは複雑化し重く高価になる傾向にあり,低価格で簡単な構造で軽量,確実なノン・スリップ・デフの普及が期待される。   However, most non-slip differentials are post-processing controls that work after a certain amount of differential occurs, and differentials that can mechanically determine the distinction between turning and slip that are originally required for differentials are currently available However, I can hardly find it. If the rotational difference between the left and right drive wheels is limited more than necessary to suppress slipping, the wheels will be locked during turning, resulting in overloading the engine and transmission device, which will cause problems in terms of safe driving and mechanical structure. In addition, non-slip diffs found in the current market tend to be complicated, heavy and expensive, and it is expected that low-price, simple structure, light weight and reliable non-slip diffs will spread.

特開平11−348595JP-A-11-348595 細川武志著 「クルマのメカ&仕組み図鑑」(株)グランプリ出版 2003年Takeshi Hosokawa “Mechanical & Mechanical Picture Book of Cars” Grand Prix Publishing 2003 伊藤 茂著 「メカニズムの辞典」 理工学社Shigeru Ito “Dictionary of Mechanisms”

旋回,直進の二つの走行状態を機械的且つ自動的に判断させ,直進時には左右の駆動輪を直結し,旋回時には左右の駆動輪を理想的な回転数比に近づけることで不要なスリップを無くし駆動力のロスを減らし,燃費の向上,走行安定性の向上,タイヤの摩耗抑制を目的とする。   The two driving states of turning and straight running are determined mechanically and automatically, and the left and right drive wheels are directly connected when going straight, and the left and right drive wheels are brought close to the ideal speed ratio during turning to eliminate unnecessary slip. The purpose is to reduce loss of driving force, improve fuel efficiency, improve running stability, and suppress tire wear.

ノン・スリップ・デフの差動歯車を操舵装置と連動させ,直線走行と旋回走行を自動的に判断させ,直線走行時は左右の駆動輪軸を直結し,旋回時には走行抵抗に関係なく差動歯車の旋回内側のサイドギヤに操舵装置の操舵角度に応じた回転負荷を与え,実際の左右の駆動輪軸の回転数比と計算上の理想的な左右の駆動輪軸の回転数比との差を回転負荷の大きさにフィ−ドバックすることで予め設定された許容範囲内の誤差に納め,不要なスリップを無くし理想的な走行状態に近づける。   A non-slip differential gear is linked to the steering device to automatically determine straight and turning, and the left and right drive wheel shafts are directly connected during straight running, and the differential gear is used regardless of running resistance during turning. A rotational load corresponding to the steering angle of the steering device is given to the side gear inside the turn of the vehicle, and the difference between the actual rotational speed ratio of the left and right drive wheel shafts and the calculated ideal rotational speed ratio of the left and right drive wheel shafts is determined as the rotational load. By feeding back to the size, the error is within the preset allowable range, unnecessary slip is eliminated, and the ideal running state is approached.

本発明のノン・スリップ・デフは,不要なスリップを無くすことで燃費の向上,走行安定性の向上,タイヤの摩耗抑制等が期待できる。また旋回時の駆動力を左右の駆動輪に分配する時期や分配の比率を調整することで,自動車の旋回性能を変化させることができる。   The non-slip differential of the present invention can be expected to improve fuel efficiency, improve running stability, suppress tire wear, etc. by eliminating unnecessary slip. In addition, the turning performance of the automobile can be changed by adjusting the timing and distribution ratio of the driving force during turning to the left and right drive wheels.

二輪駆動車や四輪駆動車のノン・スリップ・デフとしての利用の他に,駆動力の配分を任意に制御することで逆位相操舵や同位相操舵などの四輪操舵と同じ効果を持たせ高速走行や駐車や旋回時の操作性の向上が期待できる。また構造が簡単で重量的にも価格的にも現状のノン・スリップ・デフと十分競争できると考える。   In addition to the use of non-slip differentials for two-wheel drive vehicles and four-wheel drive vehicles, the same effect as four-wheel steering such as anti-phase steering and in-phase steering can be achieved by arbitrarily controlling the distribution of driving force. Expected to improve operability during high-speed driving, parking and turning. In addition, the structure is simple, and we can compete with the current non-slip differentials in terms of weight and price.

操舵装置の操舵角度と差動歯車のピニオンギヤの回転を連動させ,直進時にはピニオンギヤの回転を固定し,旋回時にはピニオンギヤの回転を開放し,旋回内側のサイドギヤに操舵角度に応じた回転負荷をかけ,路面との走行抵抗差に関係なく,機械的に旋回外側のサイドギヤに駆動力を分配する。
駆動輪の走行距離は駆動輪軸の回転数に比例するので,実際の左右の駆動輪軸の回転数比と計算上の理想的な回転数比とを比較し,誤差を旋回内側のサイドギヤにかける回転負荷の大きさにフィ−ドバックすることで操舵角度に対応する理想的な走行距離差に近づけることを可能にした。
The steering angle of the steering device and the rotation of the pinion gear of the differential gear are linked, the rotation of the pinion gear is fixed when going straight, the rotation of the pinion gear is released when turning, and a rotational load corresponding to the steering angle is applied to the side gear inside the turning, Regardless of the difference in running resistance from the road surface, the driving force is mechanically distributed to the side gear outside the turn.
Since the driving wheel travel distance is proportional to the rotational speed of the driving wheel axle, the actual rotational speed ratio of the left and right driving wheel axles is compared with the calculated ideal rotational speed ratio, and the rotation is applied to the side gear inside the turn. By feeding back to the magnitude of the load, it was possible to approach the ideal mileage difference corresponding to the steering angle.

通常の自動車(4輪車)では図−1のようにスリップせずに旋回できるようアッカ−マン機構により全車輪が旋回中心 O を中心とした同心で異なる半径の円周上を通るようにタイヤが取付けられている。自動車が旋回する時の左右後輪の駆動輪それぞれの走行距離は,車輪の旋回半径と旋回角度の積である。後輪を駆動輪とすると,旋回外側車輪の走行距離Loは(=Ro×θ),旋回内側車輪の走行距離Liは(=Ri×θ)であるから,走行距離の差はLo-Li=(Ro×θ)−(Ri×θ)であり,左右駆動輪のトレッド幅をTRとするとRo=Ri+TRであるから,差動装置が調整すべき左右駆動輪の走行距離差はLo-Li=TR×θ(トレッド幅×旋回角度)となる。   In ordinary automobiles (four-wheeled vehicles), tires so that all wheels pass on the circumference of concentric and different radii around the turning center O by the Ackermann mechanism so that they can turn without slipping as shown in FIG. Is installed. The distance traveled by the driving wheels of the left and right rear wheels when the vehicle turns is the product of the turning radius and turning angle of the wheel. If the rear wheel is a drive wheel, the travel distance Lo of the turning outer wheel is (= Ro × θ), and the travel distance Li of the turning inner wheel is (= Ri × θ), so the difference in travel distance is Lo-Li = Since (Ro × θ) − (Ri × θ) and the tread width of the left and right drive wheels is TR, Ro = Ri + TR. Therefore, the difference in travel distance between the left and right drive wheels that the differential device should adjust is Lo-Li = TR × θ (tread width × turning angle).

ここで,左右のタイヤ径は同じであるから車輪の走行距離は(タイヤ径×回転数)であり,旋回時の左右駆動輪の走行距離の比は左右駆動輪軸の回転数の比になり,走行距離の比はLo/Li=(Ro×θ)/(Ri×θ)=1+(TR/Ri)となる。自動車が同じ旋回半径で走行すれば旋回角度(θ)に関係なく左右駆動輪軸の回転数比は一定になる。市販の小型車で旋回時に必要な左右の駆動輪軸の回転数比を計算してみると,駆動輪のトレッド幅TR(=1.6m),旋回外側車輪の回転半径を最小回転半径Ro(=4.8m) で旋回した場合,Ri(=3.2m)であるから旋回外側と旋回内側の駆動輪軸の回転数比は1.50となり,旋回時に必要な駆動輪軸の回転数比は1.50前後が実用上の最大値と見込まれる。   Here, since the left and right tire diameters are the same, the distance traveled by the wheel is (tire diameter x number of revolutions), and the ratio of the distance traveled by the left and right drive wheels during turning is the ratio of the number of revolutions of the left and right drive wheel axles. The ratio of the travel distance is Lo / Li = (Ro × θ) / (Ri × θ) = 1 + (TR / Ri). If the vehicle travels with the same turning radius, the rotation speed ratio of the left and right drive wheel shafts is constant regardless of the turning angle (θ). When calculating the rotation speed ratio of the left and right drive wheel shafts required for turning in a commercially available small car, the tread width TR (= 1.6 m) of the drive wheel and the turning radius of the turning outer wheel are set to the minimum turning radius Ro (= 4). When turning at .8m), Ri (= 3.2m), the rotation speed ratio of the drive wheel shaft on the outside and inside of the turn is 1.50, and the rotation speed ratio of the drive wheel shaft required for turning is 1.50. Around is expected to be the maximum practical value.

本発明のノン・スリップ・デフは,図−2の説明図に示すように,軸の中央部分が半円形と楕円形の半分を組合わせた非円形で,サイドギヤに回転負荷をかけるための回転負荷用・非円形断面カム部分(16)になっているピニオンギヤの回転軸(12)の両側に自由に回転する回転軸がないピニオンギヤ(10)を取付け,回転軸がギヤ部分を貫通した形状の軸と一体形のサイドギヤ(11)を左右に噛合わせる。ピニオンギヤ(10)の歯面裏側には摩擦板(9−1)を取付け,サイドギヤ(11)の歯面裏側の回転軸上に,ギヤ・ケ−ス(18)を挟んで,サイドギヤ(11)の回転軸外側のスプライン加工部分と噛み合ったまま軸上をスライドする摩擦板(15−1)を取付けた移動ブレ−キ板(17)を組み込む。なほ自動車の駆動力が大きく,摩擦板でピニオンギヤの固定が困難な場合には摩擦板と噛合い継手を併用する。     The non-slip differential of the present invention is a non-circular combination of a semicircular and an elliptical half at the center of the shaft as shown in the explanatory diagram of FIG. A pinion gear (10) without a rotating shaft that freely rotates is attached to both sides of the rotating shaft (12) of the pinion gear that is a non-circular cross-section cam portion (16), and the rotating shaft penetrates the gear portion. The side gear (11) integrated with the shaft is meshed with the left and right. A friction plate (9-1) is attached to the back side of the tooth surface of the pinion gear (10), and the side gear (11) is sandwiched between the gear case (18) on the rotating shaft on the back side of the tooth surface of the side gear (11). A movable brake plate (17) having a friction plate (15-1) that slides on the shaft while meshing with the spline processed portion outside the rotating shaft is incorporated. When the driving force of an automobile is large and it is difficult to fix the pinion gear with a friction plate, a friction plate and a mesh joint are used together.

コントロ−ルシャフト(4)は外形が四角形で,内側はピニオンギヤの回転軸(12)が入る円形で,パイプの一端に摩擦板(9−2)を取付け,他端にはピニオンギヤの回転軸(12)が回転した時にコントロ−ルシャフト(4)を軸方向に持ち上げる直進・旋回切り換え用カム部分(6)があるピニオンギヤの回転軸(12)の段差部分と組合わせるフランジ部分(7)を取付ける。
ピニオンギヤの回転軸(12)の両側にコントロ−ルシャフト(4)を被せ,ギヤ・ケ−ス(18)とコントロ−ルシャフト(4)の摩擦板(9−2)背面との間にバネ(8)を挟み,ギヤ・ケ−ス(18)の四角い取付け穴にコントロ−ルシャフト(4)を噛合わせ取付ける。
The control shaft (4) has a rectangular outer shape, and the inside is a circle into which the rotation shaft (12) of the pinion gear is inserted. A friction plate (9-2) is attached to one end of the pipe, and the rotation shaft (12 The flange portion (7) to be combined with the step portion of the rotary shaft (12) of the pinion gear is provided with a straight-turn / swivel switching cam portion (6) for lifting the control shaft (4) in the axial direction when the control shaft is rotated.
A control shaft (4) is put on both sides of the rotation shaft (12) of the pinion gear, and a spring (8) is placed between the gear case (18) and the rear surface of the friction plate (9-2) of the control shaft (4). ) And engage the control shaft (4) in the square mounting holes of the gear case (18).

サイドギヤ(11)の歯面表側に延長する回転軸の長さは,ピニオンギヤの回転軸(12)中央の回転負荷用・非円形断面カム部分(16)の半円形断面部分に延長したサイドギヤ(11)の軸端面が接する長さとし,歯面裏側の回転軸には駆動輪軸(13)を接続する。
ギヤ・ケ−ス(18)の外に出たピニオンギヤの回転軸(12)の両端にピニオンギヤの回転軸(12)を回転させるためのコントロ−ルレバ−(5)及び操作レバ−(14)を取付ける。
The length of the rotating shaft extending to the front side of the tooth surface of the side gear (11) is the same as that of the side gear (11 The driving wheel shaft (13) is connected to the rotation shaft on the back side of the tooth surface.
A control lever (5) and an operation lever (14) for rotating the rotating shaft (12) of the pinion gear are provided at both ends of the rotating shaft (12) of the pinion gear which is out of the gear case (18). Install.

自動車の直進時は,ギヤ・ケ−ス(18)の四角い取付け穴に取付けたコントロ−ルシャフト(4)の摩擦板(9−2)がバネ(8)の力でピニオンギヤ(10)の歯面裏側の摩擦板(9−1)に押し付けられピニオンギヤ(10)の回転は固定され,左右のサイドギヤ(11)の回転が固定され駆動輪軸(13)を強制的に直結するので左右の駆動輪軸の回転数は同じになる。このときのピニオンギヤの回転軸(12)の回転位置は,回転軸中央部分の回転負荷用・非円形断面カム部分(16)の半円形部分に左右のサイドギヤ(11)から突き出た回転軸端面が接した状態である。   When the vehicle is traveling straight, the friction plate (9-2) of the control shaft (4) mounted in the square mounting hole of the gear case (18) is pressed by the spring (8) and the tooth surface of the pinion gear (10). The rotation of the pinion gear (10) is pressed against the friction plate (9-1) on the back side and the rotation of the left and right side gears (11) is fixed and the driving wheel shaft (13) is forcibly directly connected. The rotation speed is the same. At this time, the rotational position of the rotational shaft (12) of the pinion gear is such that the rotational shaft end surfaces projecting from the left and right side gears (11) at the semicircular portion of the rotational load / non-circular cross section cam portion (16) in the central portion of the rotational shaft. It is in contact.

自動車が旋回する時は,操舵装置の操舵角度と連動して動く操作レバ−(14)がコントロ−ルレバ−(5)を回転させ,ピニオンギヤの回転軸(12)が回転することにより直進・旋回切り換え用カム部分(6)がバネ(8)の力を押しのけてコントロ−ルシャフト(4)のフランジ部分(7)を持ち上げ,コントロ−ルシャフト(4)の摩擦板(9−2)をピニオンギヤ(10)の歯面裏側の摩擦板(9−1)に押し付けていた力が弱まりピニオンギヤ(10)の固定が解除される。以後直進に戻るまでピニオンギヤの回転軸(12)の回転角度に関係なくピニオンギヤ(10)の固定の解除が続く。
ピニオンギヤの回転軸(12)が回転すると,同時に軸中央の回転負荷用・非円形断面カム部分(16)が操舵角度に応じて回転し,サイドギヤ(11)の歯面側に突き出した回転軸端を非円形断面の楕円形断面部分が押し,移動ブレ−キ板(17)に取付けた摩擦板(15−1)をデフ・ケ−ス(3)内側に取付けた摩擦板(15−2)に押し付け,旋回内側のサイドギヤ(11)に操舵角度に応じた回転負荷をかけ,旋回外側のサイドギヤ側に旋回内側の駆動力の一部が分配される。
When the vehicle turns, the operation lever (14) that moves in conjunction with the steering angle of the steering device rotates the control lever (5), and the rotation shaft (12) of the pinion gear rotates, so that the vehicle goes straight and turns. The switching cam portion (6) pushes the force of the spring (8) to lift the flange portion (7) of the control shaft (4), and the friction plate (9-2) of the control shaft (4) is moved to the pinion gear (10). ) Is pressed against the friction plate (9-1) on the back side of the tooth surface and the pinion gear (10) is released. Thereafter, the pinion gear (10) is released from being fixed regardless of the rotation angle of the rotation shaft (12) of the pinion gear until it returns straight.
When the rotation shaft (12) of the pinion gear rotates, the rotation load / non-circular cross-section cam portion (16) at the center of the shaft rotates at the same time according to the steering angle, and the rotation shaft end protruding to the tooth surface side of the side gear (11) The non-circular cross section is pushed by the elliptical cross section, and the friction plate (15-1) attached to the moving brake plate (17) is attached to the inside of the differential case (3). , A rotational load corresponding to the steering angle is applied to the side gear (11) inside the turning, and a part of the driving force inside the turning is distributed to the side gear side outside the turning.

ピニオンギヤの回転軸(12)の両側にある直進・旋回切り換え用カム部分(6)の形状を変えることにより,ピニオンギヤ(10)の固定開始時期,固定開放時期,固定から開放までの時間,開放の程度や不感帯などを変えることが可能で,個々の自動車の走行性能を変えることができる。
操舵角度とピニオンギヤの回転軸(12)の回転を連動させることで左右の駆動輪軸(13)に駆動力を自動的に分配するので,運転者の負担にならず又運転者の意思と関係なく直進時と旋回時を自動的に区別し選別作動する。
本発明のノン・スリップ・デフ装置を回転数比を測らずに単独で使用する場合は操舵角度に応じた左右の駆動輪軸(13)の回転数比,ピニオンギヤの回転軸(12)の回転角度と回転負荷の関係等必要事項を予め実験的に求め機械的な設定をする。
By changing the shape of the cam part (6) for switching between straight and swivel on both sides of the rotation shaft (12) of the pinion gear, the pinion gear (10) starts to be fixed, opens and closes, the time from fixing to releasing, The degree and dead zone can be changed, and the driving performance of each car can be changed.
Since the driving force is automatically distributed to the left and right drive wheel shafts (13) by linking the steering angle and the rotation of the rotation shaft (12) of the pinion gear, it is not burdened by the driver and is independent of the driver's intention. The system automatically distinguishes between straight and turning.
When the non-slip differential device of the present invention is used alone without measuring the rotational speed ratio, the rotational speed ratio of the left and right drive wheel shafts (13) according to the steering angle, the rotational angle of the rotational shaft (12) of the pinion gear Necessary items such as the relationship between the rotation load and the rotational load are experimentally obtained in advance and set mechanically.

制御精度を上げて旋回時の駆動力配分をより正確にするには,左右の駆動輪軸(13)に回転センサ−を取付け,実際に走行中の自動車の旋回内側と旋回外側の駆動輪軸(13)の回転数比を測定し,計算上の理想的な左右の駆動輪軸(13)の回転数比と比較,その誤差をピニオンギヤの回転軸(12)の回転角度にフィ−ドバックして旋回内側のサイドギヤ(11)にかける回転負荷の大きさを調整することで,実際の左右の駆動輪軸の回転数比が計算上の理想的な左右の駆動輪軸(13)の回転数比の許容誤差範囲内に納まるように制御する。(図−3参照)   In order to increase the control accuracy and more accurately distribute the driving force during turning, rotation sensors are attached to the left and right drive wheel shafts (13), and the drive wheel shafts (13 ) Is measured, compared with the ideal rotation ratio of the left and right drive wheel shafts (13), and the error is fed back to the rotation angle of the rotation shaft (12) of the pinion gear and the inside of the turn By adjusting the rotational load applied to the side gear (11), the actual rotation speed ratio of the left and right drive wheel shafts is an ideal allowable error range of the rotation speed ratio of the left and right drive wheel shafts (13). Control to fit within. (See Figure 3)

ピニオンギヤの回転軸(12)の直進・旋回切り換え用カム部分(6)は,軸の回転方向に関係なくコントロ−ルシャフト(4)を上下させピニオンギヤ(10)の固定,開放動作をするので,旋回時のピニオンギヤの回転軸(12)を任意に逆回転させ旋回外側のサイドギヤ(11)に回転負荷をかける逆位相や,旋回時の旋回内側のサイドギヤ(11)にかける回転負荷を強くかけることで同位相効果を出すなど四輪操舵と同じ機能が可能になる。   The cam part (6) for switching the rectilinear / revolving of the rotation shaft (12) of the pinion gear moves the control shaft (4) up and down regardless of the rotation direction of the shaft, so that the pinion gear (10) is fixed and released. By rotating the rotating shaft (12) of the pinion gear at any time in the reverse direction and applying a rotational load on the side gear (11) on the outside of the turn, or by applying a strong rotational load on the side gear (11) on the inside of the turn during turning The same function as four-wheel steering becomes possible, such as producing the same phase effect.

本発明のノン・スリップ・デフは操舵装置と連動させることにより運転者の負担にならず直進時も旋回時も駆動力を無駄なく左右の駆動車輪に分配する。自動車の直進走行時には左右の駆動軸を機械的に直結してスリップ走行を抑え,旋回時は駆動輪軸に取付けた回転センサ−で左右の駆動輪軸の回転数比を計算上の理想的な回転数比に近づけることで,車輪の摩耗や走行安定性,燃費の向上,不整地や雪道での走行性能の向上などが期待できる。また駆動力の配分を任意に変えることにより旋回時の自動車の回頭性の向上や高速走行中のレ−ン変更時や縦列駐車,狭い場所での旋回等で有効な四輪操舵効果が期待できる。   The non-slip differential according to the present invention distributes the driving force to the left and right driving wheels without waste even when traveling straight or turning without being burdened to the driver by interlocking with the steering device. When a car is traveling straight, the left and right drive shafts are mechanically connected directly to suppress slip travel, and when turning, the rotation sensor attached to the drive wheel shaft is used to calculate the rotation speed ratio between the left and right drive wheel shafts. By approaching the ratio, wheel wear, running stability, fuel efficiency, running performance on rough terrain and snowy roads can be expected. In addition, it is possible to expect an effective four-wheel steering effect by improving the turning performance of the car when turning, changing the lane during high speed driving, parallel parking, turning in a narrow place, etc. by arbitrarily changing the distribution of driving force .

旋回時の車輪の走行軌跡の説明図Explanatory diagram of wheel trajectory during turning 本発明のノン・スリップ・デフの構造例Non-slip differential structure example of the present invention 本発明のノン・スリップ・デフを使用したシステムの例Example of system using non-slip differential of the present invention

符号の説明Explanation of symbols

1 ドライブピニオン
2 ドライブギヤ
3 デフ・ケ−ス
4 コントロ−ルシャフト
5 コントロ−ルレバ−
6 直進・旋回切り換え用カム部分
7 フランジ部分
8 バネ(ピニオンギヤ固定用)
9−1 摩擦板(ピニオンギヤ側)
9−2 摩擦板(コントロ−ルシャフト側)
10 ピニオンギヤ
11 サイドギヤ
12 ピニオンギヤの回転軸
13 駆動輪軸
14 操作レバ−
15−1 摩擦板(移動摩擦板側)
15−2 摩擦板(デフ・ケ−ス側)
16 回転負荷用・非円形断面カム部分
17 移動ブレ−キ板
18 ギヤ・ケ−ス
1 drive pinion 2 drive gear 3 differential case 4 control shaft 5 control lever
6 Cam part for straight / reverse switching 7 Flange part 8 Spring (for pinion gear fixing)
9-1 Friction plate (pinion gear side)
9-2 Friction plate (control shaft side)
DESCRIPTION OF SYMBOLS 10 Pinion gear 11 Side gear 12 Pinion gear rotating shaft 13 Drive wheel shaft 14 Operation lever
15-1 Friction plate (moving friction plate side)
15-2 Friction plate (differential case side)
16 Rotating load / Non-circular cross-section cam part 17 Moving brake plate 18 Gear case

Claims (2)

操舵装置と連動し直進時に左右の駆動輪を直結し,旋回時に駆動輪の走行抵抗差に関係なく旋回半径に応じて駆動力を自動的に左右の駆動輪軸に分配することを特徴とするノン・スリップ・デフ装置。    Linked with the steering device, the left and right drive wheels are directly connected when going straight, and the driving force is automatically distributed to the left and right drive wheel shafts according to the turning radius regardless of the running resistance difference of the drive wheels when turning.・ Slip / diff equipment. 旋回時に操舵装置の操舵角度から算出される左右の駆動輪軸の理想的な回転数比と実際の左右の駆動輪軸の回転数比の誤差が予め設定した許容範囲内に入るように制御することを特徴とする請求項1のノン・スリップ・デフ装置を使用したシステム。   Control is performed so that the error between the ideal rotation speed ratio of the left and right drive wheel shafts calculated from the steering angle of the steering device during turning and the actual rotation speed ratio of the left and right drive wheel shafts falls within a preset allowable range. A system using the non-slip differential device of claim 1.
JP2004305897A 2004-10-20 2004-10-20 Non-slip differential device in linkage with steering device Pending JP2006118572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305897A JP2006118572A (en) 2004-10-20 2004-10-20 Non-slip differential device in linkage with steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305897A JP2006118572A (en) 2004-10-20 2004-10-20 Non-slip differential device in linkage with steering device

Publications (1)

Publication Number Publication Date
JP2006118572A true JP2006118572A (en) 2006-05-11

Family

ID=36536649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305897A Pending JP2006118572A (en) 2004-10-20 2004-10-20 Non-slip differential device in linkage with steering device

Country Status (1)

Country Link
JP (1) JP2006118572A (en)

Similar Documents

Publication Publication Date Title
RU2760795C1 (en) Mechanism (options) and method for identical steering control with a trapezous swinging arm with radial power and multi-wheel vehicle
US10697528B2 (en) Regenerative differential for differentially steered and front-wheel steered vehicles
JP7282748B2 (en) Differential system including stepped planetary gear with differential ratio governed by variable speed motor and associated method of operation
US1672212A (en) Motor vehicle
CN105805280A (en) Central transfer case used for automobile full-time four-wheel-drive system
RU134484U1 (en) EASY WHEEL ATV WITH SKID STEER
CN104786834A (en) Self-adapted traction control drive axle differential mechanism
JP3747051B1 (en) Vehicle control device linked with steering device
JP3100403U (en) Transmission mechanism having a single differential mechanism
CN201003592Y (en) Automobile differential gear locking arrangement
JP2006118572A (en) Non-slip differential device in linkage with steering device
US11674579B2 (en) Planetary gear train automatic limited slip differential
JP3659422B1 (en) Differential gear linked with steering gear
CN1225374C (en) Frequently interlocked universal differential driver
JPS6189126A (en) Drive power transmission unit for vehicle
JP2006052822A (en) Differential gear interlocked with steering device
JP2012179931A (en) Vehicle propulsion device
CN201090708Y (en) Drive axle with differential lock
CN201325289Y (en) Rear axle assembly with differential lock and clearance self-adjusting device
CN101417710A (en) Slipping steerage device of aircraft tractor
JPS58178040A (en) Diff lock apparatus
JPS63162333A (en) Power transmission in four-wheel drive vehicle
RU2547126C2 (en) High cross-country capacity universal vehicle
KR20140090449A (en) Automatic locking differential
JPH0450185Y2 (en)