JP3659422B1 - Differential gear linked with steering gear - Google Patents

Differential gear linked with steering gear Download PDF

Info

Publication number
JP3659422B1
JP3659422B1 JP2004255202A JP2004255202A JP3659422B1 JP 3659422 B1 JP3659422 B1 JP 3659422B1 JP 2004255202 A JP2004255202 A JP 2004255202A JP 2004255202 A JP2004255202 A JP 2004255202A JP 3659422 B1 JP3659422 B1 JP 3659422B1
Authority
JP
Japan
Prior art keywords
rotation
pinion gear
gear
right drive
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004255202A
Other languages
Japanese (ja)
Other versions
JP2006071000A (en
Inventor
均 藤澤
Original Assignee
有限会社ワンダー企画
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ワンダー企画 filed Critical 有限会社ワンダー企画
Priority to JP2004255202A priority Critical patent/JP3659422B1/en
Application granted granted Critical
Publication of JP3659422B1 publication Critical patent/JP3659422B1/en
Publication of JP2006071000A publication Critical patent/JP2006071000A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)

Abstract

【課題】
発明が解決しようとする課題は,現在の差動装置は左右の駆動輪の走行距離差が発生した場合,旋回中なのか直進走行中のスリップなのか判別できない点にあり,直進走行中のスリップロスを減らし,旋回中ならば左右の駆動輪に適切に駆動力を分配することで操縦性,燃費,安定性,走破性を向上させ,タイヤの摩耗を抑制する。
【解決手段】
操舵装置の操舵角度と差動装置を連動させることで,運転者の負担にならずに自動車の直進時と旋回時を自動的に判別させ,直進時には左右の駆動輪を直結し,旋回時には旋回内側のサイドギヤに操舵角度に応じた回転負荷を掛け,駆動輪軸の回転センサ-で左右の駆動輪軸の実際の回転数比を計算上の回転数比と比較,誤差を回転負荷の大きさにフィ−ドバックさせて理想的な回転数比に近づける。
【選択図】図3
【Task】
The problem to be solved by the present invention is that when a difference in travel distance between the left and right drive wheels occurs in the current differential device, it cannot be determined whether the slip is during turning or straight travel. Reduces loss and distributes driving force appropriately to the left and right drive wheels while turning to improve maneuverability, fuel consumption, stability, and running performance, and suppress tire wear.
[Solution]
By linking the steering angle of the steering device and the differential device, the vehicle can automatically discriminate between straight and turning without burdening the driver, and when driving straight, the left and right drive wheels are directly connected. A rotation load corresponding to the steering angle is applied to the inner side gear, and the actual rotation speed ratio of the left and right drive wheel shafts is compared with the calculated rotation speed ratio with the rotation sensor of the drive wheel shaft, and the error is adjusted to the magnitude of the rotation load. -Draw back to bring it closer to the ideal speed ratio.
[Selection] Figure 3

Description

本発明は,自動車の差動装置に関するものである。   The present invention relates to an automobile differential.

自動車の動力は通常,一つの動力源から変速装置,伝導装置などを経て差動装置で左右の駆動輪に分配される。差動装置は自動車が旋回するときに駆動車輪の旋回半径が異なることによる走行距離の差を調整するための装置で,基本的な形はギヤボックスの中に4つのカサ歯車を互いに向かい合わせて組み合わせ,ドライブギヤと称する大径のカサ歯車の回転軸部分に取付け,ドライブピニオンで回転させる。   The power of an automobile is usually distributed from a single power source to the left and right drive wheels through a transmission, a transmission device, and the like by a differential device. The differential device is a device for adjusting the difference in mileage caused by the turning radius of the drive wheel when the car turns, and its basic form is that four bevel gears face each other in a gear box. Combined, it is attached to the rotating shaft of a large-diameter bevel gear called a drive gear and rotated with a drive pinion.

この形式の差動装置は,左右の駆動輪の走行抵抗のバランスが崩れないと差動装置として機能せず,自動車が旋回するとき旋回内側の駆動輪にはブレ−キが掛かった状態になり,旋回外側の駆動輪は無理やり引きずられるような力が掛かり走行抵抗の差が大きく崩れ,差動装置が働き旋回時の走行抵抗が大きくなる旋回内側の駆動輪から走行抵抗が小さくなる旋回外側の駆動輪に駆動力が分配,移動される。   This type of differential device does not function as a differential device unless the balance of the running resistance of the left and right drive wheels is lost, and the drive wheels inside the turn are braked when the vehicle turns. The driving wheel on the outside of the turn is subjected to a force that can be forcibly dragged, and the difference in running resistance is greatly collapsed. The differential device works to increase the running resistance during turning. The driving force is distributed and moved to the driving wheels.

一般道路の走行時では左右の駆動輪の走行抵抗が微妙に違う場合が多く,直進時,旋回時に係らず走行中の左右の車輪の駆動力の一部は絶えず走行抵抗の大きい方の駆動輪から抵抗の小さい駆動輪に移動しており,自動車の駆動力を受け止める走行抵抗が小さい方の駆動輪に動力が流れてしまうことで常時動力をロスしていることになり,タイヤの摩耗や燃費に影響している。   When driving on ordinary roads, the driving resistance of the left and right drive wheels is often slightly different. When driving straight or turning, part of the driving force of the left and right wheels is always the one with the higher driving resistance. From the wheel to the drive wheel with the lower resistance, and the power is always lost due to the flow of power to the drive wheel with the lower running resistance that receives the driving force of the car. Has an effect.

また左右の駆動輪の走行抵抗差が大きくなる泥濘地やアイスバ−ンなどの走行では抵抗の小さい方の駆動輪に駆動力が流れる結果,更に左右の駆動輪の走行抵抗差は大きくなり,最悪の場合は片輪に全ての駆動力が流れてしまい片輪が空転し自動車が動けなくなることがある。また高速走行中に路面の凸凹や粉塵などにより瞬間的に一方の駆動輪がスリップ,空転すると,空転した駆動輪の回転数が瞬間的に増加し,再度接地したときには強い駆動力が掛かるので左右の駆動輪の駆動力のバランスが崩れ,走行が安定しない。これらの改善策として,色々なリミテッド・スリップデフが開発され実用化している。   Also, when driving on muddy ground or ice vane where the driving resistance difference between the left and right driving wheels increases, the driving force flows to the driving wheel with the lower resistance, resulting in a further increase in the driving resistance difference between the left and right driving wheels. In this case, all of the driving force may flow to one wheel, and one wheel may idle and the vehicle may not move. Also, if one drive wheel slips or slips momentarily due to unevenness or dust on the road surface while driving at high speed, the rotational speed of the idle drive wheel momentarily increases. The driving force balance of the driving wheels is lost and the running is not stable. As an improvement measure, various limited slip differentials have been developed and put into practical use.

左右の駆動輪の回転差をスラスト荷重に変え左右の回転軸を機械的に直結・ロックすることで空回転を押さえるクラッチ式,左右の駆動輪の回転差で攪拌されると発熱し膨張する性質の粘性体で左右の車軸を繋げ,片輪の空転を押さえるビスカスカップリング式,歯車の噛み合い抵抗を利用したヘリカルギヤを組み合わせた方法,遊星歯車と電磁クラッチを組み合わせた方法などが実用化され市販車に搭載されている。   A clutch type that suppresses idle rotation by changing the rotation difference between the left and right drive wheels into a thrust load and mechanically directly connecting and locking the left and right rotation shafts, and generates heat and expands when stirred by the difference in rotation between the left and right drive wheels A viscous coupling body that connects the left and right axles to suppress the idling of one wheel. It is mounted on.

差動量を必要以上に制限すれば車輪がロックしエンジンや伝導装置に過負荷がかかり安全運転上も機械構造上の問題になる。殆どのリミテッド・スリップデフは一定の差動量が発生後に働くという事後処理的な制御で,本来差動装置に必要な旋回時か直進時のスリップなのかを機械的に判断できる差動装置は現在のところ見当たらない。また現在市場に見られるリミテッド・スリップデフは複雑化し重く高価になる傾向にあり,低価格で構造が簡単・軽量で確実な機能の作動装置の普及が期待される。   If the differential amount is limited more than necessary, the wheels will be locked, overloading the engine and transmission device will cause a problem in mechanical structure for safe driving. Most limited slip differentials are post-processing controls that work after a certain amount of differential is generated, and differential units that can mechanically determine whether the slip is a turn or straight travel that is originally required for the differential I can't find it right now. The limited slip differentials found in the market today tend to be complex, heavy and expensive, and it is expected that low-priced, simple, lightweight, and reliable functions will be popular.

特開平11−348595JP-A-11-348595 細川武志著 「クルマのメカ&仕組み図鑑」(株)グランプリ出版 2003年Takeshi Hosokawa “Mechanical & Mechanical Picture Book of Cars” Grand Prix Publishing 2003 伊藤 茂著 「メカニズムの辞典」 理工学社Shigeru Ito “Dictionary of Mechanisms”

発明が解決しようとする課題は,差動装置に自動車の旋回,直進の二つの走行状態を機械的に自動的に判断させ,且つ旋回時に駆動輪の回転に無理の掛からない左右の駆動輪の理想的な回転数比に近づけることで,自動車の駆動力のロスを減らし,走行燃費,安定性,走破性の向上,タイヤの摩耗抑制効果の向上を目的とする。   The problem to be solved by the invention is that the differential device mechanically automatically determines the two driving states of turning and straight traveling of the automobile, and the left and right driving wheels that do not force the rotation of the driving wheels during turning. The aim is to reduce the loss of driving force of the automobile by bringing it closer to the ideal speed ratio, to improve driving fuel efficiency, stability and driving performance, and to improve the tire wear suppression effect.

差動装置を操舵装置と連動させることにより,直線走行と旋回走行を自動的に判断させ,直線走行時は左右の駆動輪を直結しスリップロスをなくし,旋回時には操舵装置の操舵角度に応じた回転負荷を旋回内側のサイドギヤに与えて駆動力を旋回外側の駆動輪に適当に分配し,左右の駆動輪軸の回転数比を測り設計上の計算値との誤差を旋回内側のサイドギヤに与える回転負荷の大きさにフィ−ドバックすることで制御精度を上げ,理想的な旋回走行に近づけることを可能にしたことを最も主要な特徴とする差動装置。   By linking the differential unit with the steering device, it is possible to automatically determine whether the vehicle is running straight or turning. When driving straight, the left and right drive wheels are directly connected to eliminate slip loss. Rotational load is applied to the inner gear on the inside of the turn to distribute the driving force appropriately to the outer drive wheels, and the rotation speed ratio between the left and right drive wheel shafts is measured to give an error from the calculated design value to the side gear on the inner side of the turn. The most important feature of the differential unit is that it is possible to make it closer to ideal turning by improving the control accuracy by feeding back to the size of the load.

本発明の差動装置は,自動車の直進時は左右の駆動輪が機械的に直結されるため直線走行性能は改善され,高速走行時の走行安定性,泥濘地などの走行抵抗の差が大きくなる場所での走破能力の向上が期待できる。また本発明の差動装置は旋回時の駆動力を左右の駆動輪に分配する時期や分配の比率を調整することで,自動車の走行性能を変化させることが可能になり,旋回時の駆動力を走行抵抗に関係なく旋回半径に応じて分配することにより,旋回走行の安定,タイヤの摩耗,燃費の改善などの効果が期待される。   In the differential of the present invention, the left and right drive wheels are mechanically directly connected when the vehicle is traveling straight, so that the linear traveling performance is improved and the traveling stability at high speeds and the difference in traveling resistance such as muddy ground are large. You can expect to improve your ability to run in a certain place. In addition, the differential of the present invention can change the driving performance of the vehicle by adjusting the timing of distributing the driving force when turning to the left and right driving wheels and the ratio of the distribution. Is distributed according to the turning radius regardless of the running resistance, and the effects such as the stability of turning, tire wear, and the improvement of fuel consumption are expected.

二輪駆動車や四輪駆動車の差動装置としての利用の他に,駆動力の配分を任意に制御することで逆位相操舵や同位相操舵などの四輪操舵と同じ効果を持たせることができ,並列駐車や旋回半径の改善,高速走行での走行レ−ン変更時の安定性が向上し,自動車の走行機能が向上することが期待できる。また本発明の差動装置は構造が簡単で重量的にも価格的にも現状のリミテッド・スリップデフと十分競争する力がある。   In addition to being used as a differential device for two-wheel drive vehicles and four-wheel drive vehicles, it is possible to have the same effect as four-wheel steering such as anti-phase steering and in-phase steering by arbitrarily controlling the distribution of driving force. It can be expected that the parallel driving and turning radius will be improved, the stability when changing the driving lane at high speed will be improved, and the driving function of the car will be improved. In addition, the differential of the present invention is simple in structure and sufficiently competes with the current limited slip differential in terms of weight and price.

操舵装置の操舵角度により直進中か旋回中かを自動的に判別させ,差動装置のピニオンギヤの回転と連動させることで直進時にはピニオンギヤの回転を固定し,旋回時には左右の駆動輪の走行距離差を回転数比に置き換え,実際の左右の駆動輪軸の回転数比と計算上の回転数比を比較し,誤差を差動装置のサイドギヤに掛ける回転負荷の大きさにフィ−ドバックさせることで旋回時の操舵角度に対応する適当な走行距離差に近づけることを可能にした。   Whether the vehicle is going straight or turning is automatically determined according to the steering angle of the steering device, and the rotation of the pinion gear is fixed during straight running by interlocking with the rotation of the pinion gear of the differential device. Is replaced by a rotation speed ratio, the actual rotation speed ratio of the left and right drive wheel axles is compared with the calculated rotation speed ratio, and the error is fed back to the magnitude of the rotation load applied to the side gear of the differential gear. It is possible to approach an appropriate mileage difference corresponding to the steering angle at the time.

図−1のように,自動車(4輪車)はスリップせずに旋回するようアッカ−マン機構により全車輪が旋回中心 O を中心とした同心で異なる半径の円周上を通るようにつくられている。自動車が旋回する時の左右後輪の駆動輪それぞれの走行距離は,車輪の旋回半径と旋回角度の積である。旋回半径が異なる後輪の旋回外側車輪と旋回内側車輪の走行距離は 旋回外側車輪の走行距離 Lo(=Ro×θ),旋回内側車輪の走行距離 Li(=Ri×θ) であるから,走行距離の差は Lo-Li=(Ro×θ)−(Ri×θ) であり, 旋回外側車輪の回転半径は旋回内側車輪の回転半径に左右車輪間のトレッド幅を加えたもの Ro=Ri+TR であるから,差動装置が調整すべき左右駆動輪の走行距離差は TR×θ (後輪トレッド幅×旋回角度) となる。     As shown in Fig. 1, an automobile (four-wheeled vehicle) is made so that all wheels pass on the circumference of concentric and different radii around the turning center O by an Acckerman mechanism so that it turns without slipping. ing. The distance traveled by the driving wheels of the left and right rear wheels when the vehicle turns is the product of the turning radius and turning angle of the wheel. The travel distance of the rear turning inner wheel and the inner turning wheel with different turning radii is the traveling distance Lo (= Ro × θ) of the outer turning wheel and the traveling distance Li (= Ri × θ) of the inner turning wheel. The difference in distance is Lo-Li = (Ro x θ)-(Ri x θ). The turning radius of the turning outer wheel is the turning radius of the turning inner wheel plus the tread width between the left and right wheels. Ro = Ri + TR Therefore, the travel distance difference between the left and right drive wheels that should be adjusted by the differential is TR × θ (rear wheel tread width × turning angle).

ここで,左右のタイヤ径が同じとすると車輪の走行距離は タイヤ径×回転数 であるから,旋回時の左右駆動輪の計算上の走行距離の比は左右駆動輪軸の回転数の比であり,走行距離の比は Lo/Li=(Ro×θ)/{(Ro-TR)×θ}=1/{1−(TR/Ro)}となり,同じ旋回半径であれば旋回角度 θ に関係なく左右駆動輪軸の回転数の比は一定になる。市販の自動車の寸法で旋回時に必要な左右の駆動輪の回転数比を計算してみると,駆動輪のトレッド幅 1.6 m の自動車が旋回外側車輪の回転半径 4.8 m で旋回した場合,旋回内側と旋回外側の駆動輪の回転数比は 1.50 となる。(表−1参照)     Here, if the left and right tire diameters are the same, the distance traveled by the wheel is tire diameter x number of revolutions. Therefore, the calculated travel distance ratio of the left and right drive wheels when turning is the ratio of the number of revolutions of the left and right drive wheel shafts , The ratio of travel distance is Lo / Li = (Ro × θ) / {(Ro-TR) × θ} = 1 / {1- (TR / Ro)}. The ratio of the rotational speeds of the left and right drive wheel shafts is constant. When calculating the rotation speed ratio of the left and right drive wheels required for turning with the dimensions of a commercially available car, a car with a tread width of 1.6 m of the drive wheel turned with a turning radius of the turning outer wheel of 4.8 m. In this case, the rotation speed ratio between the inner and outer driving wheels is 1.50. (See Table-1)

本発明の差動装置は,図−2の説明図に示すように,軸中央部分が非円形のカム形状(16)になっているピニオンギヤの回転軸(12)の両端に自由に回転するピニオンギヤ(10)を取付け,両側からサイドギヤ(11)を噛合わせる。各ピニオンギヤとサイドギヤの歯面裏側には摩擦板(9−1),(15−1)を取付ける。なほ自動車の駆動力が大きく,摩擦板でピニオンギヤの固定が困難な場合には摩擦板と噛合い継手を併用する。     As shown in the explanatory diagram of FIG. 2, the differential of the present invention has a pinion gear that freely rotates at both ends of a rotating shaft (12) of a pinion gear having a non-circular cam shape (16) at the center of the shaft. Install (10) and engage the side gear (11) from both sides. Friction plates (9-1) and (15-1) are attached to the back sides of the tooth surfaces of each pinion gear and side gear. When the driving force of an automobile is large and it is difficult to fix the pinion gear with a friction plate, a friction plate and a mesh joint are used together.

コントロ−ルシャフト(4)はパイプの端末に摩擦板(9−2)を取付け,他方の端末のパイプ外側にはバネ(8)の伸縮による軸方向の変位を支え,ディファレンシャルケ−ス(3)の取付け穴に加工されたスプラインと噛合いコントロ−ルシャフトの回転止めも兼ねたスプライン加工し,パイプ内側にはピニオンギヤの回転軸の外径に加工された,コントロ−ルシャフトを軸方向に持ち上げるためのカム部分(6)に引っ掛かけるアゴ(7)の部分を取付ける。   The control shaft (4) has a friction plate (9-2) attached to the end of the pipe, and the outer end of the pipe supports the axial displacement due to the expansion and contraction of the spring (8). The differential case (3) The spline machined in the mounting hole is splined to mesh with the control shaft to prevent rotation, and the inner side of the pipe is machined to the outer diameter of the rotation shaft of the pinion gear to lift the control shaft in the axial direction. Attach the part of the jaw (7) hooked on the cam part (6).

摩擦板を向かい合わせピニオンギヤの回転軸の上からコントロ−ルシャフトを被せ,ディファレンシャルケ−スとコントロ−ルシャフト端末の摩擦板の間にバネを挟み,コントロ−ルシャフトをスプライン部分を噛合わせて回転止めしディファレンシャルケ−スの穴に取付ける。サイドギヤとサイドギヤの回転軸は一体とし,歯面裏側の回転軸に駆動輪軸(13)を接続し,歯面表側にはピニオンギヤの回転軸中央のカム形状の円形断面部分と軸端面が接するまでサイドギヤの回転軸を延長して突き出す。
ディファレンシャルケ−スの外に出したピニオンギヤの回転軸の両端にコントロ−ルレバ−(5)を取付け,自動車の操舵装置の操舵角度と連動させた作動装置の操作レバ−(14)に取付ける。
Place the control shaft over the rotation shaft of the pinion gear with the friction plates facing each other, sandwich a spring between the differential case and the friction plate at the end of the control shaft, engage the control shaft with the spline part, and stop the rotation. -Install it in the hole of the screw. The rotating shafts of the side gear and the side gear are integrated, the drive wheel shaft (13) is connected to the rotating shaft on the back side of the tooth surface, and the side gear is connected to the front surface of the tooth surface until the shaft end surface comes into contact with the cam-shaped circular cross section at the center of the rotating shaft of the pinion gear. Extend the axis of rotation and protrude.
A control lever (5) is attached to both ends of the rotation shaft of the pinion gear that is brought out of the differential case, and is attached to an operation lever (14) of the operating device linked with the steering angle of the automobile steering device.

自動車の直進時は,ディファレンシャルケ−スのスプライン加工した取付け穴に噛合わせることで回転止めしたコントロ−ルシャフトの端末に取付けた摩擦板(9−2)をバネの力でピニオンギヤの歯面裏側の摩擦板に押し付けることでピニオンギヤの回転が固定され,左右の駆動輪軸は差動装置の中で強制的に直結され,左右の駆動輪の回転数は同じになる。このときのピニオンギヤの回転軸の回転位置は,回転軸中央部分の半円形と楕円形の半分を組合わせた非円形カムの半円形部分に左右のサイドギヤから突き出した回転軸端面が接した状態にする。   When the car is moving straight, the friction plate (9-2) attached to the end of the control shaft, which is stopped by rotation by engaging with the splined mounting hole of the differential case, is attached to the back of the tooth surface of the pinion gear by the spring force. By pressing against the friction plate, the rotation of the pinion gear is fixed, the left and right drive wheel shafts are forcibly directly connected in the differential, and the rotation speeds of the left and right drive wheels are the same. The rotation position of the rotation shaft of the pinion gear at this time is such that the rotation shaft end surfaces protruding from the left and right side gears are in contact with the semicircular portion of the non-circular cam that combines the semicircular and elliptical halves of the central portion of the rotation shaft. To do.

自動車が旋回する時は,操舵装置の操舵角度と連動させた操作レバ−がコントロ−ルレバ−を回転させ,ピニオンギヤの回転軸を回転させることによりピニオンギヤの回転軸に被せられたコントロ−ルシャフトの内径に取付けた突起部分(7)をピニオンギヤの回転軸の両側にあるカム部分(6)がバネの力を押しのけて持ち上げることにより,コントロ−ルシャフトの摩擦板をピニオンギヤの歯面裏側の摩擦板に押し付けていた力が取り除かれ,ピニオンギヤの固定が解除される。またピニオンギヤの回転軸が回転すると回転軸中央の非円形断面のカム形状が回転し,軸の回転角度に応じてサイドギヤの歯面側に突き出した回転軸を押すことによりサイドギヤに取付けた摩擦板をディファレンシャルケ−スに取付けた摩擦板(15−2)に押し付け,操舵角度に応じた回転負荷を旋回内側のサイドギヤに掛け,旋回内側のサイドギヤの駆動力を旋回外側のサイドギヤに分配する。   When the automobile turns, an operation lever linked to the steering angle of the steering device rotates the control lever, and rotates the rotation shaft of the pinion gear, thereby rotating the inner diameter of the control shaft covered on the rotation shaft of the pinion gear. The cam part (6) on both sides of the rotation shaft of the pinion gear lifts the protrusion part (7) attached to the pinion gear by pushing the spring force, thereby pressing the friction plate of the control shaft against the friction plate on the back side of the tooth surface of the pinion gear. The applied force is removed and the pinion gear is released. Also, when the rotation shaft of the pinion gear rotates, the cam shape of the non-circular cross section at the center of the rotation shaft rotates, and the friction plate attached to the side gear is pushed by pushing the rotation shaft protruding to the tooth surface side of the side gear according to the rotation angle of the shaft. It is pressed against the friction plate (15-2) attached to the differential case, a rotational load corresponding to the steering angle is applied to the side gear inside the turning, and the driving force of the side gear inside the turning is distributed to the side gear outside the turning.

ピニオンギヤの回転軸の両側にあるカム部分(6)の形状を変えることにより,ピニオンギヤの固定開始時期,固定開放時期,固定から開放までの時間,開放の程度や不感帯などを変えることが可能で,個々の自動車により走行性能を変えることができる。操舵角度とピニオンギヤの回転軸の回転を連動させることでピニオンギヤの回転を固定,開放し,操舵角度に応じた回転負荷を掛けることで左右の駆動輪軸に駆動力を自動的に分配するので,運転者の意思と関係なく直進時と旋回時を自動的に使い分け運転者の負担にならない。操舵角度(回転半径)に応じた左右の駆動輪軸の回転数比,回転負荷とピニオンギヤの回転軸の回転角度の関係は予め実験的に求めておく。   By changing the shape of the cam part (6) on both sides of the rotation shaft of the pinion gear, it is possible to change the pinion gear fixing start time, fixed opening time, time from fixing to opening, degree of opening, dead zone, etc. The driving performance can be changed depending on the individual car. Since the rotation of the pinion gear is fixed and released by linking the steering angle and the rotation of the rotation shaft of the pinion gear, the driving force is automatically distributed to the left and right drive wheel shafts by applying a rotational load according to the steering angle. Regardless of the driver's intention, the driver will not be burdened by automatically using either straight driving or turning. The relationship between the rotational speed ratio of the left and right drive wheel shafts according to the steering angle (rotation radius), the rotational load, and the rotational angle of the rotational shaft of the pinion gear is experimentally determined in advance.

図−2のシステムの制御精度を上げて旋回時の駆動力配分をより正確にするには,左右の駆動輪軸に回転センサ−を取付け,実際に走行中の自動車の旋回内側と旋回外側の駆動輪軸の回転数比を測定し,計算上の左右の駆動輪軸の回転数比と比較,その誤差をコントロ−ルレバ−の回転角度にフィ−ドバックすることで,実際の左右の駆動輪軸の回転数比が自動車の計算上の左右の駆動輪軸の回転数比の許容誤差範囲内に入るように制御する。(図−3参照)   In order to improve the control accuracy of the system shown in Fig. 2 and to distribute the driving force more accurately during turning, rotation sensors are attached to the left and right drive wheel axles to drive the vehicle inside and outside the vehicle actually turning The actual rotation speed of the left and right drive wheel shafts is measured by measuring the rotation speed ratio of the wheel shafts, comparing it with the calculated rotation speed ratio of the left and right drive wheel shafts, and feeding back the error to the rotation angle of the control lever. The ratio is controlled so as to be within an allowable error range of the rotational speed ratio of the left and right drive wheel shafts in the calculation of the automobile. (See Figure 3)

ピニオンギヤの回転軸のカム部分(6)は,軸がどちらに回転してもコントロ−ルシャフトを上下させピニオンギヤの固定,開放動作をするので,ピニオンギヤの回転軸を故意に逆回転させ旋回外側のサイドギヤに回転負荷を掛け逆位相と同じ効果を出したり,旋回時に旋回内側のサイドギヤに掛ける回転負荷を普通の旋回時よりも強く掛けることで四輪操舵の同位相と同じ効果を出すことも可能である。

Figure 0003659422
The cam part (6) of the rotation shaft of the pinion gear moves the control shaft up and down to fix and release the pinion gear regardless of the rotation of the shaft. It is also possible to produce the same effect as the same phase of four-wheel steering by applying a rotational load to the side gear to produce the same effect as the reverse phase, or by applying a rotational load applied to the side gear inside the turn more strongly than during a normal turn. is there.
Figure 0003659422

従来の左右駆動輪の走行抵抗だけで作動していた差動装置と比べ自動車の旋回半径に応じ左右の駆動力の動力配分の比率や配分時期を任意に制御でき,個々の自動車に最適な旋回性能を提供できる。これにより旋回時の自動車の挙動を任意に変えられ,タイヤの摩耗抑制効果や高速走行時のレ−ン変更,縦列駐車,狭い場所での旋回動作などが円滑になる。   Compared to a differential gear that operates only with the driving resistance of the left and right drive wheels, the power distribution ratio and distribution time of the left and right driving forces can be controlled arbitrarily according to the turning radius of the car, making it the optimal turning for each car. Can provide performance. As a result, the behavior of the vehicle during turning can be changed arbitrarily, and the tire wear-inhibiting effect, lane change during high speed running, parallel parking, turning operations in narrow places, etc. can be made smooth.

本発明の差動装置は自動車の直進(若しくは直進に近い)走行時には左右の駆動軸を機械的に直結してスリップ走行を抑え,旋回時は駆動輪軸に取付けた回転センサ−で左右の駆動輪軸の回転数を計算上の理想的な回転数比に近づけることを自動化することにより,運転者の負担にならないで旋回時にも直進時にも駆動力を無駄なく左右の駆動車輪に分配することができ,車輪の摩耗や走行安定性,燃費の向上,不整地の走行性能の向上など多方面に効果が期待できる。   The differential of the present invention suppresses slip traveling by mechanically connecting the left and right drive shafts when the vehicle is traveling straight (or close to straight), and at the time of turning, the left and right drive wheel shafts are detected by a rotation sensor attached to the drive wheel shaft. By automating the rotation speed of the vehicle closer to the ideal rotation speed ratio in the calculation, the driving force can be distributed to the left and right drive wheels without waste even when turning or going straight without burdening the driver. , It can be expected to be effective in many areas, such as wheel wear, running stability, improved fuel efficiency, and improved performance on rough terrain.

旋回時の自動車車輪の走行軌跡の説明図Explanatory drawing of the running trajectory of automobile wheels during turning 直進時に操舵装置と連動して左右駆動輪軸を直結,旋回時には駆動力配分する差動装置の説明図Explanatory drawing of the differential device that directly connects the left and right drive wheel axles in conjunction with the steering device when traveling straight and distributes the driving force when turning 直進時に操舵装置と連動して左右駆動軸を直結,旋回時には左右駆動軸を計算上の理想的な回転数比に近づけるシステム例の説明図Explanatory diagram of a system example that connects the left and right drive shafts directly in conjunction with the steering device when going straight, and brings the left and right drive shafts closer to the ideal rotational speed ratio when turning

符号の説明Explanation of symbols

1 ドライブピニオン
2 ドライブギヤ
3 ディファレンシャルケ−ス
4 コントロ−ルシャフト
5 コントロ−ルレバ−
6 カム部分(コントロ−ルシャフト昇降用)
7 スプライン加工部分(回転止め)
8 バネ(ピニオンギヤ固定用)
9−1 摩擦板(ピニオンギヤ側)
9−2 摩擦板(コントロ−ルシャフト側)
10 ピニオンギヤ
11 サイドギヤ
12 ピニオンギヤの回転軸
13 駆動輪軸
14 操作レバ−
15−1 摩擦板(サイドギヤ側)
15−2 摩擦板(移動摩擦板側)
16 非円形(円形+楕円形)カム
1 drive pinion 2 drive gear 3 differential case 4 control shaft 5 control lever
6 Cam part (for control shaft lifting)
7 Spline processing part (rotation stop)
8 Spring (for pinion gear fixing)
9-1 Friction plate (pinion gear side)
9-2 Friction plate (control shaft side)
DESCRIPTION OF SYMBOLS 10 Pinion gear 11 Side gear 12 Pinion gear rotating shaft 13 Drive wheel shaft 14 Operation lever
15-1 Friction plate (side gear side)
15-2 Friction plate (moving friction plate side)
16 Non-circular (circular + elliptical) cam

Claims (2)

軸中央部分の断面が非円形のカムになっているピニオンギヤの回転軸の両側に自由に回転するピニオンギヤを取付け,サイドギヤを噛合わせてディファレンシャルケ−スの中に組み込み,ピニオンギヤの回転軸端部にこの回転軸を回転させるための操作レバ−を取付けてドライブギヤの回転軸芯にディファレンシャルケ−ス内のサイドギヤの回転軸芯を合わせて取付けた差動装置で,
自動車が直進する時には,軸方向に可動し回転しないコントロ−ルシャフトに取付けた摩擦板を,ピニオンギヤとディファレンシャルケ−ス内側との間に入れたバネの力でピニオンギヤ背面の摩擦板に押し付けてピニオンギヤの回転を固定し,
自動車が直進から旋回する時は,自動車の操舵装置の操舵角度と連動させた差動装置の操作レバ−がピニオンギヤの回転軸を回転し,コントロ−ルシャフトに取付けた摩擦板を押さえていたバネの力を押しのけて引き上げピニオンギヤの固定状態を開放し,
操舵装置の操舵角度とピニオンギヤの回転軸の回転角度を連動させることにより,ピニオンギヤの回転軸中央部の非円形カム部分が,操舵角度に応じてサイドギヤの歯面側に突き出した回転軸端面を押し,サイドギヤ背面に取付けた摩擦板をディファレンシャルケ−ス内側に取付けた摩擦板に押し付けることにより,サイドギヤに操舵角度に応じた回転負荷を掛け,自動車の駆動力を操舵角度に応じて左右の駆動輪軸に分配することを特徴とする差動装置。
Mount a pinion gear that freely rotates on both sides of the rotation shaft of the pinion gear whose cross section is a non-circular cam at the center of the shaft, engage the side gear and install it in the differential case, and attach it to the end of the rotation shaft of the pinion gear. A differential device in which an operation lever for rotating the rotating shaft is mounted and the rotating shaft core of the side gear in the differential case is aligned with the rotating shaft core of the drive gear.
When the automobile goes straight, the friction plate attached to the control shaft that moves in the axial direction and does not rotate is pressed against the friction plate on the back of the pinion gear by the force of the spring placed between the pinion gear and the inside of the differential case. Fixed rotation,
When the vehicle turns straight, the differential operation lever linked to the steering angle of the vehicle steering device rotates the rotation shaft of the pinion gear, and the spring that holds down the friction plate attached to the control shaft. Pull out the force and lift the pinion gear fixed state,
By linking the steering angle of the steering device and the rotation angle of the rotation shaft of the pinion gear, the non-circular cam portion at the center of the rotation shaft of the pinion gear pushes the rotation shaft end surface protruding to the tooth surface side of the side gear according to the steering angle. By pressing the friction plate attached to the back of the side gear against the friction plate attached to the inside of the differential case, a rotational load is applied to the side gear according to the steering angle, and the driving force of the vehicle is adjusted to the left and right drive wheel axles according to the steering angle. A differential device characterized in that the differential device is distributed.
請求項1の差動装置で,サイドギヤと接続する左右の駆動輪軸にそれぞれ回転センサ−を取付け,自動車が旋回するときや,ピニオンギヤの回転軸の回転方向や回転負荷の掛け方を変化させ四輪操舵をするときに,操舵装置の操舵角度から算出される左右駆動輪軸の計算上の回転数比と実際の回転数比を比較し,その誤差をサイドギヤに掛ける回転負荷の大きさに反映させ,左右駆動輪軸の実際の回転数比が計算上の回転数比の許容誤差範囲内に入るようにサイドギヤに適当な回転負荷を与えることを特徴とする請求項1の差動装置を使用したシステム。   The differential device according to claim 1, wherein rotation sensors are attached to the left and right drive wheel shafts connected to the side gear, respectively, to change the rotation direction of the rotation shaft of the pinion gear and how to apply the rotation load. When steering, the calculated rotational speed ratio of the left and right drive wheel axles calculated from the steering angle of the steering device is compared with the actual rotational speed ratio, and the error is reflected in the magnitude of the rotational load applied to the side gear. 2. The system using a differential device according to claim 1, wherein an appropriate rotational load is applied to the side gear so that the actual rotational speed ratio of the left and right drive wheel shafts is within an allowable error range of the calculated rotational speed ratio.
JP2004255202A 2004-09-02 2004-09-02 Differential gear linked with steering gear Expired - Fee Related JP3659422B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004255202A JP3659422B1 (en) 2004-09-02 2004-09-02 Differential gear linked with steering gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004255202A JP3659422B1 (en) 2004-09-02 2004-09-02 Differential gear linked with steering gear

Publications (2)

Publication Number Publication Date
JP3659422B1 true JP3659422B1 (en) 2005-06-15
JP2006071000A JP2006071000A (en) 2006-03-16

Family

ID=34698051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004255202A Expired - Fee Related JP3659422B1 (en) 2004-09-02 2004-09-02 Differential gear linked with steering gear

Country Status (1)

Country Link
JP (1) JP3659422B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8339542B2 (en) 2009-06-26 2012-12-25 3M Innovative Properties Company Passive and hybrid daylight-coupled N-stack and collapsible backlights for sunlight viewable displays

Also Published As

Publication number Publication date
JP2006071000A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP5112890B2 (en) Driving force transmission system for four-wheel drive vehicles
CN101871529B (en) Automatic anti-slip tooth-embedded cone gear differential mechanism
AU2006202637A1 (en) Control lever system
JP2000313242A (en) Torque transmission joint
JP3659422B1 (en) Differential gear linked with steering gear
JP3747051B1 (en) Vehicle control device linked with steering device
JPS6333574B2 (en)
JP2020533530A (en) Differential systems including stepped planetary gears with differential rates controlled by variable speed motors and related operating methods
CN201296167Y (en) Power transmission system for four-wheel drive motor vehicle
US5383378A (en) Driven axle
JP3100403U (en) Transmission mechanism having a single differential mechanism
CN201003592Y (en) Automobile differential gear locking arrangement
EP1366970B1 (en) Hydrostatic transmission device for articulated terrain carts
US20230124568A1 (en) Planetary gear train automatic limited slip differential
WO2021001988A1 (en) Driving force distribution method and driving force distribution device for front-and-rear wheel drive vehicle
Hoeck et al. The influence of various 4WD driveline configurations on handling and traction on low friction surfaces
JP2006052822A (en) Differential gear interlocked with steering device
JP2006118572A (en) Non-slip differential device in linkage with steering device
JPS58136563A (en) Three-wheeled vehicle for wasteland driving
JPS58178040A (en) Diff lock apparatus
JPS63284027A (en) Drive for automobile
CN201090708Y (en) Drive axle with differential lock
JPS63162333A (en) Power transmission in four-wheel drive vehicle
JP4126964B2 (en) Drive shaft arrangement structure
JPS6182048A (en) Differential-gear restricting apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees