JP2006117957A - Method of manufacturing non-crystalline polyimide film - Google Patents

Method of manufacturing non-crystalline polyimide film Download PDF

Info

Publication number
JP2006117957A
JP2006117957A JP2006007213A JP2006007213A JP2006117957A JP 2006117957 A JP2006117957 A JP 2006117957A JP 2006007213 A JP2006007213 A JP 2006007213A JP 2006007213 A JP2006007213 A JP 2006007213A JP 2006117957 A JP2006117957 A JP 2006117957A
Authority
JP
Japan
Prior art keywords
polyimide
polyimide film
polyamic acid
metal foil
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006007213A
Other languages
Japanese (ja)
Inventor
Hiroaki Yamaguchi
裕章 山口
Fumio Aoki
文雄 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2006007213A priority Critical patent/JP2006117957A/en
Publication of JP2006117957A publication Critical patent/JP2006117957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a polyimide film which is capable of providing a metal foil laminate of an all-polyimide solving the problem that peel strength (adhesion strength) is low, if a metal foil to which surface roughening treatment such as adhesion force accelerating treatment or the like is not applied is used in a conventional known metal foil laminate for a substrate. <P>SOLUTION: The method of manufacturing non-crystalline polyimide film comprises mixing and dissolving organic solvent, 2,2-bis(4-aminophenoxyphenyl)propane and 3,3',4,4'-biphenyltetracarboxylic dianhydride, or each of the derivatives in a reaction container, polymerizing it to obtain a solution of polyamic acid, adding the solution of polyamic acid or a solution of polyamic acid added with the organic solvent, and using it as a dope of polyamic acid, forming a film of dope, removing the solvent by evaporation from the film, and imidizing the polyamic acid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、非結晶ポリイミド膜の製造方法に関するものである。
この発明によれば、密着力促進等の表面粗化処理のような特別の表面処理を施していないステンレス(SUS)などの金属箔とポリイミドフィルムとの接着性を向上させた金属箔積層体を得ることができる。この明細書において非結晶性ポリイミドとは、広角X線回折法によりX線回折スペクトルを測定し結晶性散乱に由来するピ−クが観測されないものをいう。
The present invention relates to a method for producing an amorphous polyimide film.
According to this invention, there is provided a metal foil laminate in which the adhesion between a polyimide film and a metal foil such as stainless steel (SUS) which has not been subjected to a special surface treatment such as a surface roughening treatment such as adhesion promotion is improved. Obtainable. In this specification, the non-crystalline polyimide refers to a material in which an X-ray diffraction spectrum is measured by a wide-angle X-ray diffraction method and no peak derived from crystalline scattering is observed.

従来、カメラ、パソコン、液晶ディスプレイなどの電子機器類への用途として芳香族ポリイミドフィルムは広く使用されている。芳香族ポリイミドフィルムをフレキシブルプリント板(FPC)やテ−プ・オ−トメイティッド・ボンディング(TAB)などの基板材料として使用するためには、エポキシ樹脂などの接着剤を用いて銅箔を張り合わせる方法が採用されている。 Conventionally, aromatic polyimide films have been widely used as applications for electronic devices such as cameras, personal computers, and liquid crystal displays. In order to use an aromatic polyimide film as a substrate material such as a flexible printed board (FPC) or tape-automated bonding (TAB), a copper foil is bonded using an adhesive such as an epoxy resin. The method is adopted.

芳香族ポリイミドフィルムは耐熱性、機械的強度、電気的特性などが優れているが、エポキシ樹脂などの接着剤の耐熱性等が劣るため、本来のポリイミドの特性を損なうことが指摘されている。このような問題を解決するために、接着剤を使用しないでポリイミドフィルムに銅を電気メッキしたり、銅箔にポリアミック酸溶液を塗布し、乾燥、イミド化したり、熱可塑性のポリイミドを熱圧着させたオ−ルポリイミド基材も開発されている。   Aromatic polyimide films are excellent in heat resistance, mechanical strength, electrical characteristics, etc., but it has been pointed out that since the heat resistance of adhesives such as epoxy resins is inferior, the characteristics of the original polyimide are impaired. In order to solve such problems, copper is electroplated on the polyimide film without using an adhesive, or a polyamic acid solution is applied to the copper foil, followed by drying, imidization, or thermocompression bonding of thermoplastic polyimide. An all-polyimide substrate has also been developed.

また、ポリイミドフィルムと金属箔との間にフィルム状ポリイミド接着剤をサンドイッチ状に接合させたポリイミドラミネ−トおよびその製法が知られている(米国特許第4543295号)。しかし、このポリイミドラミネ−トおよびその製法は、金属箔が密着力促進等の表面粗化処理を施していない金属箔については剥離強度(接着強度)が小さく使用が制限されるという問題がある。   Also known is a polyimide laminate in which a film-like polyimide adhesive is sandwiched between a polyimide film and a metal foil, and a method for producing the same (US Pat. No. 4,543,295). However, this polyimide laminate and its manufacturing method have a problem that the metal foil that has not been subjected to surface roughening treatment such as adhesion promotion has a small peel strength (adhesive strength) and its use is restricted.

米国特許第4543295号明細書U.S. Pat. No. 4,543,295

この発明の目的は、従来公知の基板用の金属箔積層体が有する前記の密着力促進等の表面粗化処理を施していない金属箔を使用すると剥離強度(接着強度)が小さいという問題点を解消したオ−ルポリイミドの金属箔積層体を提供することが可能であるポリイミド膜の製造方法を提供することである。   The object of the present invention is that the peel strength (adhesive strength) is small when a metal foil that has not been subjected to surface roughening treatment such as adhesion promotion described above, which has been conventionally known for metal foil laminates for substrates. An object of the present invention is to provide a method for producing a polyimide film capable of providing a metal foil laminate of solved all polyimide.

すなわち、この発明は、反応容器中、有機溶媒、芳香族テトラカルボン酸成分としての3,3’,4,4’−ビフェニルテトラカルボン酸二無水物あるいはその誘導体および芳香族ジアミン成分としての2,2−ビス(4−アミノフェノキシフェニル)プロパンの各成分を攪拌、溶解した後、重合してポリアミック酸の溶液とし、このポリアミック酸の溶液あるいはポリアミック酸の溶液にさらに有機溶媒を加えてポリアミック酸のド−プとして使用し、ド−プの薄膜を形成し、その薄膜を加熱乾燥して溶媒を蒸発させて除去するとともにポリアミック酸をイミド環化することを特徴とする非結晶ポリイミド膜の製造方法に関する。 That is, the present invention relates to an organic solvent, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as an aromatic tetracarboxylic acid component or a derivative thereof, and 2, as an aromatic diamine component in a reaction vessel. Each component of 2-bis (4-aminophenoxyphenyl) propane is stirred and dissolved, and then polymerized to form a polyamic acid solution. An organic solvent is further added to the polyamic acid solution or the polyamic acid solution to form a polyamic acid solution. A method for producing an amorphous polyimide film, comprising: forming a thin film of a dope, heating and drying the thin film to evaporate and removing the solvent, and imide cyclization of polyamic acid About.

この発明によれば、以上のような構成を有しているため、特別の表面処理をしていない金属箔と熱圧着性ポリイミドフィルムとが大きな剥離強度で積層した金属箔積層体を得ることができる。また、この発明の方法によれば、簡単な操作で表面処理をしていない金属箔を前処理して金属箔と熱圧着性ポリイミドフィルムとを大きな剥離強度で積層した金属箔積層体を製造することができる。 According to this invention, since it has the above-described configuration, it is possible to obtain a metal foil laminate in which a metal foil that has not been subjected to a special surface treatment and a thermocompression bonding polyimide film are laminated with high peel strength. it can. In addition, according to the method of the present invention, a metal foil laminate in which a metal foil that has not been surface-treated by a simple operation is pretreated and the metal foil and the thermocompression bonding polyimide film are laminated with high peel strength is manufactured. be able to.

以下にこの発明の好ましい態様を列記ずる。
1)ポリアミック酸のド−プが、ポリアミック酸の濃度が1〜20重量%である上記の非結晶ポリイミド膜の製造方法
2)芳香族テトラカルボン酸成分と芳香族ジアミン成分との割合が、等モルから6モル%の酸過剰である上記の非結晶ポリイミド膜の製造方法。
3)反応容器中が、窒素雰囲気下にある上記の非結晶ポリイミド膜の製造方法。
4)有機溶媒が、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドである上記の非結晶ポリイミド膜の製造方法。
5)非結晶性ポリイミド膜が、金属箔積層体用である上記の非結晶ポリイミド膜の製造方法。
6)膜が、0.05〜3μmの厚みである上記の非結晶ポリイミド膜の製造方法。
The preferred embodiments of the present invention are listed below.
1) Method for producing an amorphous polyimide film in which the polyamic acid dope is 1 to 20% by weight of polyamic acid 2) The ratio of the aromatic tetracarboxylic acid component to the aromatic diamine component is A method for producing the above amorphous polyimide film having an acid excess of 6 mol% to 6 mol%.
3) The method for producing an amorphous polyimide film as described above, wherein the reaction vessel is in a nitrogen atmosphere.
4) The method for producing the above amorphous polyimide film, wherein the organic solvent is N, N-dimethylformamide or N, N-dimethylacetamide.
5) The manufacturing method of said amorphous polyimide film whose amorphous polyimide film is for metal foil laminated bodies.
6) The manufacturing method of said amorphous polyimide film | membrane whose film | membrane is 0.05-3 micrometers in thickness.

前記の金属箔積層体においては、粗化処理を施していないレベル以上の表面状態の金属箔を使用する。このような金属箔としては粗化処理を施していない金属箔が挙げられるが、粗化処理を施したものであっても構わない。特にこの発明においては前記の粗化処理を施していないレベル以上の表面状態の金属箔として、SUS(新日本製株式会社製、SUS304HTAMW)や、アルミニウム箔(日本製箔株式会社製、A1085H−H18)などの粗化処理を施していない金属箔を使用すると顕著な効果が得られる。前記の粗化処理を施していないレベル以上の表面状態の金属箔は、表面のRaが0.2μm程度以下で、厚みが1〜500μm程度であることが好ましい。厚みの大きい金属板といわれるものも含まれる。   In the said metal foil laminated body, the metal foil of the surface state more than the level which has not performed the roughening process is used. Examples of such a metal foil include a metal foil that has not been subjected to roughening treatment, but may be one that has been subjected to roughening treatment. In particular, in the present invention, SUS (manufactured by Nippon Steel Co., Ltd., SUS304HTAMW) or aluminum foil (manufactured by Nippon Foil Co., Ltd., A1085H-H18) is used as the metal foil having a surface state of a level not higher than the above roughening treatment. If a metal foil not subjected to roughening treatment such as) is used, a remarkable effect is obtained. It is preferable that the surface state metal foil of the level which is not subjected to the roughening treatment has a surface Ra of about 0.2 μm or less and a thickness of about 1 to 500 μm. What is called a metal plate with a large thickness is also included.

前記の粗化処理を施していないレベル以上の表面状態の金属箔にガラス転移温度が200〜300℃の範囲にあり厚みが0.05〜3μmの範囲の非結晶性ポリイミド膜を形成することが必要である。粗化処理を施していない金属箔であっても前記の条件を満足する非結晶性ポリイミドの薄層を形成することによって、耐熱性を有ししかも剥離強度(接着強度)が大きいオ−ルポリイミドの金属箔積層体を得ることができる。前記の粗化処理を施していない金属箔に結晶性ポリイミドの薄層を形成したのでは、剥離強度(接着強度)が小さくなる。また、非結晶性ポリイミドであってもガラス転移温度が前記の範囲外であると、金属箔積層体の耐熱性が不十分であったり剥離強度(接着強度)が小さくなる。また、非結晶性ポリイミド層の厚みが前記の範囲外であると、金属箔積層体の剥離強度(接着強度)が小さくなったり金属箔積層体(特にエッチング処理して回路形成した後)にカ−ルが発生するので、いずれの場合も好ましくない。   An amorphous polyimide film having a glass transition temperature in the range of 200 to 300 ° C. and a thickness in the range of 0.05 to 3 μm may be formed on a metal foil having a surface state that is not subjected to the roughening treatment. is necessary. By forming a thin layer of non-crystalline polyimide that satisfies the above conditions even if it is a metal foil that has not been roughened, all polyimide that has heat resistance and high peel strength (adhesive strength) A metal foil laminate can be obtained. If a thin layer of crystalline polyimide is formed on a metal foil that has not been subjected to the roughening treatment, the peel strength (adhesive strength) is reduced. Moreover, even if it is an amorphous polyimide, when the glass transition temperature is outside the above range, the heat resistance of the metal foil laminate is insufficient or the peel strength (adhesion strength) is reduced. If the thickness of the amorphous polyimide layer is outside the above range, the peel strength (adhesive strength) of the metal foil laminate may be reduced or the metal foil laminate (especially after etching to form a circuit) may be reduced. -In either case, it is not preferable.

前記のガラス転移温度が200〜300℃の範囲にある非結晶性ポリイミドとしては、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)エ−テル二無水物やこれらの誘導体(酸、酸エステル、酸のハ−フエステル)などの芳香族テトラカルボン酸成分と1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)、1,3−ビス(3−アミノフェノキシ)ベンゼン(APB)、2,2−ビス(4−アミノフェノキシフェニル)プロパン(BAPP)、4,4’−ビス(4−アミノフェノキシフェニル)スルホン(BAPS)、ビス(4−アミノフェノキシ)ビフェニルなどの柔軟な結合[O、C(CH、SO]を有する多環芳香族ジアミン成分とから得ることができる。前記の芳香族テトラカルボン酸成分および多環芳香族ジアミン成分の一部を他の芳香族テトラカルボン酸成分、例えばピロメリット酸二無水物や他の芳香族ジアミン、例えば4,4’−ジアミノジフェニルエ−テルで置き換えてもよい。また、前記の非結晶性ポリイミドの末端を無水フタル酸などで封止したものであってもよい。 Examples of the amorphous polyimide having a glass transition temperature in the range of 200 to 300 ° C. include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3,3 ′. , 4′-biphenyltetracarboxylic dianhydride (a-BPDA), 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether Aromatic tetracarboxylic acid components such as anhydrides and derivatives thereof (acid, acid ester, acid half ester) and 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), 2,2-bis (4-aminophenoxyphenyl) propane (BAPP), 4,4′-bis (4-aminophenoxyphenyl) sulfone (BAPS) Can be obtained from a bis (4-aminophenoxy) flexible coupling, such as biphenyl [O, C (CH 3) 2, SO 2] polycyclic aromatic diamine component having. A part of the aromatic tetracarboxylic acid component and the polycyclic aromatic diamine component is mixed with other aromatic tetracarboxylic acid components such as pyromellitic dianhydride and other aromatic diamines such as 4,4′-diaminodiphenyl. It may be replaced with ether. Further, the end of the amorphous polyimide may be sealed with phthalic anhydride or the like.

特に、前記の非結晶性ポリイミドとして、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物および/またはその誘導体と2,2−ビス(4−アミノフェノキシフェニル)プロパンおよび/または1,3−ビス(3−アミノフェノキシ)ベンゼンとから得られるポリイミド、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物と1,3−ビス(4−アミノフェノキシ)ベンゼンとから得られるポリイミド、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物と4,4'−ビス(4−アミノフェノキシフェニル)スルホンとから得られるポリイミド、その中でも特に3,3’,4,4’−ビフェニルテトラカルボン酸二無水物および/またはその誘導体と2,2−ビス(4−アミノフェノキシフェニル)プロパンとから得られるポリイミドがド−プ安定性、接着強度、低吸水性、耐加水分解性から好適である。また、非結晶性ポリイミドを得るための芳香族テトラカルボン酸成分と芳香族ジアミンとの割合は、等モルから5〜6モル%程度酸過剰にずらしたものであってもよい。   In particular, as the non-crystalline polyimide, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and / or its derivative and 2,2-bis (4-aminophenoxyphenyl) propane and / or 1 Polyimide obtained from 1,3-bis (3-aminophenoxy) benzene, obtained from 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride and 1,3-bis (4-aminophenoxy) benzene Polyimide obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 4,4′-bis (4-aminophenoxyphenyl) sulfone, among which 3,3 ′, 4 , 4′-biphenyltetracarboxylic dianhydride and / or its derivative and 2,2-bis (4-aminophenoxyphenyl) propane The polyimide obtained is suitable from the viewpoint of dope stability, adhesive strength, low water absorption, and hydrolysis resistance. Further, the ratio of the aromatic tetracarboxylic acid component and the aromatic diamine for obtaining the amorphous polyimide may be shifted from an equimolar amount to an excess of acid by about 5 to 6 mol%.

前記の非結晶性ポリイミド膜は、前記各成分を有機溶媒中、約100℃以下、特に20〜60℃の温度で反応させてポリアミック酸の溶液とし、このポリアミック酸の溶液あるいはポリアミック酸の溶液にさらに有機溶媒を加えてポリアミック酸濃度を調節したものをド−プとして使用し、粗化処理を施していないレベル以上の表面状態の金属箔に前記のド−プ液の薄膜を形成し、50〜400℃で1〜30分間程度加熱乾燥して、その薄膜から溶媒を蒸発させ除去すると共にポリアミック酸をイミド環化することにより形成することができる。前記の非結晶性ポリイミドを与えるポリアミック酸のド−プは、ポリアミック酸の濃度が1〜20重量%程度であることが好ましい。   The non-crystalline polyimide film is prepared by reacting each of the above components in an organic solvent at a temperature of about 100 ° C. or less, particularly 20 to 60 ° C. to obtain a polyamic acid solution. Furthermore, using an organic solvent added to adjust the polyamic acid concentration as a dope, forming a thin film of the above-mentioned dope solution on a metal foil having a surface state at a level not higher than the roughening treatment, 50 It can be formed by heating and drying at ˜400 ° C. for about 1 to 30 minutes to evaporate and remove the solvent from the thin film and cyclize the polyamic acid. The polyamic acid dope that provides the amorphous polyimide preferably has a polyamic acid concentration of about 1 to 20% by weight.

前記の熱圧着性ポリイミドフィルムとして、熱圧着性単層ポリイミドフィルム、好適には耐熱性ポリイミド層の少なくとも片面、好適には両面に熱圧着性ポリイミド層を有する熱圧着性多層ポリイミドフィルムを使用する。前記の熱圧着性ポリイミドフィルムとしては、熱圧着性とともに線膨張係数(50〜200℃)(MD)が30x10−6cm/cm/℃以下、特に15x10−6〜25x10−6cm/cm/℃で厚みが10〜150μmであるものが好ましく、また、引張弾性率(MD、ASTM−D882)が300kg/mm以上であるものが好ましい。 As the thermocompression-bonding polyimide film, a thermocompression-bonding single-layer polyimide film, preferably a thermocompression-bonding multilayer polyimide film having a thermocompression-bonding polyimide layer on at least one surface, preferably both surfaces of the heat-resistant polyimide layer is used. The thermocompression bonding polyimide film has thermocompression bonding and a linear expansion coefficient (50 to 200 ° C.) (MD) of 30 × 10 −6 cm / cm / ° C. or less, particularly 15 × 10 −6 to 25 × 10 −6 cm / cm / ° C. And those having a thickness of 10 to 150 μm are preferred, and those having a tensile modulus (MD, ASTM-D882) of 300 kg / mm 2 or more are preferred.

前記の熱圧着性多層ポリイミドフィルムは、好適には共押出し−流延製膜法(単に、多層押出法ともいう。)によって耐熱性ポリイミドの前駆体溶液と熱圧着性ポリイミド前駆体溶液とを積層し、乾燥、イミド化して熱圧着性多層ポリイミドフィルムを得る方法、あるいは前記の耐熱性ポリイミドの前駆体溶液を支持体上に流延塗布し、乾燥したゲルフィルムの片面あるいは両面に熱圧着性ポリイミド前駆体溶液を塗布し、乾燥、イミド化して熱圧着性多層ポリイミドフィルムを得る方法によって得ることができる。   The thermocompression-bonding multilayer polyimide film is preferably formed by laminating a heat-resistant polyimide precursor solution and a thermocompression-bonding polyimide precursor solution by a coextrusion-casting film forming method (also simply referred to as a multilayer extrusion method). Drying and imidizing to obtain a thermocompression-bonding multilayer polyimide film, or applying the above heat-resistant polyimide precursor solution onto a support and applying the thermocompression-bonding polyimide to one or both sides of the dried gel film The precursor solution can be applied, dried and imidized to obtain a thermocompression-bonding multilayer polyimide film.

前記の熱圧着層としての熱圧着性ポリイミドとしては、種々の公知の熱可塑性ポリイミドから選択することができ、好適には1,3−ビス(4−アミノフェノキシベンゼン)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物とから製造される。また、前記の熱圧着層としての熱圧着性ポリイミドとして、1,3−ビス(4−アミノフェノキシ)−2,2−ジメチルプロパン(DANPG)と4,4’−オキシジフタル酸二無水物(ODPA)およびa−BPDAとから製造される。あるいは、4,4’−オキシジフタル酸二無水物(ODPA)およびピロメリット酸二無水物と1,3−ビス(4−アミノフェノキシベンゼン)とから製造される。   The thermocompression bonding polyimide as the thermocompression bonding layer can be selected from various known thermoplastic polyimides, preferably 1,3-bis (4-aminophenoxybenzene) and 2,3,3 ′. , 4'-biphenyltetracarboxylic dianhydride. Moreover, as a thermocompression bonding polyimide as the thermocompression bonding layer, 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane (DANPG) and 4,4′-oxydiphthalic dianhydride (ODPA) And a-BPDA. Alternatively, it is prepared from 4,4'-oxydiphthalic dianhydride (ODPA) and pyromellitic dianhydride and 1,3-bis (4-aminophenoxybenzene).

前記の熱圧着性ポリイミドは、前記各成分と、さらに場合により他のテトラカルボン酸二無水物および他のジアミンとを、有機溶媒中、約100℃以下、特に20〜60℃の温度で反応させてポリアミック酸の溶液とし、このポリアミック酸の溶液をド−プ液として使用し、そのド−プ液の薄膜を形成し、その薄膜から溶媒を蒸発させ除去すると共にポリアミック酸をイミド環化することにより製造することができる。また、前述のようにして製造したポリアミック酸の溶液を150〜250℃に加熱するか、またはイミド化剤を添加して150℃以下、特に15〜50℃の温度で反応させて、イミド環化した後溶媒を蒸発させる、もしくは貧溶媒中に析出させて粉末とした後、該粉末を有機溶液に溶解して熱圧着性ポリイミドの有機溶媒溶液を得ることができる。   The thermocompression bonding polyimide is obtained by reacting each of the above components with another tetracarboxylic dianhydride and another diamine in an organic solvent at a temperature of about 100 ° C. or less, particularly 20 to 60 ° C. To form a polyamic acid solution, use the polyamic acid solution as a dope solution, form a thin film of the dope solution, evaporate and remove the solvent from the thin film, and imide cyclize the polyamic acid. Can be manufactured. In addition, the polyamic acid solution produced as described above is heated to 150 to 250 ° C., or an imidizing agent is added and reacted at a temperature of 150 ° C. or less, particularly 15 to 50 ° C. to imide cyclization. Thereafter, the solvent is evaporated or precipitated in a poor solvent to form a powder, and then the powder is dissolved in an organic solution to obtain an organic solvent solution of a thermocompression bonding polyimide.

前記の熱圧着性ポリイミドの物性を損なわない範囲で他のテトラカルボン酸二無水物、例えば3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3、4−ジカルボキシフェニル)プロパン二無水物あるいは2,3,6,7−ナフタレンテトラカルボン酸二無水物など、好適には3,3’,4,4’−ビフェニルテトラカルボン酸二無水物で置き換えられてもよい。   Other tetracarboxylic dianhydrides, for example, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4), as long as the physical properties of the thermocompression bonding polyimide are not impaired. -Dicarboxyphenyl) propane dianhydride or 2,3,6,7-naphthalenetetracarboxylic dianhydride, preferably replaced with 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride May be.

また、熱圧着性ポリイミドの物性を損なわない範囲で他のジアミン、例えば4,4’−ジアミノジフェニルエ−テル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン、2,2−ビス(4−アミノフェニル)プロパン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェニル)ジフェニルエ−テル、4,4’−ビス(4−アミノフェニル)ジフェニルメタン、4,4'−ビス(4−アミノフェノキシ)ジフェニルエ−テル、4,4’−ビス(4−アミノフェノキシ)ジフェニルメタン、2,2−ビス〔4−(アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕ヘキサフルオロプロパンなどの複数のベンゼン環を有する柔軟な芳香族ジアミン、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン、1,10−ジアミノデカン、1,12−ジアミノドデカンなどの脂肪族ジアミン、ビス(3−アミノプロピル)テトラメチルジシロキサンなどのジアミノジシロキサンによって置き換えられてもよい。他の芳香族ジアミンの使用割合は全ジアミンに対して20モル%以下、特に10モル%以下であることが好ましい。また、脂肪族ジアミンおよびジアミノジシロキサンの使用割合は全ジアミンに対して20モル%以下であることが好ましい。この割合を越すと熱圧着性ポリイミドの耐熱性が低下する。   Further, other diamines such as 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylmethane, 2,2-bis, as long as the physical properties of the thermocompression bonding polyimide are not impaired. (4-aminophenyl) propane, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenyl) diphenyl ether, 4,4′-bis (4-aminophenyl) Diphenylmethane, 4,4′-bis (4-aminophenoxy) diphenyl ether, 4,4′-bis (4-aminophenoxy) diphenylmethane, 2,2-bis [4- (aminophenoxy) phenyl] propane, 2, , Flexible aromatic dia with multiple benzene rings such as 2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane Mine, 1,4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane and other aliphatic diamines, bis (3-aminopropyl) tetra It may be replaced by a diaminodisiloxane such as methyldisiloxane. The proportion of other aromatic diamine used is preferably 20 mol% or less, particularly preferably 10 mol% or less, based on the total diamine. Moreover, it is preferable that the usage-amount of aliphatic diamine and diaminodisiloxane is 20 mol% or less with respect to all the diamine. If this ratio is exceeded, the heat resistance of the thermocompression bonding polyimide decreases.

前記の熱圧着性ポリイミドのアミン末端を封止するためにジカルボン酸無水物、例えば、無水フタル酸およびその置換体、ヘキサヒドロ無水フタル酸およびその置換体、無水コハク酸およびその置換体など、特に、無水フタル酸を使用してもよい。   Dicarboxylic anhydrides, such as phthalic anhydride and its substitutes, hexahydrophthalic anhydride and its substitutes, succinic anhydride and its substitutes, etc., for sealing the amine ends of the thermocompression bonding polyimides, Phthalic anhydride may be used.

前記の熱圧着性ポリイミドを得るためには、前記の有機溶媒中、ジアミン(アミノ基のモル数として)の使用量が酸無水物の全モル数(テトラ酸二無水物とジカルボン酸無水物の酸無水物基としての総モルとして)に対する比として、好ましくは0.92〜1.1、特に0.98〜1.1、そのなかでも特に0.99〜1.1であり、ジカルボン酸無水物の使用量がテトラカルボン酸二無水物の酸無水物基モル量に対する比として、好ましくは0.05以下であるような割合の各成分を反応させることができる。   In order to obtain the thermocompression-bondable polyimide, the amount of diamine (as the number of moles of amino group) used in the organic solvent is the total number of moles of acid anhydride (tetraacid dianhydride and dicarboxylic acid anhydride). As a ratio to the total moles as acid anhydride groups), preferably from 0.92 to 1.1, in particular from 0.98 to 1.1, in particular from 0.99 to 1.1. Each component can be reacted in such a ratio that the amount of the product used is preferably 0.05 or less as the ratio of the tetracarboxylic dianhydride to the molar amount of the acid anhydride group.

前記のジアミンおよびジカルボン酸無水物の使用割合が前記の範囲外であると、得られるポリアミック酸、従って熱圧着性ポリイミドの分子量が小さく、金属箔との積層体の接着強度の低下をもたらす。また、ポリアミック酸のゲル化を制限する目的でリン系安定剤、例えば亜リン酸トリフェニル、リン酸トリフェニル等をポリアミック酸重合時に固形分(ポリマ−)濃度に対して0.01〜1%の範囲で添加することができる。また、イミド化促進の目的で、ド−プ液中にイミド化剤を添加することができる。例えば、イミダゾ−ル、2−イミダゾ−ル、1,2−ジメチルイミダゾ−ル、2−フェニルイミダゾ−ル、ベンズイミダゾ−ル、イソキノリン、置換ピリジンなどをポリアミック酸に対して0.05〜10重量%、特に0.1〜2重量%の割合で使用することができる。これらは比較的低温でイミドを完了することができる。   If the ratio of the diamine and dicarboxylic acid anhydride is outside the above range, the resulting polyamic acid, and hence the thermocompression bonding polyimide, has a low molecular weight, resulting in a decrease in the adhesive strength of the laminate with the metal foil. In addition, for the purpose of limiting the gelation of polyamic acid, a phosphorus stabilizer such as triphenyl phosphite, triphenyl phosphate is 0.01 to 1% based on the solid content (polymer) concentration during polyamic acid polymerization. Can be added in the range of. An imidizing agent can be added to the dope solution for the purpose of promoting imidization. For example, imidazole, 2-imidazole, 1,2-dimethylimidazole, 2-phenylimidazole, benzimidazole, isoquinoline, substituted pyridine and the like are 0.05 to 10 weights with respect to the polyamic acid. %, Especially 0.1 to 2% by weight. These can complete the imide at relatively low temperatures.

また、接着強度の安定化の目的で、熱圧着性ポリイミド原料ド−プに有機アルミニウム化合物、無機アルミニウム化合物または有機錫化合物を添加してもよい。例えば水酸化アルミニウム、アルミニウムトリアセチルアセトナ−トなどをポリアミック酸に対してアルミニウム金属として1ppm以上、特に1〜1000ppmの割合で添加することができる。   For the purpose of stabilizing the adhesive strength, an organoaluminum compound, an inorganic aluminum compound, or an organotin compound may be added to the thermocompression bonding polyimide raw material dope. For example, aluminum hydroxide, aluminum triacetylacetonate or the like can be added in an amount of 1 ppm or more, particularly 1 to 1000 ppm as an aluminum metal with respect to the polyamic acid.

前記の熱圧着性多層ポリイミドフィルムの基体層としての耐熱性ポリイミドは、好適には3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミン(以下単にPPDと略記することもある。)と場合によりさらに4,4’−ジアミノジフェニルエ−テル(以下単にDADEと略記することもある。)とから製造される。この場合PPD/DADE(モル比)は100/0〜85/15であることが好ましい。また、基体層としての耐熱性ポリイミドは、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とピロメリット酸二無水物とパラフェニレンジアミンと4,4’−ジアミノジフェニルエ−テルとから製造される。また、基体層としての耐熱性ポリイミドは、ピロメリット酸二無水物とパラフェニレンジアミンおよび4,4’−ジアミノジフェニルエ−テルとから製造される。この場合DADE/PPD(モル比)は90/10〜10/90であることが好ましい。さらに、基体層としての耐熱性ポリイミドは、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)およびピロメリット酸二無水物(PMDA)とパラフェニレンジアミン(PPD)および4,4’−ジアミノジフェニルエ−テル(DADE)とから製造される。この場合、酸二無水物中BTDAが20〜90モル%、PMDAが10〜80モル%、ジアミン中PPDが30〜90モル%、DADEが10〜70モル%であることが好ましい。   The heat-resistant polyimide as the base layer of the thermocompression-bonding multilayer polyimide film is preferably 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine (hereinafter simply abbreviated as PPD). And optionally 4,4′-diaminodiphenyl ether (hereinafter sometimes abbreviated as DADE). In this case, the PPD / DADE (molar ratio) is preferably 100/0 to 85/15. Further, the heat-resistant polyimide as the base layer is composed of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, paraphenylenediamine, and 4,4′-diaminodiphenyl ether. And manufactured from. The heat-resistant polyimide as the substrate layer is produced from pyromellitic dianhydride, paraphenylenediamine, and 4,4'-diaminodiphenyl ether. In this case, the DADE / PPD (molar ratio) is preferably 90/10 to 10/90. Further, the heat-resistant polyimide as the base layer is composed of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), pyromellitic dianhydride (PMDA), paraphenylenediamine (PPD) and 4 , 4'-diaminodiphenyl ether (DADE). In this case, it is preferable that BTDA in acid dianhydride is 20 to 90 mol%, PMDA is 10 to 80 mol%, PPD in diamine is 30 to 90 mol%, and DADE is 10 to 70 mol%.

また、上記の基体層としての耐熱性ポリイミドとしては、単独のポリイミドフィルムの場合にガラス転移温度が350℃以上か確認不可能であるものが好ましく、特に線膨張係数(50〜200℃)(MD)が5x10−6〜30x10−6cm/cm/℃であるものが好ましい。また、引張弾性率(MD、ASTM−D882)は300kg/mm以上であるものが好ましい。この基体層ポリイミドの合成は、最終的に各成分の割合が前記範囲内であればランダム重合、ブロック重合、あるいはあらかじめ2種類のポリアミック酸を合成しておき両ポリアミック酸溶液を混合後反応条件下で混合して均一溶液とする、いずれの方法によっても達成される。 In addition, as the heat-resistant polyimide as the base layer, it is preferable that the glass transition temperature is 350 ° C. or higher in the case of a single polyimide film, and in particular, the linear expansion coefficient (50 to 200 ° C.) (MD ) are those preferably 5x10 -6 ~30x10 -6 cm / cm / ℃. The tensile modulus (MD, ASTM-D882) is preferably 300 kg / mm 2 or more. The synthesis of the base layer polyimide is performed by random polymerization, block polymerization, or by synthesizing two types of polyamic acids in advance and mixing both polyamic acid solutions if the proportion of each component is within the above range. To achieve a homogeneous solution.

前記各成分を使用し、ジアミン成分とテトラカルボン酸二無水物の略等モル量を、有機溶媒中で反応させてポリアミック酸の溶液(均一な溶液状態が保たれていれば一部がイミド化されていてもよい)とする。前記基体層ポリイミドの物性を損なわない種類と量の他の芳香族テトラカルボン酸二無水物や芳香族ジアミン、例えば4,4’−ジアミノジフェニルメタン等を使用してもよい。   Using each of the above-mentioned components, a substantially equimolar amount of a diamine component and a tetracarboxylic dianhydride are reacted in an organic solvent to give a polyamic acid solution (partly imidized if a uniform solution state is maintained) May be used). Other aromatic tetracarboxylic dianhydrides and aromatic diamines such as 4,4'-diaminodiphenylmethane, etc., which do not impair the physical properties of the base layer polyimide, may be used.

前記のポリアミック酸製造に使用する有機溶媒は、非結晶性ポリイミド、熱圧着性ポリイミドおよび耐熱性ポリイミドのいずれに対しても、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、クレゾ−ル類などが挙げられる。これらの有機溶媒は単独で用いてもよく、2種以上を併用してもよい。   The organic solvent used for the production of the polyamic acid is N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N for any of amorphous polyimide, thermocompression bonding polyimide and heat resistant polyimide. -Dimethylacetamide, N, N-diethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, N-methylcaprolactam, cresols and the like. These organic solvents may be used alone or in combination of two or more.

前記の熱圧着性多層ポリイミドフィルムの製造においては、例えば上記の基体層の耐熱性ポリイミドのポリアミック酸溶液と熱圧着層用の熱圧着性ポリイミドまたはその前駆体の溶液を共押出して、これをステンレス鏡面、ベルト面等の支持体面上に流延塗布し、100〜200℃で半硬化状態またはそれ以前の乾燥状態とすることが好ましい。200℃を越えた高い温度で流延フィルムを処理すると、多層ポリイミドフィルムの製造において、接着性の低下などの欠陥を来す傾向にある。この半硬化状態またはそれ以前の状態とは、加熱および/または化学イミド化によって自己支持性の状態にあることを意味する。   In the production of the thermocompression-bonding multilayer polyimide film, for example, a polyamic acid solution of the heat-resistant polyimide for the base layer and a thermocompression-bonding polyimide for the thermocompression-bonding layer or a precursor solution thereof are coextruded, and this is made of stainless steel. It is preferable to cast and apply on a support surface such as a mirror surface or a belt surface to be in a semi-cured state or a dried state before 100 to 200 ° C. When a cast film is processed at a high temperature exceeding 200 ° C., defects such as a decrease in adhesion tend to be caused in the production of a multilayer polyimide film. This semi-cured state or an earlier state means that it is in a self-supporting state by heating and / or chemical imidization.

前記の基体層ポリイミドを与えるポリアミック酸の溶液と、熱圧着性ポリイミドを与えるポリアミック酸の溶液との共押出しは、例えば特開平3−180343号公報(特公平7−102661号公報)に記載の共押出法によって三層の押出し成形用ダイスに供給し、支持体上にキャストしておこなうことができる。前記の基体層ポリイミドを与える押出し物層の両面に、熱圧着性ポリイミドを与えるポリアミック酸の溶液あるいはポリイミド溶液を積層して多層フィルム状物を形成して乾燥後、熱圧着性ポリイミドのガラス転移温度(Tg)以上で劣化が生じる温度以下の温度、好適には250〜420℃の温度(表面温度計で測定した表面温度)まで加熱して(好適にはこの温度で1〜60分間加熱して)乾燥およびイミド化して、基体層ポリイミドの両面に熱圧着性ポリイミドを有する熱圧着性多層押出しポリイミドフィルムを製造することができる。   The coextrusion of the polyamic acid solution for providing the base layer polyimide and the polyamic acid solution for providing the thermocompression bonding polyimide is, for example, described in JP-A-3-180343 (JP-B-7-102661). It can supply to the die | dye for extrusion molding of three layers by an extrusion method, and can cast and cast on a support body. A glass transition temperature of the thermocompression bonding polyimide is formed by laminating a polyamic acid solution or a polyimide solution that gives thermocompression bonding polyimide on both sides of the extrudate layer that gives the base layer polyimide, and forming a multi-layer film-like product and drying. (Tg) is heated to a temperature not higher than the temperature at which deterioration occurs, preferably 250 to 420 ° C. (surface temperature measured with a surface thermometer) (preferably heated at this temperature for 1 to 60 minutes) ) Drying and imidization can produce a thermocompression-bonding multilayer extruded polyimide film having thermocompression-bonding polyimide on both sides of the substrate layer polyimide.

前記の熱圧着性ポリイミドは、前記の酸成分とジアミン成分とを使用することによって、好適にはガラス転移温度が190〜280℃、特に200〜275℃であって、好適には前記の条件で乾燥・イミド化して熱圧着性ポリイミドのゲル化を実質的に起こさせないことによって達成される、ガラス転移温度以上で300℃以下の範囲内の温度で溶融せず、かつ弾性率(通常、275℃での弾性率が50℃での弾性率の0.001〜0.5倍程度)を保持しているものが好ましい。   The thermocompression bonding polyimide preferably has a glass transition temperature of 190 to 280 ° C., particularly 200 to 275 ° C. by using the acid component and the diamine component. It is achieved by drying and imidization so as not to cause gelation of thermocompression-bonding polyimide substantially, and does not melt at a temperature within the range of the glass transition temperature to 300 ° C. and elastic modulus (usually 275 ° C. It is preferable that the elastic modulus at is maintained at about 0.001 to 0.5 times the elastic modulus at 50 ° C.

前記の熱圧着性多層ポリイミドフィルムは、基体層ポリイミドのフィルム(層)の厚さは5〜125μmであることが好ましく、熱圧着性ポリイミド(Y)層の厚さは1〜25μm、特に1〜15μm、その中でも特に2〜12μmが好ましい。また、前記の他の金属箔と積層される場合の熱圧着性ポリイミド(Y)層の厚さは、使用する他の金属箔の表面粗さ(Rz)以上であることが好ましい。   In the thermocompression-bonding multilayer polyimide film, the base layer polyimide film (layer) preferably has a thickness of 5 to 125 μm, and the thermocompression-bonding polyimide (Y) layer has a thickness of 1 to 25 μm, particularly 1 to 15 μm, among which 2 to 12 μm is particularly preferable. Moreover, it is preferable that the thickness of the thermocompression-bondable polyimide (Y) layer when laminated with the other metal foil is not less than the surface roughness (Rz) of the other metal foil to be used.

前記の積層体に使用される他の金属箔としては、銅、アルミニウム、金、合金の箔など各種金属箔が挙げられるが、好適には圧延銅箔、電解銅箔などがあげられる。金属箔として、表面粗さRzが0.5μm以上であるものが好ましい。また、金属箔の表面粗さRzが10μm以下、特に7μm以下であるものが好ましい。このような金属箔、例えば銅箔はVLP、LP(またはHTE)として知られている。金属箔の厚さは特に制限はないが、5〜60μm、特に5〜20μmであるものが好ましい。   Examples of other metal foils used in the laminate include various metal foils such as copper, aluminum, gold, and alloy foils. Preferred examples include rolled copper foils and electrolytic copper foils. A metal foil having a surface roughness Rz of 0.5 μm or more is preferable. Further, it is preferable that the surface roughness Rz of the metal foil is 10 μm or less, particularly 7 μm or less. Such metal foils, such as copper foils, are known as VLP, LP (or HTE). Although the thickness of metal foil does not have a restriction | limiting in particular, What is 5-60 micrometers, Especially 5-20 micrometers is preferable.

前記の粗化処理を施していないレベル以上の表面状態の金属箔に非結晶性ポリイミド膜を形成した後、熱圧着性ポリイミドフィルム、好適には熱圧着性多層ポリイミドフィルムを重ね合わせ、連続加圧部材を通して加圧部の温度が熱圧着性ポリイミドのガラス転移温度より30℃以上で420℃以下の温度で加熱下に熱圧着してあるいはプレスにて前記の範囲の温度で0.1〜200Kgf/cmで熱圧着して、金属箔積層体を製造することができる。前記の方法において、非結晶性ポリイミド薄層を形成した金属箔と他の金属箔とを熱圧着性ポリイミドフィルムによって加熱圧着して、両面に金属箔を有する金属箔積層体を得ることができる。また、前記の方法において、非結晶性ポリイミド薄層を形成した金属箔と熱圧着性ポリイミドおよび耐熱性ポリイミドの2層構造の熱圧着性ポリイミドフィルム加熱圧着して、片面に金属箔を他面に耐熱性ポリイミド層有する金属箔積層体を得ることができる。 After forming a non-crystalline polyimide film on a metal foil having a surface state of the level not subjected to the above roughening treatment, a thermocompression bonding polyimide film, preferably a thermocompression bonding multi-layer polyimide film is overlaid and continuously pressed. The temperature of the pressurizing part is 30 ° C. or higher and 420 ° C. or lower than the glass transition temperature of the thermocompression bonding polyimide through the member. A metal foil laminate can be produced by thermocompression bonding at cm 2 . In the above method, a metal foil laminate having a metal foil on both sides can be obtained by thermocompression bonding a metal foil having an amorphous polyimide thin layer and another metal foil with a thermocompression bonding polyimide film. Also, in the above method, the metal foil on which the amorphous polyimide thin layer is formed and the thermocompression-bondable polyimide film having the two-layer structure of thermocompression-bondable polyimide and heat-resistant polyimide are thermocompression-bonded, and the metal foil is disposed on the other surface. A metal foil laminate having a heat-resistant polyimide layer can be obtained.

前記の連続加圧部材としては、一対の圧着金属ロ−ル(圧着部は金属製、セラミック溶射金属製のいずれでもよい)またはダブルベルトプレスが挙げられ、特に加圧下に熱圧着および冷却できるものであって液圧式のダブルベルトプレスを挙げることができる。   Examples of the continuous pressure member include a pair of pressure-bonded metal rolls (the pressure-bonding part may be made of metal or ceramic sprayed metal) or a double belt press, and particularly capable of thermocompression bonding and cooling under pressure. Thus, a hydraulic double belt press can be mentioned.

この発明によれば、簡単な処理によって接着強度の大きい金属箔積層体を製造することができる。また、この発明によって得られる金属箔積層体は、電子部品用部材として好適に使用することができる。   According to the present invention, a metal foil laminate having a high adhesive strength can be produced by a simple treatment. Moreover, the metal foil laminated body obtained by this invention can be used conveniently as a member for electronic components.

以下、この発明を実施例および比較例によりさらに詳細に説明する。以下の各例において、物性評価および金属箔積層体の剥離強度は以下の方法に従って測定した。
ガラス転移温度:DSCにて測定した。
結晶化度:XRD(X線回折)によって測定した。ピ−クが認められない場合、非結晶性と評価した。
線膨張係数:20〜200℃、5℃/分の昇温速度で測定(MD)した。
積層体の剥離強度:90度剥離強度を測定した。
耐熱性:金属箔積層体を260℃の半田浴に1分間浸漬して、膨れ、はがれ、変色の有無を観察した。
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. In each of the following examples, the physical property evaluation and the peel strength of the metal foil laminate were measured according to the following methods.
Glass transition temperature: measured by DSC.
Crystallinity: measured by XRD (X-ray diffraction). When no peak was observed, it was evaluated as non-crystalline.
Linear expansion coefficient: measured (MD) at a heating rate of 20 to 200 ° C. and 5 ° C./min.
Peel strength of laminate: 90 degree peel strength was measured.
Heat resistance: The metal foil laminate was immersed in a solder bath at 260 ° C. for 1 minute, and the presence or absence of swelling, peeling or discoloration was observed.

参考例(熱圧着性三層押出しポリイミドフィルムの製造)
熱圧着性ポリイミド製造用ド−プの合成−1
撹拌機、窒素導入管を備えた反応容器に、N,N−ジメチルアセトアミド(DMAc)を加え、さらに、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)とを1000:1000のモル比でモノマ−濃度が22%になるように、またトリフェニルホスフェ−トをモノマ−重量に対して0.1%加えた。添加終了後25℃を保ったまま1時間反応を続けた。25℃における溶液粘度は約2000ポイズであった。この溶液をド−プとして使用した。
Reference example (manufacture of thermocompression-bonding three-layer extruded polyimide film)
Synthesis of dough for thermocompression bonding polyimide production-1
N, N-dimethylacetamide (DMAc) is added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and 1,3-bis (4-aminophenoxy) benzene (TPE-R) and 2,3,3 are further added. ', 4'-biphenyltetracarboxylic dianhydride (a-BPDA) was added at a molar ratio of 1000: 1000 to a monomer concentration of 22%, and triphenyl phosphate was added to the monomer weight. 0.1% was added. After completion of the addition, the reaction was continued for 1 hour while maintaining 25 ° C. The solution viscosity at 25 ° C. was about 2000 poise. This solution was used as a dope.

耐熱性ポリイミド製造用ド−プの合成−1
導入管を備えた反応容器に、N,N−ジメチルアセトアミドを加え、さらに、パラフェニレンジアミン(PPD)と3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)とを1000:998のモル比でモノマ−濃度が18%(重量%、以下同じ)になるように加えた。添加終了後50℃を保ったまま3時間反応を続けた。得られたポリアミック酸溶液は褐色粘調液体であり、25℃における溶液粘度は約1500ポイズであった。この溶液をド−プとして使用した。
Synthesis of heat-resistant polyimide manufacturing dope-1
N, N-dimethylacetamide is added to a reaction vessel equipped with an introduction tube, and further, paraphenylenediamine (PPD), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), and Was added at a molar ratio of 1000: 998 so that the monomer concentration was 18% (wt%, the same applies hereinafter). After completion of the addition, the reaction was continued for 3 hours while maintaining 50 ° C. The obtained polyamic acid solution was a brown viscous liquid, and the solution viscosity at 25 ° C. was about 1500 poise. This solution was used as a dope.

熱圧着性三層押出しポリイミドフィルムの製造
前記の熱圧着性ポリイミド製造用ド−プと基体層ポリイミド製造用ド−プとを三層押出し出し成形用ダイス(マルチマニホ−ルド型ダイス)を設けた製膜装置を使用し、三層押出ダイスから金属製支持体上に流延し、140℃の熱風で連続的に乾燥し、固化フィルムを形成した。この固化フィルムを支持体から剥離した後加熱炉で200℃から320℃まで徐々に昇温して溶媒の除去、イミド化を行い長尺状の三層押出しポリイミドフィルムを巻き取りロ−ルに巻き取った。得られた熱圧着性三層押出しポリイミドフィルムは、各層の厚みが4μm/17μm/4μmであり、線膨張係数(50−200℃)が、MD:23ppm/℃、TD:19ppm/℃、平均:21ppm/℃であり、引張弾性率が526kg/mmで、基体層ポリイミドのガラス転移温度は400℃以下の温度で確認されず、熱圧着層ポリイミドはガラス転移温度が250℃であり、275℃での弾性率が50℃での弾性率の0.002倍であり、ゲル化が実質的に生じていなかった。
Manufacture of thermocompression-bonding three-layer extrusion polyimide film Manufacture of the above-mentioned thermocompression-bonding polyimide manufacturing dope and base layer polyimide manufacturing dope with a three-layer extrusion forming die (multi-manifold die) Using a membrane apparatus, the film was cast from a three-layer extrusion die onto a metal support and continuously dried with hot air at 140 ° C. to form a solidified film. After the solidified film is peeled off from the support, the temperature is gradually raised from 200 ° C. to 320 ° C. in a heating furnace to remove the solvent and imidize, and wind a long three-layer extruded polyimide film on a winding roll. I took it. The obtained thermocompression-bonding three-layer extruded polyimide film has a thickness of each layer of 4 μm / 17 μm / 4 μm, a linear expansion coefficient (50-200 ° C.) of MD: 23 ppm / ° C., TD: 19 ppm / ° C., average: It is 21 ppm / ° C., the tensile modulus is 526 kg / mm 2 , and the glass transition temperature of the base layer polyimide is not confirmed at a temperature of 400 ° C. or less, and the thermocompression bonding layer polyimide has a glass transition temperature of 250 ° C. and 275 ° C. The elastic modulus at 50 ° C. was 0.002 times the elastic modulus at 50 ° C., and gelation did not substantially occur.

2,2−ビス(4−アミノフェノキシフェニル)プロパン(BAPP)32.84g(0.08モル)、N,N−ジメチルアセトアミド224.8gを室温で、窒素雰囲気下反応容器中で撹拌、溶解した。これにs−BPDA23.31g(0.079モル)を徐々に加え、40℃で3時間撹拌した。その後、室温で3,3’,4,4’−ビフェニルテトラカルボン酸二水和物(s−BPTA)2.12g(0.0058モル)を加え溶解した。得られたポリアミック酸溶液を10g取り、DMAc30gで希釈し5%溶液とした。このワニス(芳香族テトラカルボン酸成分/芳香族ジアミンが1.06)をド−プとして厚さ20μmのSUS(新日本製鉄社製、SUS304HTAMW、Ra:0.05μm、以下単にSUSと略記する。)に塗布し、120℃x2分、150℃x2分、180℃x2分、250℃x2分間加熱して厚み0.5μmのポリイミド膜を形成した。このポリイミドは、非結晶でガラス転移温度(Tg)が245℃であった。得られた非結晶性ポリイミドを形成したSUS、熱圧着性三層押出しポリイミドフィルム、厚さ18μmの圧延銅箔(ジャパンエナジ−社製BHY箔、Ra:0.18μm、以下単に圧延銅箔と略記する。)の順に重ねプレスにて、320℃、50Kgf/cmで1分間圧着して両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は1.90Kgf/cmであった。さらに、この両面金属積層板を260℃の半田浴に1分間浸漬しても、膨れ、はがれ、変色等の変化は見られなかった。 32.84 g (0.08 mol) of 2,2-bis (4-aminophenoxyphenyl) propane (BAPP) and 224.8 g of N, N-dimethylacetamide were stirred and dissolved in a reaction vessel under a nitrogen atmosphere at room temperature. . To this, 23.31 g (0.079 mol) of s-BPDA was gradually added and stirred at 40 ° C. for 3 hours. Thereafter, 2.12 g (0.0058 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic acid dihydrate (s-BPTA) was added and dissolved at room temperature. 10 g of the obtained polyamic acid solution was taken and diluted with 30 g of DMAc to obtain a 5% solution. This varnish (aromatic tetracarboxylic acid component / aromatic diamine is 1.06) is used as a SUS having a thickness of 20 μm (manufactured by Nippon Steel Corporation, SUS304HTAMW, Ra: 0.05 μm, hereinafter simply abbreviated as SUS). And heated to 120 ° C. × 2 minutes, 150 ° C. × 2 minutes, 180 ° C. × 2 minutes, 250 ° C. × 2 minutes to form a polyimide film having a thickness of 0.5 μm. This polyimide was amorphous and had a glass transition temperature (Tg) of 245 ° C. SUS on which the obtained amorphous polyimide was formed, thermocompression-bonding three-layer extruded polyimide film, 18 μm-thick rolled copper foil (Japan Energy BHY foil, Ra: 0.18 μm, hereinafter simply referred to as rolled copper foil) In this order, the laminate was press-bonded at 320 ° C. and 50 kgf / cm 2 for 1 minute to obtain a double-sided metal laminate. The 90 ° peel strength of the SUS-polyimide interface of this double-sided metal laminate was 1.90 Kgf / cm. Furthermore, even when this double-sided metal laminate was immersed in a solder bath at 260 ° C. for 1 minute, no changes such as swelling, peeling, and discoloration were observed.

非結晶性ポリイミド膜の厚みを0.20μmにした他は、実施例1と同様に実施して両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は1.90Kgf/cmであった。さらに、この両面金属積層板を260℃の半田浴に1分間浸漬しても、膨れ、はがれ、変色等の変化は見られなかった。 A double-sided metal laminate was obtained in the same manner as in Example 1 except that the thickness of the amorphous polyimide film was 0.20 μm. The 90 ° peel strength of the SUS-polyimide interface of this double-sided metal laminate was 1.90 Kgf / cm. Furthermore, even when this double-sided metal laminate was immersed in a solder bath at 260 ° C. for 1 minute, no changes such as swelling, peeling, and discoloration were observed.

s−BPTA0.36g(0.00098モル)を加えた他は実施例3と同様にしてワニス(芳香族テトラカルボン酸成分/芳香族ジアミンが1.040)を得、このワニスをド−プとして使用した他は実施例3と同様に実施して、非結晶性ポリイミド膜を使用した両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は1.50Kgf/cmであった。さらに、この両面金属積層板を260℃の半田浴に1分間浸漬しても、膨れ、はがれ、変色等の変化は見られなかった。 A varnish (aromatic tetracarboxylic acid component / aromatic diamine was 1.040) was obtained in the same manner as in Example 3 except that 0.36 g (0.00098 mol) of s-BPTA was added, and this varnish was used as a dope. Except having used, it implemented similarly to Example 3 and obtained the double-sided metal laminated board which used the amorphous polyimide film. The 90 ° peel strength of the SUS-polyimide interface of this double-sided metal laminate was 1.50 Kgf / cm. Furthermore, even when this double-sided metal laminate was immersed in a solder bath at 260 ° C. for 1 minute, no changes such as swelling, peeling, and discoloration were observed.

s−BPTAを加えなかった他は実施例3と同様にしてワニス(芳香族テトラカルボン酸成分/芳香族ジアミンが0.958)を得、このワニスをド−プとして使用した他は実施例3と同様に実施して、非結晶性ポリイミド膜を使用した両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は1.25Kgf/cmであった。さらに、この両面金属積層板を260℃の半田浴に1分間浸漬しても、膨れ、はがれ、変色等の変化は見られなかった。 A varnish (aromatic tetracarboxylic acid component / aromatic diamine: 0.958) was obtained in the same manner as in Example 3 except that s-BPTA was not added, and Example 3 was used except that this varnish was used as a dope. In the same manner as described above, a double-sided metal laminate using an amorphous polyimide film was obtained. The 90 ° peel strength of the SUS-polyimide interface of this double-sided metal laminate was 1.25 Kgf / cm. Furthermore, even when this double-sided metal laminate was immersed in a solder bath at 260 ° C. for 1 minute, no changes such as swelling, peeling, and discoloration were observed.

非結晶性ポリイミド薄層を形成するための熱処理条件を120℃x2分、150℃x2分、180℃x2分、350℃x2分間加熱して厚み0.5μmのポリイミド膜を形成した他は、実施例1と同様に実施して両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は1.90Kgf/cmであった。さらに、この両面金属積層板を260℃の半田浴に1分間浸漬しても、膨れ、はがれ、変色等の変化は見られなかった。 The heat treatment conditions for forming the amorphous polyimide thin layer were carried out except that a polyimide film having a thickness of 0.5 μm was formed by heating at 120 ° C. × 2 minutes, 150 ° C. × 2 minutes, 180 ° C. × 2 minutes, 350 ° C. × 2 minutes. In the same manner as in Example 1, a double-sided metal laminate was obtained. The 90 ° peel strength of the SUS-polyimide interface of this double-sided metal laminate was 1.90 Kgf / cm. Furthermore, even when this double-sided metal laminate was immersed in a solder bath at 260 ° C. for 1 minute, no changes such as swelling, peeling, and discoloration were observed.

TPE−R17.54g(0.0600モル)、DMAc124.80gを室温で、窒素雰囲気下反応容器中で撹拌、溶解した。これにa−BPDA17.83g(0.0606モル)を徐々に加え、40℃で3時間撹拌した。得られたポリアミック酸溶液をDMAcで希釈し5%溶液とした。このワニス(芳香族テトラカルボン酸成分/芳香族ジアミンが1.01)をド−プとして使用した他は実施例1と同様にして、ポリイミド膜を形成した。このポリイミドは、非結晶でガラス転移温度(Tg)が252℃であった。得られた非結晶性ポリイミド形成SUSを使用した他は、実施例1と同様に実施して両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は0.90Kgf/cmであった。さらに、この両面金属積層板を260℃の半田浴に1分間浸漬しても、膨れ、はがれ、変色等の変化は見られなかった。 17.54 g (0.0600 mol) of TPE-R and 124.80 g of DMAc were stirred and dissolved in a reaction vessel at room temperature under a nitrogen atmosphere. To this, 17.83 g (0.0606 mol) of a-BPDA was gradually added and stirred at 40 ° C. for 3 hours. The obtained polyamic acid solution was diluted with DMAc to obtain a 5% solution. A polyimide film was formed in the same manner as in Example 1 except that this varnish (aromatic tetracarboxylic acid component / aromatic diamine was 1.01) was used as a dope. This polyimide was amorphous and had a glass transition temperature (Tg) of 252 ° C. Except having used the obtained amorphous polyimide formation SUS, it implemented similarly to Example 1 and obtained the double-sided metal laminated board. The 90 ° peel strength of the SUS-polyimide interface of this double-sided metal laminate was 0.90 Kgf / cm. Furthermore, even when this double-sided metal laminate was immersed in a solder bath at 260 ° C. for 1 minute, no changes such as swelling, peeling, and discoloration were observed.

BAPP7.39g(0.018モル)、APB0.58g(0.002モル)、DMAc55.40gを室温で、窒素雰囲気下反応容器中で撹拌、溶解した。これにs−BPDA5.83g(0.0198モル)を徐々に加え、40℃で3時間撹拌した。得られたポリアミック酸溶液をDMAcで希釈し5%溶液とした。このワニス(芳香族テトラカルボン酸成分/芳香族ジアミンが0.99)をド−プとして使用した他は実施例1と同様にして、SUSに非結晶性ポリイミド膜を形成した。このポリイミドは、非結晶でガラス転移温度(Tg)が241℃であった。得られた非結晶性ポリイミド形成SUSを使用した他は、実施例1と同様に実施して両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は1.55Kgf/cmであった。さらに、この両面金属積層板を260℃の半田浴に1分間浸漬しても、膨れ、はがれ、変色等の変化は見られなかった。 BAPP 7.39 g (0.018 mol), APB 0.58 g (0.002 mol), and DMAc 55.40 g were stirred and dissolved in a reaction vessel at room temperature under a nitrogen atmosphere. To this, 5.83 g (0.0198 mol) of s-BPDA was gradually added and stirred at 40 ° C. for 3 hours. The obtained polyamic acid solution was diluted with DMAc to obtain a 5% solution. An amorphous polyimide film was formed on SUS in the same manner as in Example 1 except that this varnish (aromatic tetracarboxylic acid component / aromatic diamine was 0.99) was used as a dope. This polyimide was amorphous and had a glass transition temperature (Tg) of 241 ° C. Except having used the obtained amorphous polyimide formation SUS, it implemented similarly to Example 1 and obtained the double-sided metal laminated board. The 90 degree peel strength of the SUS-polyimide interface of this double-sided metal laminate was 1.55 Kgf / cm. Furthermore, even when this double-sided metal laminate was immersed in a solder bath at 260 ° C. for 1 minute, no changes such as swelling, peeling, and discoloration were observed.

BAPP3.28g(0.008モル)、APB0.58g(0.002モル)、DMAc27.20gを室温で、窒素雰囲気下反応容器中で撹拌、溶解した。これにs−BPDA3.00g(0.0102モル)を徐々に加え、40℃で3時間撹拌した。得られたポリアミック酸溶液をDMAcで希釈し5%溶液とした。このワニス(芳香族テトラカルボン酸成分/芳香族ジアミンが1.02)をド−プとして使用した他は実施例1と同様にして、SUSに非結晶性ポリイミド膜を形成した。このポリイミドは、非結晶でガラス転移温度(Tg)が239℃であった。得られた非結晶性ポリイミド形成SUSを使用した他は、実施例1と同様に実施して両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は2.30Kgf/cmであった。さらに、この両面金属積層板を260℃の半田浴に1分間浸漬しても、膨れ、はがれ、変色等の変化は見られなかった。 3.28 g (0.008 mol) of BAPP, 0.58 g (0.002 mol) of APB, and 27.20 g of DMAc were stirred and dissolved in a reaction vessel at room temperature in a nitrogen atmosphere. To this, 3.00 g (0.0102 mol) of s-BPDA was gradually added and stirred at 40 ° C. for 3 hours. The obtained polyamic acid solution was diluted with DMAc to obtain a 5% solution. An amorphous polyimide film was formed on SUS in the same manner as in Example 1 except that this varnish (aromatic tetracarboxylic acid component / aromatic diamine was 1.02) was used as a dope. This polyimide was amorphous and had a glass transition temperature (Tg) of 239 ° C. Except having used the obtained amorphous polyimide formation SUS, it implemented similarly to Example 1 and obtained the double-sided metal laminated board. The 90 degree peel strength of the SUS-polyimide interface of this double-sided metal laminate was 2.30 Kgf / cm. Furthermore, even when this double-sided metal laminate was immersed in a solder bath at 260 ° C. for 1 minute, no changes such as swelling, peeling, and discoloration were observed.

BAPS−M:ビス[4−(3−アミノフェノキシ)フェニル]スルフォン4.32g(0.01モル)、DMAc29.04gを室温で、窒素雰囲気下反応容器中で撹拌、溶解した。これにs−BPDA3.00g(0.0102モル)を徐々に加え、40℃で3時間撹拌した。得られたポリアミック酸溶液をDMAcで希釈し5%溶液とした。このワニス(芳香族テトラカルボン酸成分/芳香族ジアミンが1.02)をド−プとして使用した他は実施例1と同様にして、SUSに非結晶性ポリイミド膜を形成した。このポリイミドは、非結晶でガラス転移温度(Tg)が245℃であった。得られた非結晶性ポリイミド形成SUSを使用した他は、実施例1と同様に実施して両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は1.50Kgf/cmであった。さらに、この両面金属積層板を260℃の半田浴に1分間浸漬しても、膨れ、はがれ、変色等の変化は見られなかった。 BAPS-M: 4.32 g (0.01 mol) of bis [4- (3-aminophenoxy) phenyl] sulfone and 29.04 g of DMAc were stirred and dissolved in a reaction vessel at room temperature under a nitrogen atmosphere. To this, 3.00 g (0.0102 mol) of s-BPDA was gradually added and stirred at 40 ° C. for 3 hours. The obtained polyamic acid solution was diluted with DMAc to obtain a 5% solution. An amorphous polyimide film was formed on SUS in the same manner as in Example 1 except that this varnish (aromatic tetracarboxylic acid component / aromatic diamine was 1.02) was used as a dope. This polyimide was amorphous and had a glass transition temperature (Tg) of 245 ° C. Except having used the obtained amorphous polyimide formation SUS, it implemented similarly to Example 1 and obtained the double-sided metal laminated board. The 90 ° peel strength of the SUS-polyimide interface of this double-sided metal laminate was 1.50 Kgf / cm. Furthermore, even when this double-sided metal laminate was immersed in a solder bath at 260 ° C. for 1 minute, no changes such as swelling, peeling, and discoloration were observed.

APB1.46g(0.005モル)、DMAc11.72gを室温で、窒素雰囲気下反応容器中で撹拌、溶解した。これにs−BPDA1.50g(0.0051モル)を徐々に加え、40℃で3時間撹拌した。得られたポリアミック酸溶液をDMAcで希釈し5%溶液とした。このワニス(芳香族テトラカルボン酸成分/芳香族ジアミンが1.02)をド−プとして使用した他は実施例1と同様にして、SUSに非結晶性ポリイミド膜を形成した。このポリイミドは、非結晶でガラス転移温度(Tg)が206℃であった。得られた非結晶性ポリイミド形成SUSを使用した他は、実施例1と同様に実施して両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は2.05Kgf/cmであった。さらに、この両面金属積層板を260℃の半田浴に1分間浸漬しても、膨れ、はがれ、変色等の変化は見られなかった。 1.46 g (0.005 mol) of APB and 11.72 g of DMAc were stirred and dissolved in a reaction vessel under a nitrogen atmosphere at room temperature. To this, 1.50 g (0.0051 mol) of s-BPDA was gradually added and stirred at 40 ° C. for 3 hours. The obtained polyamic acid solution was diluted with DMAc to obtain a 5% solution. An amorphous polyimide film was formed on SUS in the same manner as in Example 1 except that this varnish (aromatic tetracarboxylic acid component / aromatic diamine was 1.02) was used as a dope. This polyimide was amorphous and had a glass transition temperature (Tg) of 206 ° C. Except having used the obtained amorphous polyimide formation SUS, it implemented similarly to Example 1 and obtained the double-sided metal laminated board. The 90 degree peel strength of the SUS-polyimide interface of this double-sided metal laminate was 2.05 kgf / cm. Furthermore, even when this double-sided metal laminate was immersed in a solder bath at 260 ° C. for 1 minute, no changes such as swelling, peeling, and discoloration were observed.

SUSを40μm厚みの圧延アルミ箔(日本製箔社製、A1085H−H18)に変えた他は実施例1と同様に実施して両面金属積層板を得た。この両面金属積層板のAl−ポリイミド界面の90度ピ−ル強度は1.25Kgf/cmであった。さらに、この両面金属積層板を260℃の半田浴に1分間浸漬しても、膨れ、はがれ、変色等の変化は見られなかった。 A double-sided metal laminate was obtained in the same manner as in Example 1 except that SUS was replaced with 40 μm-thick rolled aluminum foil (A1085H-H18, manufactured by Nippon Foil Co., Ltd.). The 90-degree peel strength at the Al-polyimide interface of this double-sided metal laminate was 1.25 Kgf / cm. Furthermore, even when this double-sided metal laminate was immersed in a solder bath at 260 ° C. for 1 minute, no changes such as swelling, peeling, and discoloration were observed.

比較例1
4,4’−ジアミノジフェニルエ−テル2.00g(0.01モル)、DMAc19.76gを室温で、窒素雰囲気下反応容器中で撹拌、溶解した。これにa−BPDA3.00g(0.0102モル)を徐々に加え、40℃で3時間撹拌した。得られたポリアミック酸溶液をDMAcで希釈し5%溶液とした。このワニス(芳香族テトラカルボン酸成分/芳香族ジアミンが1.02)をド−プとして使用した他は実施例1と同様にして、SUSにポリイミド膜を形成した。このポリイミドは、非結晶でガラス転移温度(Tg)が325℃であった。得られた非結晶性ポリイミド形成SUSを使用した他は、実施例1と同様に実施して両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は0.20Kgf/cmであった。
Comparative Example 1
2.00 g (0.01 mol) of 4,4′-diaminodiphenyl ether and 19.76 g of DMAc were stirred and dissolved in a reaction vessel at room temperature under a nitrogen atmosphere. To this, 3.00 g (0.0102 mol) of a-BPDA was gradually added and stirred at 40 ° C. for 3 hours. The obtained polyamic acid solution was diluted with DMAc to obtain a 5% solution. A polyimide film was formed on SUS in the same manner as in Example 1 except that this varnish (aromatic tetracarboxylic acid component / aromatic diamine was 1.02) was used as a dope. This polyimide was amorphous and had a glass transition temperature (Tg) of 325 ° C. Except having used the obtained amorphous polyimide formation SUS, it implemented similarly to Example 1 and obtained the double-sided metal laminated board. The 90 degree peel strength of the SUS-polyimide interface of this double-sided metal laminate was 0.20 Kgf / cm.

比較例2
TPE−R17.54g(0.0600モル)、DMAc124.80gを室温で、窒素雰囲気下反応容器中で撹拌、溶解した。これにs−BPDA18.01g(0.0612モル)を徐々に加え、室温で3時間撹拌した。得られたポリアミック酸溶液を一部取り出しDMAcで希釈し5%溶液とした。このワニス(芳香族テトラカルボン酸成分/芳香族ジアミンが1.02)をド−プとして使用した他は実施例1と同様にして、SUSにポリイミド膜を形成した。このポリイミドは、結晶性でガラス転移温度(Tg)が234℃であった。得られた結晶性ポリイミド形成SUSを使用した他は、実施例1と同様に実施して両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は0.10Kgf/cmであった。
Comparative Example 2
17.54 g (0.0600 mol) of TPE-R and 124.80 g of DMAc were stirred and dissolved in a reaction vessel at room temperature under a nitrogen atmosphere. To this was gradually added 18.01 g (0.0612 mol) of s-BPDA, and the mixture was stirred at room temperature for 3 hours. A part of the obtained polyamic acid solution was taken out and diluted with DMAc to obtain a 5% solution. A polyimide film was formed on SUS in the same manner as in Example 1 except that this varnish (aromatic tetracarboxylic acid component / aromatic diamine was 1.02) was used as a dope. This polyimide was crystalline and had a glass transition temperature (Tg) of 234 ° C. Except having used the obtained crystalline polyimide formation SUS, it implemented similarly to Example 1 and obtained the double-sided metal laminated board. The 90 ° peel strength of the SUS-polyimide interface of this double-sided metal laminate was 0.10 Kgf / cm.

比較例3
非結晶性ポリイミドを形成していないSUSを使用した他は、実施例1と同様に実施して両面金属積層板を得た。この両面金属積層板のSUS−ポリイミド界面の90度ピ−ル強度は0.50Kgf/cmであった。なお、両面金属積層板の圧延銅箔−ポリイミド界面の90度ピ−ル強度は、いずれの実施例および比較例においても1.5Kgf/cmであった。
Comparative Example 3
A double-sided metal laminate was obtained in the same manner as in Example 1 except that SUS not forming amorphous polyimide was used. The 90 degree peel strength of the SUS-polyimide interface of this double-sided metal laminate was 0.50 Kgf / cm. The 90 degree peel strength at the rolled copper foil-polyimide interface of the double-sided metal laminate was 1.5 Kgf / cm in both Examples and Comparative Examples.

Claims (7)

反応容器中、有機溶媒、芳香族テトラカルボン酸成分としての3,3’,4,4’−ビフェニルテトラカルボン酸二無水物あるいはその誘導体および芳香族ジアミン成分としての2,2−ビス(4−アミノフェノキシフェニル)プロパンの各成分を攪拌、溶解した後、重合してポリアミック酸の溶液とし、このポリアミック酸の溶液あるいはポリアミック酸の溶液にさらに有機溶媒を加えてポリアミック酸のド−プとして使用し、ド−プの薄膜を形成し、その薄膜を加熱乾燥して溶媒を蒸発させて除去するとともにポリアミック酸をイミド環化することを特徴とする非結晶ポリイミド膜の製造方法。 In a reaction vessel, an organic solvent, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride or its derivative as an aromatic tetracarboxylic acid component, and 2,2-bis (4- After stirring and dissolving each component of aminophenoxyphenyl) propane, it is polymerized to form a polyamic acid solution, and an organic solvent is further added to this polyamic acid solution or polyamic acid solution to be used as a polyamic acid dope. A method for producing an amorphous polyimide film, comprising: forming a thin film of a dope, heating and drying the thin film to evaporate the solvent, and imide-cyclizing the polyamic acid. ポリアミック酸のド−プが、ポリアミック酸の濃度が1〜20重量%である請求項1に記載の非結晶ポリイミド膜の製造方法。 The method for producing an amorphous polyimide film according to claim 1, wherein the polyamic acid dope has a polyamic acid concentration of 1 to 20 wt%. 芳香族テトラカルボン酸成分と芳香族ジアミン成分との割合が、等モルから6モル%の酸過剰である請求項1に記載の非結晶ポリイミド膜の製造方法。 The method for producing an amorphous polyimide film according to claim 1, wherein the ratio of the aromatic tetracarboxylic acid component and the aromatic diamine component is an acid excess of equimolar to 6 mol%. 反応容器中が、窒素雰囲気下にある請求項1に記載の非結晶ポリイミド膜の製造方法。 The method for producing an amorphous polyimide film according to claim 1, wherein the reaction vessel is in a nitrogen atmosphere. 有機溶媒が、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドである請求項1に記載の非結晶ポリイミド膜の製造方法。 The method for producing an amorphous polyimide film according to claim 1, wherein the organic solvent is N, N-dimethylformamide or N, N-dimethylacetamide. 非結晶性ポリイミド膜が、金属箔積層体用である請求項1に記載の非結晶ポリイミド膜の製造方法。 The method for producing an amorphous polyimide film according to claim 1, wherein the amorphous polyimide film is for a metal foil laminate. 非結晶性ポリイミド膜が、0.05〜3μmの厚みである請求項1に記載の非結晶ポリイミド膜の製造方法。 The method for producing an amorphous polyimide film according to claim 1, wherein the amorphous polyimide film has a thickness of 0.05 to 3 μm.
JP2006007213A 2006-01-16 2006-01-16 Method of manufacturing non-crystalline polyimide film Pending JP2006117957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007213A JP2006117957A (en) 2006-01-16 2006-01-16 Method of manufacturing non-crystalline polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007213A JP2006117957A (en) 2006-01-16 2006-01-16 Method of manufacturing non-crystalline polyimide film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000021961A Division JP4362917B2 (en) 2000-01-31 2000-01-31 Metal foil laminate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006117957A true JP2006117957A (en) 2006-05-11

Family

ID=36536111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007213A Pending JP2006117957A (en) 2006-01-16 2006-01-16 Method of manufacturing non-crystalline polyimide film

Country Status (1)

Country Link
JP (1) JP2006117957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187613A (en) * 2010-03-08 2011-09-22 Fuji Electric Co Ltd Insulating film for semiconductor elements
JP2011192773A (en) * 2010-03-15 2011-09-29 Fuji Electric Co Ltd Semiconductor element and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187613A (en) * 2010-03-08 2011-09-22 Fuji Electric Co Ltd Insulating film for semiconductor elements
JP2011192773A (en) * 2010-03-15 2011-09-29 Fuji Electric Co Ltd Semiconductor element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4362917B2 (en) Metal foil laminate and its manufacturing method
JP4147639B2 (en) Flexible metal foil laminate
JP5035220B2 (en) Copper-clad laminate and manufacturing method thereof
JP4304854B2 (en) Multilayer polyimide film and laminate
JP2004098659A (en) Copper-clad laminate and its manufacturing process
JP4457542B2 (en) Multi-layer polyimide film with thermocompression bonding, heat-resistant copper-clad board
JP2006188025A (en) Copper-clad laminate
JP3580128B2 (en) Manufacturing method of metal foil laminated film
JP2001270034A (en) Flexible metal foil laminate
JP2001270036A (en) Flexible metal foil laminate
JP3938058B2 (en) POLYIMIDE FILM HAVING HEAT FUSION, LAMINATE USING SAME, AND METHOD FOR PRODUCING THEM
JP4345188B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP2002240195A (en) Polyimide/copper-clad panel
JP4193461B2 (en) Heat-sealable polyimide and laminate using the polyimide
JP4006999B2 (en) Polyimide film and laminate
JP4123665B2 (en) Heat resistant resin board and manufacturing method thereof
JPH11157026A (en) Laminate and manufacture thereof
JP2001270033A (en) Method for manufacturing flexible metal foil laminate
JP4360025B2 (en) Polyimide piece area layer with reinforcing material and method for producing the same
JP2006117957A (en) Method of manufacturing non-crystalline polyimide film
JP2000123512A (en) Magnetic head suspension and its production
JP2001270035A (en) Flexible metal foil laminate
JP4894866B2 (en) Multilayer polyimide film and laminate
JP2008023760A (en) Method for producing heat-resistant polyimide/metal laminated sheet
JP4345187B2 (en) Method for producing flexible metal foil laminate

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060123

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A131 Notification of reasons for refusal

Effective date: 20081209

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Effective date: 20100104

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309