JP2006116673A - Concentric groove working method, concentric groove work-piece manufactured by this method and concentric groove molded article - Google Patents

Concentric groove working method, concentric groove work-piece manufactured by this method and concentric groove molded article Download PDF

Info

Publication number
JP2006116673A
JP2006116673A JP2004308930A JP2004308930A JP2006116673A JP 2006116673 A JP2006116673 A JP 2006116673A JP 2004308930 A JP2004308930 A JP 2004308930A JP 2004308930 A JP2004308930 A JP 2004308930A JP 2006116673 A JP2006116673 A JP 2006116673A
Authority
JP
Japan
Prior art keywords
concentric groove
grinding wheel
groove
shaft
concentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004308930A
Other languages
Japanese (ja)
Inventor
Satoshi Kai
聡 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004308930A priority Critical patent/JP2006116673A/en
Publication of JP2006116673A publication Critical patent/JP2006116673A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concentric groove working method to work even a convex curved part in favorable surface roughness while working an sharp groove trough part by using a grinding wheel a head end of which is pointed by working a part a cross-section of which becomes a convex curve by an end surface part of a grinding wheel with a shaft and a part a cross-section of which becomes a straight line by a circumferential surface part of the grinding wheel with the shaft and a concentric groove work-piece to manufacture under this method by working by scanning the grinding wheel while changing inclination of a rotation axis of the grinding wheel with the shaft. <P>SOLUTION: The part the cross-section of which becomes the convex curve is worked by the end surface part of the grinding wheel 4 with the shaft and the part the cross-section of which becomes the straight line is worked by the circumferential surface part of the grinding wheel 4 with the shaft by scanning the grinding wheel 4 with the shaft against the work-piece 1 rotating while changing inclination of a rotation axis 5 of the grinding wheel 4 with the shaft by rotating the work-piece 1 around a center of a concentric groove 2 as the rotation axis in the concentric groove working method to grind and work the concentric groove 2 the cross-section of which are made of the convex curve and the straight line by using the grinding wheel 4 with the shaft. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、断面形状が直線と凸曲線からなる同心溝で構成される光学部品、光学部品用金型を製造するのに使用される同心溝加工方法及びこの方法により製造する同心溝加工品に関するものである。   The present invention relates to an optical component composed of concentric grooves whose cross-sectional shape is a straight line and a convex curve, a concentric groove processing method used for manufacturing a mold for optical components, and a concentric groove processed product manufactured by this method. Is.

従来では、研削砥石を用いて同心溝形状の加工を行う方法として、砥石の先端を尖らした研削砥石を工作物の半径方向及び回転軸方向に駆動させ、複数の不連続な曲面で構成される軸対称な非球面形状の部品を製造する方法が知られている(例えば、特許文献1及び2参照)。
図18は同心溝形状の加工に使用する尖った先端を有する研削砥石を示す概略図である(特許文献1に対応)。図19は同心溝形状の加工に使用する丸い先端を有する研削砥石を示す概略図である。
図18の場合、ワークの谷部の形状を鋭利にすることができるが、工具の先端6が尖っているため、加工面の表面粗さが悪くなる問題がある。加工面の表面粗さを悪化させない方法としては、図19に示すように研削砥石のエッジ6’を丸めて形成する方法があるが、この場合、溝谷部の形状が丸くなるという問題が発生する。
また、特許文献2のように、加工する輪帯ごとに砥石を形成する方法がある。この方法の場合、溝断面形状が直線である場合は可能であるが、断面が曲線形状となる場合、砥石の形成が困難になるという問題がある。また、輪帯ごとに砥石を形成するので、加工する輪帯の数が100本以上の加工をするのは困難である。
図20は本発明の対象である溝形状部分を有する加工物を示す平面図である。図21は図20のa−a’での断面を示す正面図である。図22は図21において丸で囲んだ部分を示す拡大図である。図20及び図21において、符号1は加工物をそして符号2は溝を示している。
図22において、1’−2、2’−3、3’−4は上に凸の曲線、1−1’、2−2’、3−3’、4−4’は直線となる。図21の溝の加工を行う場合、特許文献1のように、加工物1を回転させながら、砥石を加工物1に対して駆動することによって加工する方法がある。
図23は断面が凸曲線と直線からなる同心溝を従来の方法で加工する様子を示す概略図である。図23には加工物1、溝2、加工物1の回転軸3、研削砥石4及びこの研削砥石4の回転軸5を示している。
Conventionally, as a method of processing a concentric groove shape using a grinding wheel, the grinding wheel with a sharpened tip is driven in the radial direction and the rotation axis direction of the workpiece, and is constituted by a plurality of discontinuous curved surfaces. A method of manufacturing an axially symmetric aspherical part is known (see, for example, Patent Documents 1 and 2).
FIG. 18 is a schematic view showing a grinding wheel having a sharp tip used for processing of a concentric groove shape (corresponding to Patent Document 1). FIG. 19 is a schematic view showing a grinding wheel having a rounded tip used for machining concentric grooves.
In the case of FIG. 18, although the shape of the trough part of a workpiece | work can be sharpened, since the front-end | tip 6 of a tool is sharp, there exists a problem that the surface roughness of a processing surface worsens. As a method for preventing the surface roughness of the processed surface from being deteriorated, there is a method in which the edge 6 ′ of the grinding wheel is rounded as shown in FIG. 19, but in this case, the problem that the shape of the groove is rounded occurs. .
Moreover, there exists a method of forming a grindstone for every ring zone to process like patent document 2. FIG. In the case of this method, it is possible when the groove cross-sectional shape is a straight line, but when the cross-section is a curved shape, there is a problem that it becomes difficult to form a grindstone. Moreover, since a grindstone is formed for each annular zone, it is difficult to process with 100 or more annular zones to be processed.
FIG. 20 is a plan view showing a workpiece having a groove-shaped portion which is an object of the present invention. FIG. 21 is a front view showing a cross section taken along the line aa ′ of FIG. FIG. 22 is an enlarged view showing a circled portion in FIG. 20 and 21, reference numeral 1 indicates a workpiece, and reference numeral 2 indicates a groove.
In FIG. 22, 1′-2, 2′-3, and 3′-4 are upwardly convex curves, and 1-1 ′, 2-2 ′, 3-3 ′, and 4-4 ′ are straight lines. When the groove shown in FIG. 21 is processed, there is a method of processing by driving the grindstone with respect to the workpiece 1 while rotating the workpiece 1 as in Patent Document 1.
FIG. 23 is a schematic view showing a state in which a concentric groove whose cross section is formed by a convex curve and a straight line is processed by a conventional method. FIG. 23 shows the workpiece 1, the groove 2, the rotating shaft 3 of the workpiece 1, the grinding wheel 4, and the rotating shaft 5 of the grinding wheel 4.

図24は鋭利な先端を有する研削砥石により加工された断面が凸曲線を示す概略図である。図25は鋭利な工具先端が加工面に転写している様子を示す概略図である。先端を尖らした研削砥石を用いる場合、溝谷部を鋭くできるという点で優れているが、図24のBに示すような断面が凸曲線となる部分の加工を行う場合、工具先端が鋭利であるため、表面粗さが悪化する問題がある。
図25は鋭利な工具先端が加工面に転写している様子を示しており、理想の加工面11が点線で示すような形状であるのに対して、実際の加工面12は実線で表されるように、鋭利な工具形状が転写した面となる。
断面が凸曲線となる部分の表面粗さを向上させる方法としては図19で示したように砥石の先端を丸めるという方法がある。前述のごとく、図18及び図19は研削砥石の先端形状を示している。図18は先端が鋭利な研削砥石を、図19は先端6’を丸めた砥石を示している。
図19のように、砥石先端6’を丸めた砥石を用いた場合、図24のBに示すように、断面が曲線となる部分の表面粗さに関しては優れているが、図24のAに示すような溝谷部を鋭くすることができないという問題がある。
図26は図24のBの部分を拡大して示す概略図である。13が溝谷部を示している。溝谷部13は、砥石の先端の半径よりも小さくすることができないため、先端を丸めた砥石を使う場合、溝谷部も丸くなってしまうという問題がある。
特開2000−237942公報 特開2002−321146公報
FIG. 24 is a schematic view showing a convex curve in a cross section processed by a grinding wheel having a sharp tip. FIG. 25 is a schematic view showing a state in which a sharp tool tip is transferred to a machining surface. When using a grinding wheel with a sharp tip, it is excellent in that the groove can be sharpened. However, when processing a portion where the cross section becomes a convex curve as shown in FIG. 24B, the tool tip is sharp. Therefore, there is a problem that the surface roughness is deteriorated.
FIG. 25 shows a state in which the sharp tool tip is transferred to the machining surface. The ideal machining surface 11 has a shape shown by a dotted line, whereas the actual machining surface 12 is represented by a solid line. As shown, the sharp tool shape is the transferred surface.
As a method of improving the surface roughness of the portion where the cross section is a convex curve, there is a method of rounding the tip of the grindstone as shown in FIG. As described above, FIGS. 18 and 19 show the tip shape of the grinding wheel. 18 shows a grinding wheel having a sharp tip, and FIG. 19 shows a grinding wheel having a rounded tip 6 ′.
As shown in FIG. 19, when a grindstone having a rounded grindstone tip 6 ′ is used, the surface roughness of the portion having a curved cross section is excellent as shown in FIG. There is a problem that the groove valleys as shown cannot be sharpened.
FIG. 26 is an enlarged schematic view showing a portion B in FIG. Reference numeral 13 denotes a groove part. Since the groove valley portion 13 cannot be made smaller than the radius of the tip of the grindstone, when using a grindstone having a rounded tip, there is a problem that the groove valley portion is also rounded.
JP 2000-237942 A JP 2002-321146 A

上述したように、従来の方法では鋭い溝谷部と凸曲線部分の表面粗さを両立することができなかった。
そこで、本発明の目的は、上述した実情を考慮して、軸付き研削砥石の回転軸の傾きを変えながら研削砥石を走査させて加工を行うことにより、軸付き研削砥石の端面部で断面が凸曲線となる部分を、軸付き研削砥石の円周面部で断面が直線となる部分の加工を夫々行うことにより、先端の尖った砥石を使った鋭い溝谷部の加工を行いながら、凸曲線部分も良好な表面あらさで加工する同心溝加工方法及びこの方法により製造する同心溝加工品を提供することにある。
As described above, the conventional method cannot achieve both the sharp groove valley portion and the surface roughness of the convex curve portion.
In view of the above situation, the object of the present invention is to perform processing by scanning the grinding wheel while changing the inclination of the rotation axis of the grinding wheel with a shaft. The convex curve part is processed while processing the sharp groove valley using a sharpened tip by processing the part where the section becomes a straight line at the circumferential surface part of the grinding wheel with a shaft. Another object of the present invention is to provide a concentric groove processing method for processing with good surface roughness and a concentric groove processed product manufactured by this method.

上記の課題を解決するために、請求項1に記載の発明は、断面が凸曲線と直線からなる同心溝を、軸付き研削砥石を用いて研削加工する同心溝加工方法において、前記同心溝の中心を回転軸として加工物を回転させ、前記軸付き研削砥石の回転軸の傾きを変化させながら回転している前記加工物に対して前記軸付き研削砥石を走査することにより前記軸付き研削砥石の端面部で断面が凸曲線となる部分を、前記軸付き研削砥石の円周面部で断面が直線となる部分の加工を行う同心溝加工方法を特徴とする。
また、請求項2に記載の発明は、前記軸付き研削砥石と、それにより加工する同心溝とが接触する溝加工点における溝断面の凸曲線の法線と前記軸付き研削砥石の回転軸が平行になる請求項1記載の同心溝加工方法を特徴とする。
また、請求項3に記載の発明は、前記軸付き研削砥石にダイヤモンド砥石を用いる請求項1記載の同心溝加工方法を特徴とする。
また、請求項4に記載の発明は、加工した同心溝形状を測定し、測定された溝の誤差を反映させて再度溝加工を行うことにより、精度の良い同心溝加工を行う請求項1記載の同心溝加工方法を特徴とする。
また、請求項5に記載の発明は、各同心溝の断面が凸曲線となる部分を繋ぎ合わせた形状の円弧近似曲線を求め、断面が求められた円弧近似曲線と等しくなる球面の加工を行い、加工された球面の誤差を測定することにより、工具の位置合わせを行う請求項1記載の同心溝加工方法を特徴とする。
また、請求項6に記載の発明は、前記軸付き研削砥石の端面と円周面とがなす角度を変えることにより、前記同心溝の断面の凸曲線部と直線部がなす角度が直角以外の同心溝加工を行う請求項1記載の同心溝加工方法を特徴とする。
また、請求項7に記載の発明は、前記同心溝加工方法を実施した後、正確に加工できていない領域を、工具回転軸を傾けながら研削砥石エッジを用いて加工することにより、同心溝の谷部付近も正確な形状とする請求項1記載の同心溝加工方法を特徴とする。
また、請求項8に記載の発明は、請求項1記載の同心溝加工方法で加工された同心溝加工品を特徴とする。
また、請求項9に記載の発明は、請求項8記載の同心溝加工品で成形された同心溝成形品を特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1 is a concentric groove processing method for grinding a concentric groove having a convex curve and a straight section using a grinding wheel with a shaft. Rotating a workpiece with the center as a rotation axis, and scanning the grinding wheel with a shaft with respect to the rotating workpiece while changing the inclination of the rotation axis of the grinding wheel with a shaft, the grinding wheel with a shaft A concentric grooving method is characterized in that a portion having a convex curve at the end face portion is processed at a circumferential surface portion of the shaft-equipped grinding wheel.
The invention according to claim 2 is characterized in that a normal line of a convex curve of a groove section at a groove processing point at which the grinding wheel with a shaft and a concentric groove to be processed come into contact with the rotation axis of the grinding wheel with a shaft. The concentric groove processing method according to claim 1, which is parallel.
The invention described in claim 3 is characterized by the concentric groove machining method according to claim 1, wherein a diamond grinding wheel is used for the shaft-equipped grinding wheel.
According to a fourth aspect of the present invention, the shape of the processed concentric groove is measured, and the concentric groove processing with high accuracy is performed by reflecting the error of the measured groove and performing the groove processing again. It features a concentric groove machining method.
According to the fifth aspect of the present invention, an arc approximate curve having a shape in which the sections of the concentric grooves are convex curves connected to each other is obtained, and a spherical surface whose cross section is equal to the obtained arc approximate curve is processed. The concentric groove processing method according to claim 1, wherein the tool is aligned by measuring an error of the processed spherical surface.
According to a sixth aspect of the present invention, the angle formed by the convex curve portion and the straight line portion of the cross section of the concentric groove is other than a right angle by changing the angle formed by the end surface of the grinding wheel with a shaft and the circumferential surface. The concentric groove machining method according to claim 1, wherein the concentric groove machining is performed.
Further, in the invention according to claim 7, after the concentric groove machining method is carried out, the region that has not been precisely machined is machined by using a grinding wheel edge while tilting the tool rotation axis, thereby forming the concentric groove. The concentric groove processing method according to claim 1, wherein the vicinity of the trough is also shaped accurately.
The invention according to claim 8 is characterized by a concentric groove processed product processed by the concentric groove processing method according to claim 1.
The invention according to claim 9 is characterized by a concentric groove molded product formed by the concentric groove processed product according to claim 8.

本発明によれば、軸付き研削砥石の端面部で溝の断面が曲線となる部分を加工するため、研削砥石のエッジを尖らせたままでも表面粗さに優れた加工を行うことができる。また、砥石のエッジが尖っているため、鋭利な溝谷部を得ることができる。   According to the present invention, since the portion where the cross section of the groove becomes a curve is processed at the end surface portion of the grinding wheel with a shaft, processing with excellent surface roughness can be performed even with the edge of the grinding wheel sharpened. Moreover, since the edge of a grindstone is sharp, a sharp groove valley part can be obtained.

以下、図面を参照して、本発明の実施の形態を詳細に説明する。図1は本発明の同心溝加工方法による同心溝加工を説明する概略図である。図1において、符号1は加工物、符号2は加工する同心溝、符号3は加工物1の回転軸、符号4は研削砥石、符号5は研削砥石4の回転軸、符号7は加工点、そして符号8は加工点7における同心溝の曲線部(曲面部)2aの法線を示している。
研削砥石4の回転軸5と加工点7における同心溝2の曲線部2aの法線8とを平行にすることにより、加工点7での同心溝2の断面の曲線部の傾きを正しくすることができるため、正確な形状の溝加工ができる。
即ち、本実施形態は、断面が凸曲線と直線からなる同心溝2を、軸付き研削砥石4を用いて研削加工する同心溝加工方法において、同心溝2の中心3を回転軸として加工物1を回転させ、軸付き研削砥石4の回転軸5の傾きを変化させながら回転している加工物1に対して軸付き研削砥石4を走査することにより軸付き研削砥石の端面部によって断面が凸曲線となる部分を加工し、軸付き研削砥石の円周面部(外周縁部)によって断面が直線となる部分の加工を行うようにした点が特徴的である。
研削砥石4として、切れ味に優れるダイヤモンドバイト砥石を用いることにより、表面粗さと形状精度に優れた加工面を得ることができる。加工した溝形状を測定し、測定された溝の誤差を反映させて再度溝加工を行うことにより、精度の良い溝加工を行うことができる。
正確な同心溝形状を加工するためには、工具の位置を正確に合わせる必要があるが、同心溝を加工して測定を行う場合、各断面での測定長が短くなるため、誤差が生じやすい。
そのため、各同心溝2の断面形状を繋ぎ合わせた形状の円弧近似曲線を求め、断面が求められた円弧近似曲線と等しくなる球面の加工を行い、加工された球面形状の誤差を測定し、工具位置決めを行えば良い。
また、軸付き研削砥石4の端面とその円周面とがなす角度を変えることにより、同心溝2の凸曲線部2aと直線部2bとがなす角度が直角以外の同心溝加工を行うことができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view for explaining concentric grooving by the concentric grooving method of the present invention. In FIG. 1, reference numeral 1 is a workpiece, reference numeral 2 is a concentric groove to be processed, reference numeral 3 is a rotation axis of the workpiece 1, reference numeral 4 is a grinding wheel, reference numeral 5 is a rotation axis of the grinding wheel 4, reference numeral 7 is a processing point, Reference numeral 8 indicates a normal line of the curved portion (curved surface portion) 2 a of the concentric groove at the processing point 7.
By making the rotation axis 5 of the grinding wheel 4 parallel to the normal 8 of the curved portion 2a of the concentric groove 2 at the machining point 7, the inclination of the curved portion of the cross section of the concentric groove 2 at the machining point 7 is corrected. Therefore, it is possible to process a groove with an accurate shape.
That is, in this embodiment, in the concentric groove processing method in which the concentric groove 2 having a cross section of a convex curve and a straight line is ground by using the grinding wheel 4 with a shaft, the workpiece 1 with the center 3 of the concentric groove 2 as the rotation axis. , And the workpiece 1 rotating while changing the inclination of the rotary shaft 5 of the shaft-equipped grinding wheel 4 is scanned by the shaft-equipped grinding wheel 4 so that the end surface of the shaft-equipped grinding wheel is convex. A characteristic is that the portion that becomes a curve is processed, and the portion whose cross section is a straight line is processed by the circumferential surface portion (outer peripheral edge portion) of the grinding wheel with shaft.
By using a diamond bite grindstone with excellent sharpness as the grinding grindstone 4, a processed surface with excellent surface roughness and shape accuracy can be obtained. By measuring the processed groove shape and reflecting the measured groove error again, the groove processing can be performed with high accuracy.
In order to machine an accurate concentric groove shape, it is necessary to accurately align the position of the tool. However, when measuring by measuring the concentric groove, the measurement length in each cross section is shortened, so errors are likely to occur. .
Therefore, an arc approximate curve having a shape obtained by connecting the cross-sectional shapes of the concentric grooves 2 is obtained, a spherical surface that is equal to the obtained arc approximate curve is machined, an error of the machined spherical shape is measured, Positioning may be performed.
Further, by changing the angle formed by the end surface of the grinding wheel 4 with a shaft and the circumferential surface thereof, concentric groove processing can be performed in which the angle formed by the convex curve portion 2a and the straight portion 2b of the concentric groove 2 is not a right angle. it can.

図2は溝の谷部分に近いところを加工している様子を示す拡大図である。図3は図2のAの領域の拡大図である。図3で符号14は溝の理想形状を示す。研削砥石4の端面が直線であるため、図3の符号15の斜線部に示すような未加工の領域が発生する。
図4は図3の未加工の領域を説明する拡大図である。図4に示すように、未加工領域が発生するa−a’の部分を、研削砥石4の先端部6を用いて加工することにより、より理想形状に近い溝加工を行うことができる。
図5は本発明の加工法に用いる加工機の構成の一例を示す概略斜視図である。図5において、加工物21は加工物回転軸23上に中心を置き、軸付き研削砥石24に対向して配置されている。図5には、工具回転軸25、C軸回転軸26が示してある。
加工機はX、Y、Zの直交3軸とC軸の4軸を有している。図5では、X軸ステージ27、Y軸ステージ28、Z軸ステージ29、そしてC軸テーブル31を示している。また、加工物21は加工物スピンドル30に支持されて、加工物回転軸23を中心に回転する。
軸付き砥石24は、工具スピンドル32によって、軸付き砥石24の回転軸25を中心に回転する。加工物回転軸23は常にY軸と平行であるが、工具回転軸25はC軸テーブル31の回転によってY軸との傾きをXY平面上で変化させることができる。
図6は同心溝加工の様子を示す図5の1部分を拡大した概略斜視図である。図6において符号22は加工物21に加工された溝を示している。図5と同一部分には同一符号を付してある。
図7、図8は同心溝加工を行う手順を説明する概略図である。溝加工はA→B→C→図8の順序で行われる。図7において、加工物21は溝加工がそれに行なわれる加工物であり、加工された溝22、及びまだ加工が行われていない領域である斜線部35を示している。砥石の回転軸は符号36で示している。
図7において、手順Aは1本目の溝加工を開始した直後の様子を、手順Bは1本目の溝加工がまもなく終了する様子を示している。点線は手順Aでの砥石位置を示している。図のように加工点での溝22の法線と砥石24の回転軸が平行となるように砥石24の回転軸36の傾きを変えながら砥石24を移動させて加工を行う。
手順Cは2本目の溝加工を行っている様子を示している。1本目の溝と同様に、加工点での溝の法線と砥石の回転軸が平行となるように砥石24の回転軸36の傾きを変えながら砥石24を移動させて加工を行う。3本目、4本目と同様な加工を繰り返す。図8は溝加工がまもなく終了する状態を示している。
FIG. 2 is an enlarged view showing a state in which a portion near the trough portion of the groove is being processed. FIG. 3 is an enlarged view of a region A in FIG. In FIG. 3, reference numeral 14 indicates an ideal shape of the groove. Since the end face of the grinding wheel 4 is a straight line, an unprocessed region is generated as indicated by the hatched portion 15 in FIG.
FIG. 4 is an enlarged view for explaining an unprocessed region in FIG. As shown in FIG. 4, by processing the aa ′ portion where the unprocessed region is generated using the tip portion 6 of the grinding wheel 4, groove processing closer to the ideal shape can be performed.
FIG. 5 is a schematic perspective view showing an example of the configuration of a processing machine used in the processing method of the present invention. In FIG. 5, the workpiece 21 is placed on the workpiece rotating shaft 23 so as to face the grinding wheel 24 with a shaft. FIG. 5 shows a tool rotating shaft 25 and a C-axis rotating shaft 26.
The processing machine has three axes of X, Y, and Z orthogonal and four axes of C axis. In FIG. 5, an X-axis stage 27, a Y-axis stage 28, a Z-axis stage 29, and a C-axis table 31 are shown. Further, the workpiece 21 is supported by the workpiece spindle 30 and rotates about the workpiece rotation shaft 23.
The grindstone with shaft 24 is rotated around the rotation shaft 25 of the grindstone with shaft 24 by the tool spindle 32. Although the workpiece rotation axis 23 is always parallel to the Y axis, the tool rotation axis 25 can change the inclination with respect to the Y axis on the XY plane by the rotation of the C axis table 31.
FIG. 6 is an enlarged schematic perspective view of a portion of FIG. 5 showing a state of concentric groove processing. In FIG. 6, reference numeral 22 indicates a groove processed into the workpiece 21. The same parts as those in FIG.
7 and 8 are schematic views for explaining a procedure for performing concentric groove processing. Groove machining is performed in the order of A → B → C → FIG. In FIG. 7, a workpiece 21 is a workpiece on which grooving is performed, and shows a processed groove 22 and a hatched portion 35 that is a region that has not yet been processed. The rotation axis of the grindstone is indicated by reference numeral 36.
In FIG. 7, the procedure A shows a state immediately after the first grooving is started, and the procedure B shows a state that the first grooving is finished soon. The dotted line indicates the grindstone position in procedure A. As shown in the figure, the grindstone 24 is moved while the inclination of the rotation shaft 36 of the grindstone 24 is changed so that the normal line of the groove 22 at the machining point and the rotation axis of the grindstone 24 are parallel.
Procedure C shows a state where the second groove is being processed. As with the first groove, machining is performed by moving the grindstone 24 while changing the inclination of the rotation axis 36 of the grindstone 24 so that the normal of the groove at the machining point and the rotation axis of the grindstone are parallel. The same processing as the third and fourth is repeated. FIG. 8 shows a state in which the grooving is finished soon.

図9は同心溝の各領域で加工された溝の理想形状からのずれ量の測定を示す概略図である。溝を加工後、図9に示すように、溝の各領域で加工された溝の理想形状からのずれ量を測定する。図9では加工面の片側のみを表記している。加工は回転対称となるため、通常は片側のみの測定を行えば良い。
図10は図9の1−1’の領域での理想形状からのずれ量を測定した例をグラフで示す図である。図11は図10に示す理想形状からのずれ量を6次の多項式近似を行った結果をグラフで示す図である。
図11に示す6次の多項式近似の式をE(x)と表記する。図11の場合、6次で近似を行っているが、多項式の次数は6次に限定するものではなく、加工物の形状、誤差曲線のパターンなどによってより適した次数を選択することができる。
図12は図9の1−1’の部分の溝の断面形状をグラフで示す概略図である。溝の断面形状は式f(x)で定義することができるものとする。溝を再加工するさいにf(x)−E(x)の式で定義できる形状を加工するように工具を動作させることにより、より精度の良い溝加工を行うことができる。
図13は誤差を反映させて再度溝加工を行なった溝の理想形状からのずれ量をグラフで示す図である。先に行った加工の誤差を次の加工に反映させることにより、精度良い加工ができていることが解る。
図14は加工を行う同心溝形状を示す概略図である。図14において、溝形状37には、各溝の曲線溝部分をつなぎ合わせた線38が示してあり、この線38の曲線の円弧近似曲線を求めた線39が示してある。断面が線39となる球面形状の加工を行い、球面の誤差を測定し、求められた誤差から工具の位置あわせを行う。
図15は工具の砥石の端面と円周面とがなす角度aを変えることにより、加工される同心溝の断面の角度が変わる様子を第1の実施の形態で示す概略図である。
図16は工具の砥石の端面と円周面とがなす角度bを変えることにより、加工される溝の断面の角度が変わる様子を第2の実施の形態で示す概略図である。図17は工具の砥石の端面と円周面とがなす角度cを変えることにより、加工される溝の断面の角度が変わる様子を第3の実施の形態で示す概略図である。
図15では、断面が鋭角の溝を加工する様子を示し、図16では、断面が直角溝を加工する様子を示し、そして図17では、断面が鈍角になる溝を加工する様子を示している。図15ないし図17において、符号4は研削砥石である。
FIG. 9 is a schematic diagram showing the measurement of the amount of deviation from the ideal shape of the groove processed in each region of the concentric groove. After processing the groove, as shown in FIG. 9, the amount of deviation from the ideal shape of the groove processed in each region of the groove is measured. FIG. 9 shows only one side of the processed surface. Since processing is rotationally symmetric, usually only one side needs to be measured.
FIG. 10 is a graph showing an example in which the amount of deviation from the ideal shape in the region 1-1 ′ of FIG. 9 is measured. FIG. 11 is a graph showing the result of 6th-order polynomial approximation of the deviation from the ideal shape shown in FIG.
The expression of the sixth-order polynomial approximation shown in FIG. 11 is expressed as E (x). In the case of FIG. 11, approximation is performed with the sixth order, but the order of the polynomial is not limited to the sixth order, and a more suitable order can be selected depending on the shape of the workpiece, the error curve pattern, and the like.
FIG. 12 is a schematic view showing the cross-sectional shape of the groove of the portion 1-1 ′ in FIG. 9 in a graph. It is assumed that the cross-sectional shape of the groove can be defined by the formula f (x). When the groove is reworked, the groove can be machined with higher accuracy by operating the tool so as to machine the shape that can be defined by the equation of f (x) -E (x).
FIG. 13 is a graph showing the amount of deviation from the ideal shape of the groove that has been grooved again with the error reflected. It can be seen that the machining can be performed with high accuracy by reflecting the error of the machining performed first in the next machining.
FIG. 14 is a schematic view showing a concentric groove shape to be processed. In FIG. 14, the groove shape 37 shows a line 38 obtained by connecting the curved groove portions of the grooves, and a line 39 obtained by calculating an arc approximation curve of the curve of the line 38. A spherical shape whose cross section is a line 39 is processed, the error of the spherical surface is measured, and the tool is aligned from the obtained error.
FIG. 15 is a schematic view showing, in the first embodiment, a state in which the angle of the cross section of the concentric groove to be processed is changed by changing the angle a formed by the end face of the grindstone of the tool and the circumferential surface.
FIG. 16 is a schematic view showing, in the second embodiment, how the angle of the cross section of the groove to be machined is changed by changing the angle b formed between the end face of the grindstone of the tool and the circumferential surface. FIG. 17 is a schematic view showing, in the third embodiment, how the angle of the cross section of the groove to be machined is changed by changing the angle c formed between the end face of the grindstone of the tool and the circumferential surface.
FIG. 15 shows a state of processing a groove whose cross section is an acute angle, FIG. 16 shows a state of processing a right angle groove, and FIG. 17 shows a state of processing a groove whose cross section is an obtuse angle. . 15 to 17, reference numeral 4 denotes a grinding wheel.

本発明によれば、表面粗さに優れた加工面を備え、且つ鋭利な谷部を有する同心溝加工を行うことができる。加工点での曲面の傾きを正しくすることができるため、正確な形状の同心溝加工ができる。
本発明によれば、表面粗さと形状精度に優れた加工面を得ることができる。工具位置合わせを正確に行うことができるため、高い精度の同心溝加工を行うことができる。また、同心溝の曲線部と直線部がなす角度が直角以外の溝加工を行うことができる。
ADVANTAGE OF THE INVENTION According to this invention, the concentric groove process which has the processed surface excellent in surface roughness and has a sharp trough part can be performed. Since the inclination of the curved surface at the processing point can be made correct, concentric grooves with an accurate shape can be formed.
According to the present invention, a machined surface having excellent surface roughness and shape accuracy can be obtained. Since tool positioning can be performed accurately, highly accurate concentric groove processing can be performed. Further, it is possible to perform groove processing in which the angle formed by the curved portion and the straight portion of the concentric groove is not a right angle.

本発明の同心溝加工方法による同心溝加工を説明する概略図である。It is the schematic explaining the concentric groove processing by the concentric groove processing method of this invention. 溝の谷部分に近いところを加工している様子を示す拡大図である。It is an enlarged view which shows a mode that the place near the trough part of a groove | channel is processed. 図2のAの領域の拡大図である。It is an enlarged view of the area | region of A of FIG. 図3の未加工の領域を説明する拡大図である。It is an enlarged view explaining the unprocessed area | region of FIG. 本発明の加工法に用いる加工機の構成の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of a structure of the processing machine used for the processing method of this invention. 同心溝加工の様子を示す図5の1部分を拡大した概略斜視図である。It is the schematic perspective view which expanded one part of FIG. 5 which shows the mode of concentric groove processing. 同心溝加工を行う手順を説明する概略図である。It is the schematic explaining the procedure which performs a concentric groove process. 同心溝加工を行う手順を説明する概略図である。It is the schematic explaining the procedure which performs a concentric groove process. 同心溝の各領域で加工された溝の理想形状からのずれ量の測定を示す概略図である。It is the schematic which shows the measurement of the deviation | shift amount from the ideal shape of the groove | channel processed in each area | region of a concentric groove | channel. 図9の1−1’の領域での理想形状からのずれ量を測定した例をグラフで示す図である。It is a figure which shows the example which measured the deviation | shift amount from the ideal shape in the 1-1 'area | region of FIG. 9 with a graph. 図10に示す理想形状からのずれ量を6次の多項式近似を行った結果をグラフで示す図である。It is a figure which shows the result of having performed the 6th-order polynomial approximation about the deviation | shift amount from the ideal shape shown in FIG. 図9の1−1’の部分の溝の断面形状をグラフで示す概略図である。It is the schematic which shows the cross-sectional shape of the groove | channel of the 1-1 'part of FIG. 9 with a graph. 誤差を反映させて再度溝加工を行なった溝の理想形状からのずれ量をグラフで示す図である。It is a figure which shows the deviation | shift amount from the ideal shape of the groove | channel which performed the groove processing again reflecting an error with a graph. 加工を行う同心溝形状を示す概略図である。It is the schematic which shows the concentric groove shape which processes. 工具の砥石の端面と円周面とがなす角度を変えることにより、加工される同心溝の断面の角度が変わる様子を第1の実施の形態で示す概略図である。It is the schematic which shows a mode that the angle of the cross section of the concentric groove | channel processed is changed in 1st Embodiment by changing the angle which the end surface of the grindstone of a tool and the circumferential surface make. 工具の砥石の端面と円周面とがなす角度を変えることにより、加工される溝の断面の角度が変わる様子を第2の実施の形態で示す概略図である。It is the schematic which shows a mode that the angle of the cross section of the groove | channel processed is changed in 2nd Embodiment by changing the angle which the end surface of the grindstone of a tool and the circumferential surface make. 工具の砥石の端面と円周面とがなす角度を変えることにより、加工される溝の断面の角度が変わる様子を第3の実施の形態で示す概略図である。It is the schematic which shows a mode that the angle of the cross section of the groove | channel processed by changing the angle which the end surface of the grindstone of a tool and a circumferential surface change changes in 3rd Embodiment. 同心溝形状の加工に使用する尖った先端を有する研削砥石を示す概略図である。It is the schematic which shows the grinding wheel which has the sharp tip used for processing of a concentric groove shape. 同心溝形状の加工に使用する丸い先端を有する研削砥石を示す概略図である。It is the schematic which shows the grinding wheel which has a round front end used for processing of concentric groove shape. 本発明の対象である溝形状部分を有する加工物を示す平面図である。It is a top view which shows the workpiece which has the groove-shaped part which is the object of this invention. 図20のa−a’での断面を示す正面図である。It is a front view which shows the cross section in a-a 'of FIG. 図21において丸で囲んだ部分を示す拡大図である。It is an enlarged view which shows the part enclosed with the circle in FIG. 断面が凸曲線と直線からなる同心溝を従来の方法で加工する様子を示す概略図である。It is the schematic which shows a mode that the concentric groove | channel where a cross section consists of a convex curve and a straight line is processed by the conventional method. 鋭利な先端を有する研削砥石により加工された断面が凸曲線を示す概略図である。It is the schematic where the cross section processed with the grinding wheel which has a sharp tip shows a convex curve. 鋭利な工具先端が加工面に転写している様子を示す概略図である。It is the schematic which shows a mode that the sharp tool front-end | tip is transcribe | transferring to the process surface. 図24のBの部分を拡大し提供示す概略図である。It is the schematic which expands and provides the part of B of FIG.

符号の説明Explanation of symbols

1 加工物、2 同心溝、3 加工物1の回転軸、4 軸付き研削砥石、6 研削砥石4の先端部、5 研削砥石4の回転軸(工具回転軸)、7 加工点、8 加工点7における同心溝2の曲線の法線、21 加工物、24 軸付き研削砥石   DESCRIPTION OF SYMBOLS 1 Workpiece, 2 Concentric groove, 3 Rotating axis of workpiece 1, 4 Grinding wheel with 4 axes, 6 Tip of grinding wheel 4 Rotating axis of grinding wheel 4 (tool rotating axis), 7 machining points, 8 machining points Normal of curve of concentric groove 2 in 7, 21 workpiece, 24 grinding wheel with shaft

Claims (9)

断面が凸曲線と直線からなる同心溝を、軸付き研削砥石を用いて研削加工する同心溝加工方法において、前記同心溝の中心を回転軸として加工物を回転させ、前記軸付き研削砥石の回転軸の傾きを変化させながら回転している前記加工物に対して前記軸付き研削砥石を走査することにより前記軸付き研削砥石の端面部によって断面が凸曲線となる部分を加工し、前記軸付き研削砥石の円周面部によって断面が直線となる部分の加工を行うことを特徴とする同心溝加工方法。   In a concentric groove machining method for grinding a concentric groove having a convex curve and a straight section using a grinding wheel with a shaft, the workpiece is rotated with the center of the concentric groove as a rotation axis, and the grinding wheel with the shaft is rotated. By scanning the grinding wheel with a shaft on the rotating workpiece while changing the inclination of the shaft, the end surface portion of the grinding wheel with a shaft processes a portion whose cross section becomes a convex curve. A concentric grooving method characterized in that a portion having a straight cross section is processed by a circumferential surface portion of a grinding wheel. 前記軸付き研削砥石と、それにより加工する同心溝とが接触する溝加工点における溝断面の凸曲線から延びる法線と前記軸付き研削砥石の回転軸が平行になることを特徴とする請求項1記載の同心溝加工方法。   The normal line extending from the convex curve of the groove cross-section at the groove processing point at which the grinding wheel with shaft and the concentric groove to be processed contact with the axis of rotation of the grinding wheel with shaft is parallel. The concentric groove processing method according to 1. 前記軸付き研削砥石にダイヤモンド砥石を用いることを特徴とする請求項1記載の同心溝加工方法。   The concentric groove processing method according to claim 1, wherein a diamond grindstone is used as the shaft grinding grindstone. 加工した同心溝形状を測定し、測定された溝の誤差を反映させて再度溝加工を行うことにより、精度の良い同心溝加工を行うことを特徴とする請求項1記載の同心溝加工方法。   The concentric groove processing method according to claim 1, wherein the concentric groove processing with high accuracy is performed by measuring the shape of the processed concentric groove and performing the groove processing again by reflecting an error of the measured groove. 各同心溝の断面が凸曲線となる部分を繋ぎ合わせた形状の円弧近似曲線を求め、断面が求められた円弧近似曲線と等しくなる球面の加工を行い、加工された球面の誤差を測定することにより、工具の位置合わせを行うことを特徴とする請求項1記載の同心溝加工方法。   Obtain an arc approximate curve with a shape where the sections of each concentric groove are convex curves connected to each other, process a spherical surface whose cross section is equal to the obtained arc approximate curve, and measure the error of the processed spherical surface The concentric groove processing method according to claim 1, wherein the tool is aligned by the above-described method. 前記軸付き研削砥石の端面とその円周面とがなす角度を変えることにより、前記同心溝の断面の凸曲線部と直線部とがなす角度が直角以外の同心溝加工を行うことを特徴とする請求項1記載の同心溝加工方法。   By changing the angle formed by the end face of the grinding wheel with a shaft and its circumferential surface, concentric groove processing is performed in which the angle formed by the convex curve portion and the straight line portion of the cross section of the concentric groove is not a right angle. The concentric groove processing method according to claim 1. 前記同心溝加工方法を実施した後で正確に加工できていない領域を、工具回転軸を傾けながら研削砥石エッジを用いて加工することにより、同心溝の谷部付近も正確な形状とすることを特徴とする請求項1記載の同心溝加工方法。   By processing the region that has not been accurately processed after the concentric groove processing method is performed using the grinding wheel edge while tilting the tool rotation axis, the vicinity of the valley portion of the concentric groove is also accurately shaped. The concentric groove processing method according to claim 1. 請求項1記載の同心溝加工方法で加工されたことを特徴とする同心溝加工品。   A concentric groove processed product processed by the concentric groove processing method according to claim 1. 請求項8記載の同心溝加工品で成形されたことを特徴とする同心溝成形品。   A concentric groove molded product, wherein the concentric groove processed product according to claim 8 is formed.
JP2004308930A 2004-10-22 2004-10-22 Concentric groove working method, concentric groove work-piece manufactured by this method and concentric groove molded article Pending JP2006116673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308930A JP2006116673A (en) 2004-10-22 2004-10-22 Concentric groove working method, concentric groove work-piece manufactured by this method and concentric groove molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308930A JP2006116673A (en) 2004-10-22 2004-10-22 Concentric groove working method, concentric groove work-piece manufactured by this method and concentric groove molded article

Publications (1)

Publication Number Publication Date
JP2006116673A true JP2006116673A (en) 2006-05-11

Family

ID=36535033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308930A Pending JP2006116673A (en) 2004-10-22 2004-10-22 Concentric groove working method, concentric groove work-piece manufactured by this method and concentric groove molded article

Country Status (1)

Country Link
JP (1) JP2006116673A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303094A (en) * 2007-06-06 2008-12-18 Olympus Corp Apparatus for forming compressive-stressed part and method for forming protruding part and glass product using the apparatus
CN111774958A (en) * 2020-07-16 2020-10-16 吴裕华 Control method of wood sanding equipment and automatic wood sanding equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303094A (en) * 2007-06-06 2008-12-18 Olympus Corp Apparatus for forming compressive-stressed part and method for forming protruding part and glass product using the apparatus
CN111774958A (en) * 2020-07-16 2020-10-16 吴裕华 Control method of wood sanding equipment and automatic wood sanding equipment
CN111774958B (en) * 2020-07-16 2022-04-26 吴裕华 Control method of automatic wood sanding equipment and automatic wood sanding equipment

Similar Documents

Publication Publication Date Title
JP2016525455A (en) Method for machining a tooth edge and a machining station designed for this purpose
JP6428919B2 (en) Cutting tool, skiving machine and method
JP2012006135A (en) End mill and manufacturing method therefor
JP5146493B2 (en) End mill and manufacturing method thereof
JP4524159B2 (en) Method and apparatus for grinding tooth surface of round shaving cutter
KR20130021396A (en) Formed cutter manufacturing method and formed cutter grinding tool
JP5181703B2 (en) Processing method of concave Fresnel lens shaped member and concave Fresnel lens shaped member
JP2009184066A5 (en)
JP2006289566A (en) Grinding processing method and grinding processing device of forming die of micro lens array
JP5689138B2 (en) Deburring method for end face burrs of total groove and total rotary cutting tool for chamfering
JP2014193522A (en) End mill and method for production thereof
JP2000246636A (en) Grinding worm shaping method, shaping tool and shaping device
JP2006116673A (en) Concentric groove working method, concentric groove work-piece manufactured by this method and concentric groove molded article
JP4313686B2 (en) Manufacturing method of mold for annular optical element
JP2007276034A (en) Dress gear, and manufacturing method and apparatus therefor
JP7226818B2 (en) Dressing tool truing method and dressing tool truing program
JP2004237406A (en) Micro grooving method
JP3662087B2 (en) Curved surface cutting method
US11642748B2 (en) Machining program creation method, workpiece machining method, and machine tool control device
JP3885993B2 (en) Polishing method
JP5168929B2 (en) Manufacturing method of press-fit work
JP2009095973A (en) Grinding wheel molding device and method
CN116765521A (en) Method for manufacturing gear
JP2023138266A (en) Gear production method
JP2004141983A (en) Working method of molding die, molding die, and optical element