JP2006114427A - Vacuum vapor-deposition method - Google Patents

Vacuum vapor-deposition method Download PDF

Info

Publication number
JP2006114427A
JP2006114427A JP2004302734A JP2004302734A JP2006114427A JP 2006114427 A JP2006114427 A JP 2006114427A JP 2004302734 A JP2004302734 A JP 2004302734A JP 2004302734 A JP2004302734 A JP 2004302734A JP 2006114427 A JP2006114427 A JP 2006114427A
Authority
JP
Japan
Prior art keywords
substrate
mask
vapor deposition
holder
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004302734A
Other languages
Japanese (ja)
Inventor
Naoto Fukuda
直人 福田
Toshiaki Yoshikawa
俊明 吉川
Masahiro Kanai
正博 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004302734A priority Critical patent/JP2006114427A/en
Publication of JP2006114427A publication Critical patent/JP2006114427A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance uniformity of film thickness distribution on a plurality of substrate faces in a vacuum vapor-deposition method in which an organic electroluminescent element is fabricated by using a mask for vapor-depositing the substrate and pixel pattern, and using a mask holder and a vapor deposition source provided with alignment mechanism in order to carry out positioning of the substrates and the masks. <P>SOLUTION: In this vacuum vapor-deposition method, a plurality number of structures composed of the substrates, the masks, and the mask holders are concentrically arranged at the upper part of the vapor deposition source, and the vapor deposition is carried out in a state that the structures consisting of the substrates, the masks, and the mask holders are inclined toward the outside from the center part of the vapor-deposition source. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機エレクトロルミネッセンス素子の製造方法に関するものである。   The present invention relates to a method for manufacturing an organic electroluminescence element.

有機エレクトロルミネッセンス素子は、一般的に透明導電膜(例えばインジウム錫酸化物)からなる陽極と金属(例えばAl)からなる陰極との間に、有機薄膜層として正孔輸送層、発光層、電子輸送層等を形成されたものであり、陽極側から注入された正孔と、陰極側から注入された電子が、それぞれ正孔輸送層、電子注入層を介して発光層で再結合させることにより、発光を得る電子デバイスである。   In general, an organic electroluminescence element is an organic thin film layer between a positive electrode made of a transparent conductive film (for example, indium tin oxide) and a negative electrode made of a metal (for example, Al). Layers etc. are formed, and holes injected from the anode side and electrons injected from the cathode side are recombined in the light emitting layer through the hole transport layer and the electron injection layer, respectively, An electronic device that obtains light emission.

この有機エレクトロルミネッセンス素子の作製方法の一つとして、真空蒸着法が知られている。有機エレクトロルミネッセンス材料である蒸着材料を坩堝等の容器に入れ、蒸着材料の気化温度以上に坩堝等の温度を加熱することで、坩堝から気化した蒸着材料が有機エレクトロルミネッセンス素子の形成される基板に堆積して有機薄膜層を形成する。この時、膜厚の均一化が求められるが、一般的にはマスクを用いて基板に画素パターンを形成するため、マスクのパターンによっては膜厚が均一になり得ない場合がある。   A vacuum deposition method is known as one method for producing the organic electroluminescence element. The vapor deposition material, which is an organic electroluminescence material, is put in a container such as a crucible, and the vapor deposition material vaporized from the crucible is heated on the substrate on which the organic electroluminescence element is formed by heating the temperature of the crucible or the like above the vaporization temperature of the vapor deposition material. Deposit to form an organic thin film layer. At this time, the film thickness is required to be uniform. However, since the pixel pattern is generally formed on the substrate using a mask, the film thickness may not be uniform depending on the mask pattern.

真空蒸着法において膜厚を均一にする方法としては、基板と蒸着源間の距離を大きくする方法などがあるが、基板と蒸着源間の距離を大きくすると、基板と蒸着源間の距離が短い場合よりも基板上での薄膜堆積速度が遅くなるため、蒸着材料の利用効率が大幅に減少してしまう。特に、有機エレクトロルミネッセンス材料は一般的に高価な有機化合物であるので、この方法はあまり望ましくない。   As a method of making the film thickness uniform in the vacuum evaporation method, there is a method of increasing the distance between the substrate and the evaporation source, but when the distance between the substrate and the evaporation source is increased, the distance between the substrate and the evaporation source is short. Since the deposition rate of the thin film on the substrate is slower than the case, the utilization efficiency of the vapor deposition material is greatly reduced. In particular, this method is less desirable because organic electroluminescent materials are generally expensive organic compounds.

膜厚を均一にする方法としては、特開平6−192835号公報等で知られるように、レンズへの蒸着方法がある。従来から、基板表面が曲面であるレンズに対して均一に薄膜を形成する手段として、複数個のレンズを保持するホルダを蒸着源に対して回転させ、さらに各レンズをホルダに対して回転させるといった方法が用いられている。このような、真空蒸着装置の一例を図3に基づき説明する。   As a method for making the film thickness uniform, there is a vapor deposition method on a lens, as known in Japanese Patent Laid-Open No. 6-192835. Conventionally, as a means for uniformly forming a thin film on a lens having a curved substrate surface, a holder for holding a plurality of lenses is rotated with respect to a vapor deposition source, and each lens is further rotated with respect to the holder. The method is used. An example of such a vacuum deposition apparatus will be described with reference to FIG.

図3に示すような真空蒸着装置21において、成膜チャンバ22の内部で、蒸着源23の上部に設けられたレンズホルダ24は、前記蒸着源23を中心とする傘型又はドーム状のレンズホルダ本体24aを有し、レンズホルダ本体24aの外周方向に等間隔で複数個のレンズ25を保持し、レンズ25はレンズホルダ本体24aから着脱自在に保持する。レンズホルダ本体24aは、その中心部分に回転軸26を有し、モーター27などにより回転される。   In the vacuum vapor deposition apparatus 21 as shown in FIG. 3, the lens holder 24 provided on the vapor deposition source 23 inside the film forming chamber 22 is an umbrella-shaped or dome-shaped lens holder centering on the vapor deposition source 23. It has a main body 24a, holds a plurality of lenses 25 at equal intervals in the outer peripheral direction of the lens holder main body 24a, and the lenses 25 are detachably held from the lens holder main body 24a. The lens holder main body 24a has a rotation shaft 26 at the center thereof, and is rotated by a motor 27 or the like.

上記のような、回転機構を備えた真空蒸着装置21により、蒸着源23から蒸発した蒸発物質23aは、レンズ25に対して均一な入射角度で入射し、膜厚むら少なくレンズ25表面に蒸着材料23bが蒸着される。   The vaporized material 23a evaporated from the vapor deposition source 23 by the vacuum vapor deposition device 21 having the rotation mechanism as described above is incident on the lens 25 at a uniform incident angle, and the vapor deposition material is deposited on the surface of the lens 25 with less film thickness unevenness. 23b is deposited.

レンズなどの曲面に対する蒸着においては、上記のように薄膜の膜厚均一性を向上させる工夫がなされている。一方、有機エレクトロルミネッセンス素子の作製におけるマスク蒸着においても、有機薄膜の膜厚均一性が求められる。膜厚が不均一であると、有機エレクトロルミネッセンス素子の発光むらなどの問題が発生する。有機エレクトロルミネッセンス素子用の基板に対してマスク蒸着を行う場合、蒸着源の開口部の上部に対して、同軸上に基板とマスクからなる一対の構造体を配置しても、有機エレクトロルミネッセンス材料が持つ固有の蒸発指向性が影響し、マスク中心部と端部に入射する蒸発物質の入射量が異なり、基板表面で膜厚むらが発生する。また、マスクを用いらずに基板に有機エレクトロルミネッセンス材料を蒸着する場合であっても、蒸発指向性が影響するため基板表面で膜厚むらが発生する。   In vapor deposition on a curved surface such as a lens, a device for improving the film thickness uniformity of the thin film has been devised as described above. On the other hand, the film thickness uniformity of the organic thin film is also required in the mask vapor deposition in the production of the organic electroluminescence element. If the film thickness is not uniform, problems such as uneven light emission of the organic electroluminescence element occur. When performing mask vapor deposition on a substrate for an organic electroluminescence element, even if a pair of structures consisting of a substrate and a mask are arranged coaxially with respect to the upper part of the opening of the vapor deposition source, the organic electroluminescence material is Due to the inherent evaporation directivity, the incident amount of the evaporating material incident on the center and the edge of the mask is different, resulting in uneven film thickness on the substrate surface. Further, even when an organic electroluminescent material is deposited on the substrate without using a mask, the film thickness unevenness occurs on the substrate surface because of the influence of evaporation directivity.

上記の課題を解決するための方法として、本発明の真空蒸着方法は、基板と、前記基板に画素パターンを蒸着するためのマスクと、前記基板と前記マスクとの位置合わせをするためのアライメント機構を備えたマスクホルダと、蒸着源とを用いて、有機エレクトロルミネッセンス素子を作製する真空蒸着方法において、前記基板と前記マスクと前記マスクホルダからなる構造体を前記蒸着源の上部に同心円状に複数個配置し、かつ該前記基板と前記マスクと前記マスクホルダからなる構造体を蒸着源の中心部から外側に向けて傾きを持たせた状態で蒸着を行うことを特徴とする。   As a method for solving the above problems, a vacuum deposition method of the present invention includes a substrate, a mask for depositing a pixel pattern on the substrate, and an alignment mechanism for aligning the substrate and the mask. In a vacuum vapor deposition method for producing an organic electroluminescence element using a mask holder provided with a vapor deposition source, a plurality of structures comprising the substrate, the mask, and the mask holder are concentrically formed above the vapor deposition source. It is characterized in that vapor deposition is performed in a state where the structure including the substrate, the mask, and the mask holder is tilted outward from the central portion of the vapor deposition source.

上記のように構成された本発明の真空蒸着方法によれば、基板とマスクとアライメント機構を備えたマスクホルダからなる構造体が、蒸着源の上部に同心円状に複数個配置されていて、かつ基板とマスクとマスクホルダからなる構造体が蒸着源の中心部から外側に向けて傾きを持って配置されるので、マスクを介して基板表面に蒸着される蒸発物質の量の均一性が向上する。さらに、複数の基板に同時にマスク蒸着を行うことが可能となるので、高価な有機エレクトロルミネッセンス材料の材料利用効率が向上する。   According to the vacuum deposition method of the present invention configured as described above, a plurality of structures including a substrate, a mask, and a mask holder provided with an alignment mechanism are arranged concentrically above the deposition source, and Since the structure composed of the substrate, the mask, and the mask holder is disposed with an inclination from the center of the deposition source toward the outside, the uniformity of the amount of the evaporated material deposited on the substrate surface through the mask is improved. . Furthermore, since it becomes possible to perform mask vapor deposition simultaneously on a plurality of substrates, the material utilization efficiency of expensive organic electroluminescent materials is improved.

本発明の実施形態を、添付図面を用いて説明する。   Embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の真空蒸着方法を実施するために用いた真空蒸着装置である。   FIG. 1 shows a vacuum deposition apparatus used for carrying out the vacuum deposition method of the present invention.

図1中の真空蒸着装置1は、成膜チャンバ2の内部に設けられた蒸着源3と、その蒸着源3の上部に配置された基板ホルダ4からなり、基板ホルダ4は蒸着源3を中心とする傘型又はドーム状であり、基板5とマスク6とアライメント機構を備えたマスクホルダ7からなる構造体を保持する。基板5とマスク6とアライメント機構を備えたマスクホルダ7からなる構造体は基板ホルダ4から着脱自在であり、基板5とマスク6とアライメント機構を備えたマスクホルダ7もそれぞれ着脱自在である。   A vacuum vapor deposition apparatus 1 in FIG. 1 includes a vapor deposition source 3 provided inside a film formation chamber 2 and a substrate holder 4 disposed above the vapor deposition source 3. The substrate holder 4 is centered on the vapor deposition source 3. And holding a structure including a substrate 5, a mask 6, and a mask holder 7 having an alignment mechanism. The structure including the substrate 5, the mask 6, and the mask holder 7 having the alignment mechanism is detachable from the substrate holder 4, and the substrate 5, the mask 6, and the mask holder 7 having the alignment mechanism are also detachable.

上記の基板5とマスク6とアライメント機構を備えたマスクホルダ7からなる構造体は、蒸着源3の上部に同心円状に複数個配置され、蒸着源3の中心部から外側に向けて、かつ、有機エレクトロルミネッセンス素子形成用の蒸着材料3bの膜厚分布に従って最適な傾きを持たせて基板ホルダ4により保持される。   A plurality of structures including the substrate 5, the mask 6, and the mask holder 7 having the alignment mechanism are arranged concentrically on the upper part of the vapor deposition source 3, from the center of the vapor deposition source 3 toward the outside, and It is held by the substrate holder 4 with an optimum inclination according to the film thickness distribution of the vapor deposition material 3b for forming the organic electroluminescence element.

基板5上に有機エレクトロルミネッセンスの画素パターンを形成するために、マスクホルダ7にはアライメント機構が備えられている。マスクホルダ7によりアライメントされた基板5には、マスク6を介して蒸着源3から蒸発する蒸発物質3aの一部が堆積され、基板5表面に有機エレクトロルミネッセンス素子の画素パターンが形成される。   In order to form an organic electroluminescence pixel pattern on the substrate 5, the mask holder 7 is provided with an alignment mechanism. On the substrate 5 aligned by the mask holder 7, a part of the evaporating material 3 a evaporated from the vapor deposition source 3 is deposited through the mask 6, and a pixel pattern of the organic electroluminescence element is formed on the surface of the substrate 5.

成膜チャンバ2内を排気するための図示しない真空排気系は、迅速に高真空領域まで排気できる能力を持ったポンプを用いることが望ましい。   As a vacuum exhaust system (not shown) for exhausting the inside of the film forming chamber 2, it is desirable to use a pump having a capability of exhausting quickly to a high vacuum region.

上記のように真空蒸着装置1は、成膜チャンバ2内に設けられた蒸着源3と、その蒸着源3の上部に配置された基板ホルダ4と、その基板ホルダ4に保持される基板5とマスク6とアライメント機構を備えたマスクホルダ7からなる構造体からなり、図示しない真空排気系により成膜チャンバ2内を排気して真空蒸着を行う構成となっている。   As described above, the vacuum vapor deposition apparatus 1 includes the vapor deposition source 3 provided in the film forming chamber 2, the substrate holder 4 disposed above the vapor deposition source 3, and the substrate 5 held by the substrate holder 4. The structure is composed of a mask 6 and a mask holder 7 having an alignment mechanism. The film forming chamber 2 is evacuated by a vacuum exhaust system (not shown) to perform vacuum deposition.

前記図1に示す装置を用いて、本発明の真空蒸着方法の具体的実施例を下記に説明する。   A specific example of the vacuum deposition method of the present invention will be described below using the apparatus shown in FIG.

先ず、蒸着材料3bの膜厚分布を得るため、上記の真空蒸着装置1を用いて下記の条件下でサンプル基板に蒸着を行った。成膜チャンバ2内に市販の蒸着源3を配置し、蒸着材料3bとして有機エレクトロルミネッセンス素子に電子輸送性物質及び発光性物質として用いられるトリス(8−ヒドロキシキノリナト)アルミニウム(以下、Alqと呼ぶ)を5.0g充填した。そして、図示しない真空排気系を介して成膜チャンバ2及び蒸着源3内の圧力を1.3×10-4Pa(1×10−6Torr)に設定した。尚、サンプル基板には200mm×200mmのガラス基板を用いた。蒸着源3の開口部からガラス基板中心部までの距離hは200mmとして配置した。 First, in order to obtain the film thickness distribution of the vapor deposition material 3b, vapor deposition was performed on the sample substrate using the vacuum vapor deposition apparatus 1 under the following conditions. A commercially available vapor deposition source 3 is arranged in the film forming chamber 2, and tris (8-hydroxyquinolinato) aluminum (hereinafter referred to as Alq 3 ) used as an electron transporting material and a light emitting material for an organic electroluminescence element as a vapor deposition material 3b. 5.0 g). Then, the pressure in the film forming chamber 2 and the vapor deposition source 3 was set to 1.3 × 10 −4 Pa (1 × 10 −6 Torr) through a vacuum exhaust system (not shown). A 200 mm × 200 mm glass substrate was used as the sample substrate. The distance h from the opening of the vapor deposition source 3 to the center of the glass substrate was set to 200 mm.

続いて、図示しない蒸着源3のヒーターで蒸着源3を温度280℃に加熱し、図示しない膜厚モニターにより蒸着速度を2Å/secとしてAlqを昇華させて、成膜チャンバ2内に配置されたサンプル基板にAlq薄膜を1μm堆積させた。すると、図2に示すような膜厚分布を得られた。図2のX=0mmとはサンプル基板の中心部にあたる部分であり、その中心部から左右90mmまでの膜厚を測定した。縦軸の値は、基板中心部の膜厚を1とした時の膜厚比である。結果、X=±40mmからX=±90mmの領域で膜厚分布が直線的になった。 Subsequently, the vapor deposition source 3 is heated to a temperature of 280 ° C. by a heater of the vapor deposition source 3 (not shown), and Alq 3 is sublimated at a vapor deposition rate of 2 に よ り / sec by a film thickness monitor (not shown). A 1 μm thick Alq 3 thin film was deposited on the sample substrate. Then, a film thickness distribution as shown in FIG. 2 was obtained. In FIG. 2, X = 0 mm is a portion corresponding to the central portion of the sample substrate, and the film thickness from the central portion to the left and right 90 mm was measured. The value on the vertical axis is the film thickness ratio when the film thickness at the center of the substrate is 1. As a result, the film thickness distribution was linear in the region from X = ± 40 mm to X = ± 90 mm.

上記の結果をもとに、X=±40mmからX=±90mmの領域にかけて傾きを持たせた基板ホルダ4を作製し、該領域にサンプル基板(50mm×50mm)を保持した。該基板ホルダ4を用いて、実施例1の条件で真空蒸着を行ったところ、サンプル基板内でのAlqの膜厚分布が±2%となった。 Based on the above results, the substrate holder 4 having an inclination from the region of X = ± 40 mm to X = ± 90 mm was produced, and the sample substrate (50 mm × 50 mm) was held in the region. When vacuum deposition was performed using the substrate holder 4 under the conditions of Example 1, the Alq 3 film thickness distribution in the sample substrate was ± 2%.

実施例1において、蒸着材料3bとして有機エレクトロルミネッセンス素子に正孔輸送性物質として用いられるN,N’−ジフェニル−m−トリル−4,4’−ジアミン−1,1’ビフェニル(以下、TPDと呼ぶ)を5.0g充填し、蒸着源3を温度240℃に加熱した他は実施例1と同様に真空蒸着を行った。上記の実験により得られたTPDの膜厚分布は、X=±30mmからX±80mmの領域で膜厚分布が直線的になった。上記の結果をもとに基板ホルダ4を作製し、実施例1の条件で真空蒸着を行ったところ、サンプル基板(50mm×50mm)内でのTPDの膜厚分布が±2%となった。   In Example 1, N, N′-diphenyl-m-tolyl-4,4′-diamine-1,1′biphenyl (hereinafter referred to as TPD) used as a hole transporting material in the organic electroluminescence device as the vapor deposition material 3b. The vacuum deposition was carried out in the same manner as in Example 1 except that 5.0 g of the mixture was charged and the deposition source 3 was heated to 240 ° C. The film thickness distribution of TPD obtained by the above experiment was linear in the region from X = ± 30 mm to X ± 80 mm. When the substrate holder 4 was produced based on the above results and vacuum deposition was performed under the conditions of Example 1, the TPD film thickness distribution in the sample substrate (50 mm × 50 mm) was ± 2%.

実施例1において、蒸着材料3bとして有機エレクトロルミネッセンス素子に陰極として用いられるMg及びAgをそれぞれ独立の蒸着源3に充填して、蒸着時にAgの濃度が5at%となるように各々の蒸着源3の温度を調整した。上記の実験により得られたMg:Agの膜厚分布は、X=±20mmからX=±90mmの領域で膜厚分布が直線的になった。上記の結果をもとに基板ホルダ4を作製し、実施例1の条件で真空蒸着を行ったところ、サンプル基板(50mm×50mm)でのMg:Agの膜厚分布が±2%となった。   In Example 1, Mg and Ag used as cathodes for the organic electroluminescence elements as the vapor deposition material 3b are filled in the independent vapor deposition sources 3, respectively, so that the concentration of Ag is 5 at% during vapor deposition. The temperature of was adjusted. The film thickness distribution of Mg: Ag obtained by the above experiment was linear in the region from X = ± 20 mm to X = ± 90 mm. Based on the above results, the substrate holder 4 was prepared and vacuum deposition was performed under the conditions of Example 1. As a result, the Mg: Ag film thickness distribution on the sample substrate (50 mm × 50 mm) became ± 2%. .

上記の実施例1〜3をもとに、ボトムエミッション型有機エレクトロルミネッセンス素子を作製した。図1の真空蒸着装置1を材料毎に用意し、それら各成膜チャンバ2を図示しない搬送系機構で結合し、大気曝露することなく真空一貫でITO(1500Å)/TPD(500Å)/Alq(500Å)/Mg:Ag(1000Å)構造のボトムエミッション型有機エレクトロルミネッセンス素子を作製した。 A bottom emission type organic electroluminescence element was produced based on the above Examples 1 to 3. The vacuum deposition apparatus 1 of FIG. 1 is prepared for each material, and the respective film forming chambers 2 are coupled by a transport system mechanism (not shown), and ITO (1500Å) / TPD (500Å) / Alq 3 is consistently vacuum-exposed without being exposed to the atmosphere. A bottom emission type organic electroluminescence device having a (500Å) / Mg: Ag (1000Å) structure was produced.

基板5には厚さ0.7mmのガラス基板(50mm×50mm)を用いて、基板5表面上には予めスパッタリング法によりITO(インジウム錫酸化物)を堆積して、基板洗浄を行った後にUVオゾン処理を施して、マスク6とマスクホルダ7により固定した。   A glass substrate (50 mm × 50 mm) having a thickness of 0.7 mm is used as the substrate 5, and ITO (indium tin oxide) is deposited on the surface of the substrate 5 by a sputtering method in advance, and the substrate is cleaned before UV. Ozone treatment was performed, and the mask 6 and the mask holder 7 were fixed.

上記の基板5とマスク6とマスクホルダ7からなる構造体を保持する基板ホルダ4は、実施例1〜3の実験結果をもとに作製されたものであり、成膜チャンバ2内に配置された蒸着源3の上部に配置した。基板5とマスク6とマスクホルダ7からなる構造体は、蒸着源3の上部に同心円状に4個配置し、基板ホルダ4により該構造体を蒸着源の中心部から外側に向けて保持した。蒸着源3の開口部から基板ホルダ4の中心部までの距離hは、上記の実験と同様に200mmとした。   The substrate holder 4 that holds the structure composed of the substrate 5, the mask 6, and the mask holder 7 is manufactured based on the experimental results of Examples 1 to 3, and is disposed in the film forming chamber 2. The vapor deposition source 3 was placed on the top. Four structures including a substrate 5, a mask 6, and a mask holder 7 are arranged concentrically on the upper part of the vapor deposition source 3, and the substrate holder 4 holds the structure from the center of the vapor deposition source to the outside. The distance h from the opening of the vapor deposition source 3 to the center of the substrate holder 4 was set to 200 mm as in the above experiment.

成膜条件としては上記のサンプル基板を蒸着した時と同様に、蒸着源3として市販の蒸着源、蒸着材料3bとしてAlq、TPD、Mg及びAgを用い、各成膜チャンバ2及び蒸着源3内の圧力を1.3×10-4Pa(1×10−6Torr)とした。図示しない蒸着源3のヒーターで蒸着源3を加熱し、図示しない膜厚モニターにより各材料の蒸着速度が2Å/secとなるように昇華させて、各成膜チャンバ2内の基板ホルダ4により保持された基板5とマスク6とマスクホルダ7からなる構造体の、基板5の表面にマスク6を介して薄膜を堆積させた。 As for the film formation conditions, a commercially available vapor deposition source is used as the vapor deposition source 3 and Alq 3 , TPD, Mg, and Ag are used as the vapor deposition material 3b as in the case of vapor deposition of the above-described sample substrate. The internal pressure was 1.3 × 10 −4 Pa (1 × 10 −6 Torr). The vapor deposition source 3 is heated by a heater (not shown) and is sublimated by a film thickness monitor (not shown) so that the vapor deposition rate of each material is 2 Å / sec, and held by the substrate holder 4 in each film formation chamber 2. A thin film was deposited on the surface of the substrate 5 of the structure including the substrate 5, the mask 6, and the mask holder 7 through the mask 6.

上記の方法で得られたボトムエミッション型有機エレクトロルミネッセンス素子を、N2雰囲気中で直流電圧を印加して評価したところ、発光むらの少ない発光を確認できた。約8mA/cm一定の電流密度で駆動した時、発光初期において7V、200cd/cmの発光を確認した。輝度の半減期は約3000時間であった。その後も、ダークスポットなどの成長も無く安定した発光を得た。 When the bottom emission type organic electroluminescence device obtained by the above method was evaluated by applying a DC voltage in an N 2 atmosphere, light emission with little light emission unevenness was confirmed. When driven at a constant current density of about 8 mA / cm 2 , light emission of 7 V, 200 cd / cm 2 was confirmed in the early stage of light emission. The half life of luminance was about 3000 hours. After that, stable light emission was obtained without growth of dark spots.

実施例4の真空蒸着方法で得られた10サンプルと、従来の真空蒸着方法を用いた他は上記の方法で得られた10サンプルとを、N雰囲気中で直流電圧を印加して、発光むらの比較評価を行った。発光むらの判断は目視であり、その評価を3段階で示した。その結果を表1及び表2に示す。また、表2に上記と同様の条件下において従来の蒸着方法で作製したボトムエミッション型有機エレクトロルミネッセンス素子の評価結果を示す。 10 samples obtained by the vacuum vapor deposition method of Example 4 and 10 samples obtained by the above-described method except that the conventional vacuum vapor deposition method was used were applied with a DC voltage in an N 2 atmosphere to emit light. A comparative evaluation of unevenness was performed. Judgment of light emission unevenness was visual, and the evaluation was shown in three stages. The results are shown in Tables 1 and 2. Table 2 shows the evaluation results of the bottom emission type organic electroluminescence device produced by the conventional vapor deposition method under the same conditions as described above.

○:発光むら無く発光
△:若干、発光むらが見られる
×:発光むらが見られる
○: Light emission is not uneven △: Light emission unevenness is slightly observed ×: Light emission unevenness is observed

Figure 2006114427
Figure 2006114427

Figure 2006114427
表1及び表2からわかるように、従来の真空蒸着方法に比べて、本発明の真空蒸着方法を用いることにより発光むらの少ない素子を得る事ができている。
Figure 2006114427
As can be seen from Tables 1 and 2, by using the vacuum deposition method of the present invention as compared with the conventional vacuum deposition method, it is possible to obtain an element with less uneven emission.

勿論、本発明に用いられる蒸着材料は上記に示したAlq、TPD、Mg、Agに限定されるものではなく、有機エレクトロルミネッセンス素子形成に用いられる蒸着材料であればよい。また、蒸着源も市販のものに限定されるものではない。 Of course, the vapor deposition material used in the present invention is not limited to Alq 3 , TPD, Mg, and Ag described above, and any vapor deposition material may be used as long as it is used for forming an organic electroluminescence element. Further, the vapor deposition source is not limited to a commercially available one.

本発明の実施形態の一例を示すものである。An example of an embodiment of the present invention is shown. 実施例1において得られたAlqの膜厚分布。 2 is a film thickness distribution of Alq 3 obtained in Example 1. 従来例の一例を示すもので、(a)は基板ホルダを蒸着源側から見た図である。An example of a conventional example is shown, and (a) is a view of the substrate holder as viewed from the vapor deposition source side.

符号の説明Explanation of symbols

1 真空蒸着装置
2 成膜チャンバ
3 蒸着源
3a 蒸発物質
3b 蒸着材料
4 基板ホルダ
5 基板
6 マスク
7 マスクホルダ
21 真空蒸着装置
22 成膜チャンバ
23 蒸着源
23a 蒸発物質
23b 蒸着材料
24 レンズホルダ
25 レンズ
26 回転軸
27 モーター
DESCRIPTION OF SYMBOLS 1 Vacuum evaporation apparatus 2 Deposition chamber 3 Deposition source 3a Evaporation substance 3b Evaporation material 4 Substrate holder 5 Substrate 6 Mask 7 Mask holder 21 Vacuum deposition apparatus 22 Deposition chamber 23 Deposition source 23a Evaporation substance 23b Evaporation material 24 Lens holder 25 Lens 26 Rotating shaft 27 Motor

Claims (2)

基板と、前記基板に画素パターンを蒸着するためのマスクと、前記基板と前記マスクとの位置合わせをするためのアライメント機構を備えたマスクホルダと、蒸着源とを用いて、有機エレクトロルミネッセンス素子を作製する真空蒸着方法において、前記基板と前記マスクと前記マスクホルダからなる構造体を前記蒸着源の上部に同心円状に複数個配置し、かつ、該前記基板と前記マスクと前記マスクホルダからなる構造体を、蒸着源の中心部から外側に向けて傾きを持たせた状態で蒸着を行うことを特徴とする真空蒸着方法。   An organic electroluminescence element is formed using a substrate, a mask for depositing a pixel pattern on the substrate, a mask holder having an alignment mechanism for aligning the substrate and the mask, and a deposition source. In the vacuum deposition method to be fabricated, a structure comprising a plurality of concentrically arranged structures composed of the substrate, the mask, and the mask holder, and a structure composed of the substrate, the mask, and the mask holder. A vacuum vapor deposition method comprising performing vapor deposition in a state where the body is inclined toward the outside from the center of the vapor deposition source. 有機エレクトロルミネッセンス素子形成用の蒸着材料ごとに、前記基板と前記マスクと前記マスクホルダからなる構造体の傾きの角度を変えて蒸着を行うことを特徴とする請求項1記載の真空蒸着方法。   2. The vacuum deposition method according to claim 1, wherein the deposition is performed by changing an inclination angle of a structure including the substrate, the mask, and the mask holder for each deposition material for forming an organic electroluminescence element.
JP2004302734A 2004-10-18 2004-10-18 Vacuum vapor-deposition method Withdrawn JP2006114427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302734A JP2006114427A (en) 2004-10-18 2004-10-18 Vacuum vapor-deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302734A JP2006114427A (en) 2004-10-18 2004-10-18 Vacuum vapor-deposition method

Publications (1)

Publication Number Publication Date
JP2006114427A true JP2006114427A (en) 2006-04-27

Family

ID=36382760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302734A Withdrawn JP2006114427A (en) 2004-10-18 2004-10-18 Vacuum vapor-deposition method

Country Status (1)

Country Link
JP (1) JP2006114427A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025186A1 (en) * 2007-08-20 2009-02-26 Konica Minolta Holdings, Inc. Process for producing organic electroluminescence panel, and organic electroluminescence panel
JP2010013672A (en) * 2008-07-01 2010-01-21 Sumitomo Electric Ind Ltd Thin film deposition apparatus and thin film deposition method
US7964037B2 (en) 2006-07-13 2011-06-21 Canon Kabushiki Kaisha Deposition apparatus
US8632635B2 (en) 2008-12-08 2014-01-21 Samsung Display Co., Ltd. Vapor deposition apparatus and vapor deposition method
CN116891998A (en) * 2023-09-11 2023-10-17 通威微电子有限公司 Relay ring tantalum carbide coating equipment and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964037B2 (en) 2006-07-13 2011-06-21 Canon Kabushiki Kaisha Deposition apparatus
WO2009025186A1 (en) * 2007-08-20 2009-02-26 Konica Minolta Holdings, Inc. Process for producing organic electroluminescence panel, and organic electroluminescence panel
JP2010013672A (en) * 2008-07-01 2010-01-21 Sumitomo Electric Ind Ltd Thin film deposition apparatus and thin film deposition method
US8632635B2 (en) 2008-12-08 2014-01-21 Samsung Display Co., Ltd. Vapor deposition apparatus and vapor deposition method
CN116891998A (en) * 2023-09-11 2023-10-17 通威微电子有限公司 Relay ring tantalum carbide coating equipment and method

Similar Documents

Publication Publication Date Title
EP1113087B1 (en) Film formation apparatus and method for forming a film
US7785663B2 (en) Successive vapour deposition system, vapour deposition system, and vapour deposition process
US8524313B2 (en) Method for manufacturing a device
US5904961A (en) Method of depositing organic layers in organic light emitting devices
KR101057915B1 (en) Method of manufacturing film deposition apparatus and light emitting element
US6869636B2 (en) Method of evaporating film used in an organic electro-luminescent display
KR100484702B1 (en) Process for manufacture of organic electroluminescence element
TWI275319B (en) Manufacturing method and method of operating a manufacturing apparatus
JPH10319870A (en) Shadow mask and production for color thin film el display device using the same
KR20030070534A (en) Fabrication system and a fabrication method of a light emitting device
JP2007335203A (en) Light-emitting element and manufacturing method of light-emitting element
JP2002080961A (en) Vacuum deposition system and vacuum deposition process
US7819975B2 (en) Deposition method and apparatus
JP5798452B2 (en) Evaporation source
JP2006114427A (en) Vacuum vapor-deposition method
JP4439827B2 (en) Manufacturing apparatus and light emitting device manufacturing method
JP4494126B2 (en) Film forming apparatus and manufacturing apparatus
JP3865358B2 (en) Manufacturing method of organic EL device
JP3719797B2 (en) Method for forming conductive thin film on organic thin film surface
JP3698506B2 (en) EL element and method of forming cathode electrode film on organic thin film surface
JP2005340225A (en) Organic el device
KR100695271B1 (en) Pattern formation method of large area OLED substrate
KR100813199B1 (en) The evaporators with the openings having different angles and apparatus for vapor deposition of thin film using the evaporators
TWI358145B (en) Apparatus for depositing organic thin film
JPS61276964A (en) Rotary film forming apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108