JP2006112300A - Secondary air introduction device - Google Patents

Secondary air introduction device Download PDF

Info

Publication number
JP2006112300A
JP2006112300A JP2004299917A JP2004299917A JP2006112300A JP 2006112300 A JP2006112300 A JP 2006112300A JP 2004299917 A JP2004299917 A JP 2004299917A JP 2004299917 A JP2004299917 A JP 2004299917A JP 2006112300 A JP2006112300 A JP 2006112300A
Authority
JP
Japan
Prior art keywords
secondary air
air
supply
supply amount
exhaust system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004299917A
Other languages
Japanese (ja)
Inventor
Shogo Hashimoto
省吾 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP2004299917A priority Critical patent/JP2006112300A/en
Publication of JP2006112300A publication Critical patent/JP2006112300A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration and failure of a three-way conversion catalyst without deteriorating drivability in a small displacement engine system provided with the three-way conversion catalyst in an exhaust system. <P>SOLUTION: A secondary air supply path providing secondary air to an exhaust system of an engine purifying exhaust gas with using the three-way conversion catalyst is provided. An air introducing valve is provided in a middle of the secondary air supply path. Quantity of secondary air supplied to the exhaust system is controlled by using the air introducing valve. Supply control of secondary air is periodically performed according to cycle of a crankshaft. Duty ratio of valve open period t2 during which supply of secondary air is performed is controlled in a range of supply quantity for keeping catalyst temperature L2 of the three-way conversion catalyst at a predetermined value or less and in a range of supply quantity preventing carbon deposition deterioration L3 of the three-way conversion catalyst while air-fuel ratio is rich. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エンジンの排気系に2次空気を供給する2次空気導入装置に関する。   The present invention relates to a secondary air introduction device that supplies secondary air to an exhaust system of an engine.

四輪自動車では、排気ガスを浄化するために一般に三元触媒が排気系に設けられる。三元触媒に供給される排気ガスの空燃比は理論空燃比に維持されることが好ましい。しかし、空燃比はエンジンの運転状態に応じて変化するため、常に理論空燃比が維持されるものではない。このような問題に対し、排気系に2次空気を供給し、三元触媒に供給される排気ガスの空燃比を理論空燃比に維持するための2次空気導入装置が知られている(特許文献1)。
実開昭62−67915号公報
In a four-wheeled vehicle, a three-way catalyst is generally provided in the exhaust system in order to purify the exhaust gas. The air-fuel ratio of the exhaust gas supplied to the three-way catalyst is preferably maintained at the stoichiometric air-fuel ratio. However, since the air-fuel ratio changes according to the operating state of the engine, the stoichiometric air-fuel ratio is not always maintained. In order to solve such a problem, a secondary air introduction device for supplying secondary air to the exhaust system and maintaining the air-fuel ratio of the exhaust gas supplied to the three-way catalyst at the stoichiometric air-fuel ratio is known (patent) Reference 1).
Japanese Utility Model Publication No. 62-67915

小型自動二輪車等に用いられる小排気量のエンジンにおいては、これまで排気ガスの浄化に関して考慮されておらず、排気系に三元触媒が設けられることはなかった。したがって、例えば小型自動二輪車に三元触媒を用いる場合に、特有の問題が発生し得るのか、また特有の問題が存在するとして、何が問題となるのかなどについては、考察されていない。   In a small displacement engine used for a small motorcycle or the like, the exhaust gas purification has not been considered so far, and a three-way catalyst has not been provided in the exhaust system. Therefore, for example, when a three-way catalyst is used in a small motorcycle, there is no consideration as to whether a specific problem may occur or what would be a problem if a specific problem exists.

本願発明者は、三元触媒を小排気量エンジン(特に小型自動二輪車)に使用する場合に発生する問題について考察し、その特有な問題を認識するに至った。すなわち、小排気量エンジンを用いた小型自動二輪車等においては、エンジン出力が小さく加速時にトルク不足となり易いことや、高負荷時に理論空燃比でエンジンを駆動すると、熱負荷によるエンジン損傷やドライバビリティの悪化を招くことから、リッチ状態を長時間に渡って持続する必要がしばしば発生する。このような場合に、四輪自動車などに用いられる従来の2次空気導入装置と同様に単に理論空燃比のみを考慮して2次空気を供給制御すると、触媒内の温度が急上昇し、三元触媒の劣化・破損をもたらす。また、リッチ状態が長時間持続する場合に2次空気の供給量を大幅に低減すると、排気ガスの浄化が不十分になるだけではなく、三元触媒の炭素析出劣化が発生する。   The inventor of the present application has considered a problem that occurs when a three-way catalyst is used in a small displacement engine (particularly, a small motorcycle) and has come to recognize a unique problem. In other words, in a small motorcycle using a small displacement engine, the engine output is small and the torque is likely to be insufficient at the time of acceleration. Due to the deterioration, the rich state often needs to be maintained for a long time. In such a case, if the secondary air is supplied and controlled in consideration of only the theoretical air-fuel ratio as in the case of a conventional secondary air introduction device used in a four-wheeled vehicle or the like, the temperature in the catalyst rises rapidly, and three-way Causes deterioration and damage of the catalyst. Further, if the supply amount of the secondary air is significantly reduced when the rich state continues for a long time, not only the exhaust gas purification becomes insufficient, but also the carbon deposition deterioration of the three-way catalyst occurs.

本発明は、上記問題に鑑みてなされたもので、排気系に三元触媒を設けた小排気量のエンジンシステムにおいて、三元触媒の劣化、破損を防止することを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to prevent deterioration and breakage of a three-way catalyst in a small displacement engine system in which a three-way catalyst is provided in an exhaust system.

本発明の2次空気導入装置は、三元触媒が設けられたエンジンの排気系に2次空気を供給する2次空気供給路と、2次空気供給路を介して排気系に供給される2次空気の供給量を制御する2次空気供給量制御装置とを備え、空燃比がリッチ状態の間、供給量が三元触媒の触媒温度を所定値以下に維持する範囲、かつ供給量が三元触媒の炭素析出劣化を抑止する範囲で制御されることを特徴としている。   The secondary air introduction device of the present invention is supplied to the exhaust system through a secondary air supply path for supplying secondary air to the engine exhaust system provided with the three-way catalyst, and the secondary air supply path. A secondary air supply amount control device for controlling the supply amount of the secondary air, and the supply amount is within a range in which the catalyst temperature of the three-way catalyst is kept below a predetermined value while the air-fuel ratio is rich, and the supply amount is three. It is characterized in that it is controlled within a range that suppresses carbon deposition deterioration of the original catalyst.

2次空気の供給は、例えばデューティ比50%未満で周期的に行なわれる。好ましくは、2次空気の供給は、更にデューティ比30%〜5%の範囲で行なわれる。また、より好ましくは、2次空気の供給はデューティ比20%〜10%の範囲で行われる。   The supply of the secondary air is periodically performed with a duty ratio of less than 50%, for example. Preferably, the supply of secondary air is further performed in a duty ratio range of 30% to 5%. More preferably, the supply of secondary air is performed in a duty ratio range of 20% to 10%.

また、三元触媒内の温度を検出する温度センサを備えることが好ましく、2次空気供給量制御装置が、この温度に基づいて供給量を制御することが好ましい。また排気系の酸素濃度を検出する酸素濃度センサを備え、2次空気供給量制御装置が、検出された酸素濃度に基づいて供給量を制御することが好ましい。また例えば、2次空気導入装置は、排気系の空燃比を検出する空燃比センサを備え、2次空気供給量制御装置は、空燃比に基づいて供給量を制御する。また、2次空気導入装置は、例えば小型自動二輪車に搭載される。   Moreover, it is preferable to provide the temperature sensor which detects the temperature in a three-way catalyst, and it is preferable that a secondary air supply amount control apparatus controls supply amount based on this temperature. It is preferable that an oxygen concentration sensor for detecting the oxygen concentration in the exhaust system is provided, and the secondary air supply amount control device controls the supply amount based on the detected oxygen concentration. Further, for example, the secondary air introduction device includes an air-fuel ratio sensor that detects the air-fuel ratio of the exhaust system, and the secondary air supply amount control device controls the supply amount based on the air-fuel ratio. The secondary air introduction device is mounted on, for example, a small motorcycle.

以上のように、本発明によれば、排気系に三元触媒を設けた小排気量のエンジンシステムにおいて、三元触媒の劣化、破損を防止することができる。   As described above, according to the present invention, deterioration and breakage of a three-way catalyst can be prevented in a small displacement engine system in which a three-way catalyst is provided in an exhaust system.

以下、本発明の実施の形態を、図面を参照して説明する。
図1は、本発明の一実施形態であるエンジンシステムの概略を示すブロック図であり、例えば小排気量エンジンを搭載した自動二輪車に採用される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an outline of an engine system according to an embodiment of the present invention. For example, the engine system is employed in a motorcycle equipped with a small displacement engine.

エンジン10のシリンダヘッド11の吸気ポートには、吸気マニホルド等を含めた吸気系ダクト12が取り付けられる。吸気系ダクト12には、エアクリーナ13、スロットルボディ14等が接続され、これらを介して外気が吸気ポートまで導かれる。吸気ポートの手前において、吸入された空気(外気)には燃料噴射装置15から燃料が供給される。すなわち吸入された空気は所定の空燃比の混合気とされ、その後エンジン10内に供給される。一方、シリンダヘッド11の排気ポートには、排気マニホルド等を含めた排気系ダクト16が取り付けられる。エンジンシリンダ内の燃焼ガスは、排気ポートを介して排気系ダクト16に送出され、その後排気系ダクト16に接像された三元触媒からなる触媒コンバータ17やマフラー(図示せず)等を介して外部へと排出される。   An intake system duct 12 including an intake manifold and the like is attached to the intake port of the cylinder head 11 of the engine 10. An air cleaner 13, a throttle body 14, and the like are connected to the intake system duct 12, and outside air is guided to the intake port through these. Fuel is supplied from the fuel injection device 15 to the intake air (outside air) before the intake port. That is, the sucked air is made into an air-fuel mixture with a predetermined air-fuel ratio and then supplied into the engine 10. On the other hand, an exhaust system duct 16 including an exhaust manifold and the like is attached to the exhaust port of the cylinder head 11. The combustion gas in the engine cylinder is sent to the exhaust system duct 16 through the exhaust port, and then through a catalytic converter 17 and a muffler (not shown) made of a three-way catalyst imaged on the exhaust system duct 16. It is discharged outside.

吸気系ダクト12においてエアクリーナ13の下流側には、2次空気供給管18の一端が連結され、シリンダヘッド11の排気ポートには2次空気供給管18の他端が連結される。また、2次空気供給管18の途中には空気導入バルブ19が設けられる。すなわち、2次空気供給管18は、空気導入バルブ19を介して吸気系と排気系とを連通し、排気系に供給される2次空気量は、空気導入バルブ19の駆動によって制御される。なお、空気導入バルブ19には、例えば負圧を利用するものや、エアポンプを利用するものが含まれる。   In the intake system duct 12, one end of the secondary air supply pipe 18 is connected to the downstream side of the air cleaner 13, and the other end of the secondary air supply pipe 18 is connected to the exhaust port of the cylinder head 11. An air introduction valve 19 is provided in the middle of the secondary air supply pipe 18. That is, the secondary air supply pipe 18 communicates the intake system and the exhaust system via the air introduction valve 19, and the amount of secondary air supplied to the exhaust system is controlled by driving the air introduction valve 19. Note that the air introduction valve 19 includes, for example, one using negative pressure and one using an air pump.

エンジン10には、エンジンの温度をモニタするためのエンジン温度センサ20とクランクの回転角を検知するクランク角度センサ21が設けられる。排気系ダクト16には酸素濃度をモニタするための酸素濃度センサ22が設けられる。また触媒コンバータ17には三元触媒の温度をモニタするための触媒温度センサ23が設けられ、スロットルボディ14にはスロットルポジションセンサ(TPS)24等が設けられる。センサ20〜24は、各々電子制御ユニット(ECU)25に接続されモニタされる。   The engine 10 is provided with an engine temperature sensor 20 for monitoring the engine temperature and a crank angle sensor 21 for detecting the rotation angle of the crank. The exhaust system duct 16 is provided with an oxygen concentration sensor 22 for monitoring the oxygen concentration. The catalytic converter 17 is provided with a catalyst temperature sensor 23 for monitoring the temperature of the three-way catalyst, and the throttle body 14 is provided with a throttle position sensor (TPS) 24 and the like. Each of the sensors 20 to 24 is connected to and monitored by an electronic control unit (ECU) 25.

また、ECU25は、燃料噴射装置15、空気導入バルブ19、点火装置26に接続されており、例えば上記センサからの信号等に基づいて、燃料噴射量、2次空気供給量、点火プラグ27の点火タイミングを制御する。   The ECU 25 is connected to the fuel injection device 15, the air introduction valve 19, and the ignition device 26. For example, based on a signal from the sensor, the fuel injection amount, the secondary air supply amount, and the ignition of the ignition plug 27. Control timing.

図2は、空燃比がリッチ状態のときの2次空気の供給タイミングと、触媒温度及び炭素析出劣化の関係を模式的に示すグラフである。図2を参照して本実施形態における2次空気供給量制御の原理について説明する。なお図2において横軸tは時間である。   FIG. 2 is a graph schematically showing the relationship between the supply timing of secondary air when the air-fuel ratio is rich, the catalyst temperature, and the carbon deposition deterioration. The principle of the secondary air supply amount control in this embodiment will be described with reference to FIG. In FIG. 2, the horizontal axis t is time.

上述したように、2次空気の供給量は、空気導入バルブ19の開閉動作により制御され、空気導入バルブ19は略周期Tsで駆動される。周期Tsは、閉弁され2次空気の供給が遮断される閉弁期間t1と、開弁され2次空気が供給される開弁期間t2とからなる。また、周期Tsは例えばクランクシャフトの1サイクルに対応する。なお、図2において、矩形パルスL1は、空気導入バルブ19の駆動パルスを表わし、曲線L2、L3は触媒コンバータ17内の触媒温度と炭素析出劣化の度合いをそれぞれ模式的に示す。   As described above, the supply amount of the secondary air is controlled by the opening / closing operation of the air introduction valve 19, and the air introduction valve 19 is driven at a substantially cycle Ts. The cycle Ts includes a valve closing period t1 in which the valve is closed and the supply of secondary air is shut off, and a valve opening period t2 in which the valve is opened and secondary air is supplied. The period Ts corresponds to, for example, one cycle of the crankshaft. In FIG. 2, a rectangular pulse L <b> 1 represents a driving pulse for the air introduction valve 19, and curves L <b> 2 and L <b> 3 schematically indicate the catalyst temperature in the catalytic converter 17 and the degree of carbon deposition deterioration.

曲線L3に示されるように、空燃比がリッチ状態のため、2次空気の供給が行なわれない閉弁期間t1の間、排ガス中に残った炭素が触媒中の貴金属と結びつき炭素析出劣化が上昇する。これは、2次空気(2次エア)が供給される開弁期間t2が開始するまで続く。2次空気の供給が開始され排気ガスが酸素過剰雰囲気とされると、三元触媒は次第に回復し始め、炭素析出劣化は低下する。なお、図2には、比較として、開弁期間t2を設けず、2次空気を供給しない場合の炭素析出劣化の上昇を破線L4として示す。   As indicated by the curve L3, since the air-fuel ratio is rich, the carbon remaining in the exhaust gas is combined with the precious metal in the catalyst during the valve closing period t1 in which the supply of secondary air is not performed, and the carbon deposition deterioration is increased. To do. This continues until the valve opening period t2 during which secondary air (secondary air) is supplied starts. When the supply of secondary air is started and the exhaust gas is in an oxygen-excess atmosphere, the three-way catalyst begins to recover gradually, and the carbon deposition deterioration decreases. For comparison, FIG. 2 shows, as a broken line, an increase in carbon deposition deterioration when the valve opening period t2 is not provided and the secondary air is not supplied.

一方、曲線L2に示されるように、2次空気の供給を開始すると、供給された2次空気により排気ガス中に残っている燃料が燃焼し触媒コンバータ17内の触媒温度が急上昇する。これは、開弁期間t2の間、すなわち次の周期の閉弁期間t1において2次空気の供給が遮断されるまで継続する。2次空気の供給が絶たれると、排気ガス中に残った燃料の燃焼も終了するので、触媒温度は漸次低下する。   On the other hand, as shown by the curve L2, when the supply of the secondary air is started, the fuel remaining in the exhaust gas is combusted by the supplied secondary air, and the catalyst temperature in the catalytic converter 17 rises rapidly. This continues until the supply of secondary air is cut off during the valve opening period t2, that is, in the valve closing period t1 of the next cycle. When the supply of the secondary air is cut off, the combustion of the fuel remaining in the exhaust gas is also terminated, so that the catalyst temperature gradually decreases.

触媒温度に注目する場合、2次空気が供給される開弁期間t2と遮断される閉弁期間t1との関係は、リッチ状態が連続して持続される期間において、触媒温度が所定温度(例えば、触媒コンバータの許容最大温度)θcを越えない範囲で決定される。例えば、閉弁期間t1における単位時間当たりの平均温度上昇率をα(<0)、開弁期間t2における単位時間当たりの平均温度上昇率をβ(>0)、小型自動二輪車において予測されるリッチ状態の持続上限期間をTR、初期触媒温度をθ0するとき、t1、t2は、少なくともθc−θ0>(α・t1+β・t2)×TR/Tsの関係を満たすように設定される。すなわち、t1=Ts−t2の関係を上式に代入し、開弁期間のデューティ比R(=t2/Ts)に関する条件を求めると、R<(θc−θ0−αTR)/[(β−α)TR]となり、デューティ比Rはこの式を満たす範囲で決定される。 When paying attention to the catalyst temperature, the relationship between the valve opening period t2 in which the secondary air is supplied and the valve closing period t1 in which the secondary air is shut off is such that the catalyst temperature is a predetermined temperature (for example, in a period in which the rich state is continuously maintained) The allowable maximum temperature of the catalytic converter) is determined within a range not exceeding θc. For example, the average temperature increase rate per unit time in the valve closing period t1 is α (<0), the average temperature increase rate per unit time in the valve opening period t2 is β (> 0), and the rich predicted in the small motorcycle When the state upper limit duration is T R and the initial catalyst temperature is θ 0 , t1 and t2 are set to satisfy at least the relationship of θc−θ 0 > (α · t1 + β · t2) × T R / Ts. . That is, substituting the relationship of t1 = Ts−t2 into the above equation and obtaining the condition regarding the duty ratio R (= t2 / Ts) of the valve opening period, R <(θc−θ 0 −αT R ) / [(β −α) T R ], and the duty ratio R is determined in a range that satisfies this equation.

一般に、αの絶対値の方が、βの絶対値よりも大きいので、2次空気が供給される開弁期間のデューティ比は50%未満である。本実施形態では、例えば30%未満あるいは20%未満に設定される。   Generally, since the absolute value of α is larger than the absolute value of β, the duty ratio in the valve opening period in which the secondary air is supplied is less than 50%. In this embodiment, for example, it is set to less than 30% or less than 20%.

一方、炭素析出劣化に注目する場合、2次空気が供給される開弁期間t2と遮断される閉弁期間t1との関係は、リッチ状態が連続して持続される期間において、炭素析出劣化が所定劣化度(例えば、三元触媒の許容最大炭素析出劣化度)Qcを越えない範囲で決定される。例えば、閉弁期間t1における単位時間当たりの平均炭素析出劣化上昇率をγ(>0)、開弁期間t2における単位時間当たりの平均炭素析出劣化上昇率をδ(<0)、初期劣化度をQ0するとき、t1、t2は、少なくともQc−Q0>(γ・t1+δ・t2)×TR/Tsの関係を満たすように設定される。すなわち、開弁期間のデューティ比Rは、R>(Qc−Q0−γTR)/[(δ−γ)TR]を満たす範囲で決定される。 On the other hand, when attention is paid to carbon deposition deterioration, the relationship between the valve opening period t2 in which the secondary air is supplied and the valve closing period t1 in which the secondary air is shut off is such that the carbon deposition deterioration does not occur in the period in which the rich state is continuously maintained. The predetermined deterioration degree (for example, the allowable maximum carbon deposition deterioration degree of the three-way catalyst) Qc is determined in a range not exceeding. For example, the average carbon deposition deterioration increase rate per unit time in the valve closing period t1 is γ (> 0), the average carbon deposition deterioration increase rate per unit time in the valve opening period t2 is δ (<0), and the initial deterioration degree is When Q 0 , t 1 and t 2 are set so as to satisfy at least the relationship of Qc−Q 0 > (γ · t 1 + δ · t 2) × T R / Ts. That is, the duty ratio R in the valve opening period is determined in a range satisfying R> (Qc−Q 0 −γT R ) / [(δ−γ) T R ].

なお、本実施形態では、触媒温度及び炭素析出劣化を考慮し、例えば、デューティ比Rは、30%〜5%、あるいは20%〜10%に設定される。これらの値は、回転数やスロットル弁開度等をパラメータとして、予め上記条件のもと設定されており、例えばECU25に接続されたメモリに記憶されている。また、デューティ比Rは、上記条件を満たす所定の固定値(所定時間)に設定されてもよい。   In the present embodiment, considering the catalyst temperature and carbon deposition deterioration, for example, the duty ratio R is set to 30% to 5%, or 20% to 10%. These values are set in advance under the above conditions using the rotation speed, throttle valve opening, and the like as parameters, and are stored, for example, in a memory connected to the ECU 25. The duty ratio R may be set to a predetermined fixed value (predetermined time) that satisfies the above conditions.

以上のように、本実施形態によれば、小排気量のエンジンを搭載した小型自動二輪車のように、長時間に渡ってリッチ状態が継続する場合においても、触媒温度の上昇を抑えるとともに炭素析出劣化を防止することができるので、ドライバビリティを損なうことなく、排気ガスの浄化を行なうことができる。   As described above, according to the present embodiment, even when the rich state continues for a long time as in a small motorcycle equipped with a small displacement engine, the increase in the catalyst temperature is suppressed and carbon deposition is suppressed. Since deterioration can be prevented, exhaust gas can be purified without impairing drivability.

なお、例えば、触媒温度センサにおいて検知された触媒温度に基づいて、開弁期間のデューティ比をフィードバック制御することも可能である。また、酸素濃度センサにより検知される排気系の酸素濃度を更にフィードバックに加えることも可能である。   For example, it is possible to feedback control the duty ratio of the valve opening period based on the catalyst temperature detected by the catalyst temperature sensor. It is also possible to add the exhaust system oxygen concentration detected by the oxygen concentration sensor to the feedback.

また、排気系に空燃比を検出する空燃比センサを設けてもよい。例えば、図1の触媒温度センサ23を空燃比センサに置き換え、あるいは触媒コンバータ17内に空燃比センサを併設し、触媒コンバータ17内の空燃比に基づいて2次空気の供給量を制御してもよい。例えば、検出された空燃比が所定値以上の場合に2次空気の供給を行い、所定値以下の場合に供給を行なわないとすることもでき、これらの所定値は例えば14.7±3の範囲の値に設定される。例えば、2次空気の供給をオンする場合の閾値(所定値)は約11に設定され、オフする場合の閾値(所定値)は約17と設定される。   An air-fuel ratio sensor that detects the air-fuel ratio may be provided in the exhaust system. For example, the catalyst temperature sensor 23 in FIG. 1 may be replaced with an air-fuel ratio sensor, or an air-fuel ratio sensor may be provided in the catalytic converter 17 to control the supply amount of secondary air based on the air-fuel ratio in the catalytic converter 17. Good. For example, the secondary air can be supplied when the detected air-fuel ratio is equal to or higher than a predetermined value, and not supplied when the detected air-fuel ratio is equal to or lower than the predetermined value. These predetermined values are, for example, 14.7 ± 3. Set to a range value. For example, the threshold (predetermined value) when turning on the supply of secondary air is set to about 11, and the threshold (predetermined value) when turning off is set to about 17.

なお、2次空気導入管が2次空気を供給する位置は、排気系の触媒上流であればよく排気ポートに限定されるものではない。2次空気の取り入れ口も、吸気系ダクトのエアクリーナ下流側に限らず、独立して外気を取り入れる構成としてもよい。   The position where the secondary air introduction pipe supplies the secondary air is not limited to the exhaust port as long as it is upstream of the exhaust system catalyst. The intake port of the secondary air is not limited to the downstream side of the air cleaner of the intake system duct, and may be configured to take in outside air independently.

本発明の一実施形態であるエンジンシステムの概略を示すブロック図。1 is a block diagram showing an outline of an engine system according to an embodiment of the present invention. 空燃比がリッチ状態のときの2次空気の供給タイミングと、触媒温度及び炭素析出劣化の関係を模式的に示すグラフである。It is a graph which shows typically the supply timing of secondary air when an air fuel ratio is a rich state, catalyst temperature, and carbon deposition degradation.

符号の説明Explanation of symbols

10 エンジン
11 シリンダヘッド
12 吸気系ダクト
13 エアクリーナ
14 スロットルボディ
15 燃料噴射装置
16 排気系ダクト
17 触媒コンバータ
18 2次空気供給管
19 空気導入バルブ
20 エンジン温度センサ
21 クランク角度センサ
22 酸素濃度センサ
23 触媒温度センサ
24 スロットルポジションセンサ(TPS)
25 電子制御ユニット(ECU)

DESCRIPTION OF SYMBOLS 10 Engine 11 Cylinder head 12 Intake system duct 13 Air cleaner 14 Throttle body 15 Fuel injection device 16 Exhaust system duct 17 Catalytic converter 18 Secondary air supply pipe 19 Air introduction valve 20 Engine temperature sensor 21 Crank angle sensor 22 Oxygen concentration sensor 23 Catalyst temperature Sensor 24 Throttle position sensor (TPS)
25 Electronic control unit (ECU)

Claims (8)

三元触媒が設けられたエンジンの排気系に2次空気を供給する2次空気供給路と、
前記2次空気供給路を介して前記排気系に供給される2次空気の供給量を制御する2次空気供給量制御装置とを備え、
空燃比がリッチ状態の間、前記供給量が前記三元触媒の触媒温度を所定値以下に維持する範囲、かつ前記供給量が前記三元触媒の炭素析出劣化を抑止する範囲で制御される
ことを特徴とする2次空気導入装置。
A secondary air supply passage for supplying secondary air to an exhaust system of an engine provided with a three-way catalyst;
A secondary air supply amount control device for controlling a supply amount of secondary air supplied to the exhaust system via the secondary air supply path;
While the air-fuel ratio is in a rich state, the supply amount is controlled in a range in which the catalyst temperature of the three-way catalyst is maintained below a predetermined value, and the supply amount is controlled in a range in which the carbon deposition deterioration of the three-way catalyst is suppressed. A secondary air introduction device characterized by the above.
前記2次空気の供給が周期的に行なわれ、前記2次空気の供給がデューティ比50%未満で行なわれることを特徴とする請求項1に記載の2次空気導入装置。   The secondary air introduction device according to claim 1, wherein the supply of the secondary air is periodically performed, and the supply of the secondary air is performed with a duty ratio of less than 50%. 前記2次空気の供給がデューティ比30%〜5%で行なわれることを特徴とする請求項2に記載の2次空気導入装置。   The secondary air introduction apparatus according to claim 2, wherein the supply of the secondary air is performed at a duty ratio of 30% to 5%. 前記2次空気の供給がデューティ比20%〜10%で行われることを特徴とする請求項3に記載の2次空気導入装置。   The secondary air introduction apparatus according to claim 3, wherein the supply of the secondary air is performed at a duty ratio of 20% to 10%. 前記三元触媒内の温度を検出する温度センサを備え、前記2次空気供給量制御装置が、前記温度に基づいて前記供給量を制御することを特徴とする請求項1に記載の2次空気導入装置。   The secondary air according to claim 1, further comprising a temperature sensor that detects a temperature in the three-way catalyst, wherein the secondary air supply amount control device controls the supply amount based on the temperature. Introduction device. 前記排気系の酸素濃度を検出する酸素濃度センサを備え、前記2次空気供給量制御装置が、前記酸素濃度に基づいて前記供給量を制御することを特徴とする請求項1に記載の2次空気導入装置。   2. The secondary according to claim 1, further comprising an oxygen concentration sensor that detects an oxygen concentration of the exhaust system, wherein the secondary air supply amount control device controls the supply amount based on the oxygen concentration. Air introduction device. 前記排気系の空燃比を検出する空燃比センサを備え、前記2次空気供給量制御装置が、前記空燃比に基づいて前記供給量を制御することを特徴とする請求項1に記載の2次空気導入装置。   2. The secondary according to claim 1, further comprising an air-fuel ratio sensor that detects an air-fuel ratio of the exhaust system, wherein the secondary air supply amount control device controls the supply amount based on the air-fuel ratio. Air introduction device. 小型自動二輪車に搭載されたことを特徴とする請求項1に記載の2次空気導入装置。

The secondary air introduction device according to claim 1, wherein the secondary air introduction device is mounted on a small motorcycle.

JP2004299917A 2004-10-14 2004-10-14 Secondary air introduction device Pending JP2006112300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299917A JP2006112300A (en) 2004-10-14 2004-10-14 Secondary air introduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299917A JP2006112300A (en) 2004-10-14 2004-10-14 Secondary air introduction device

Publications (1)

Publication Number Publication Date
JP2006112300A true JP2006112300A (en) 2006-04-27

Family

ID=36381031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299917A Pending JP2006112300A (en) 2004-10-14 2004-10-14 Secondary air introduction device

Country Status (1)

Country Link
JP (1) JP2006112300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238134A (en) * 2012-05-14 2013-11-28 Mazda Motor Corp Exhaust emission control method and device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238134A (en) * 2012-05-14 2013-11-28 Mazda Motor Corp Exhaust emission control method and device for internal combustion engine

Similar Documents

Publication Publication Date Title
US9790880B2 (en) Controller for internal combustion engine
JP2010196483A (en) Abnormality determination device for oxygen sensor
JP2009036117A (en) Air-fuel ratio controller of internal combustion engine
JP4419950B2 (en) Control device for internal combustion engine
CN102325983A (en) Control device for engine
US7987664B2 (en) Secondary air supply system and vehicle
JP2009292246A (en) Stop control device for hybrid vehicle
JP2006233828A (en) Fuel injection control device
WO2003036065A1 (en) Fuel cut control method
JP2006112300A (en) Secondary air introduction device
JP2005330886A (en) Engine idle stop control unit
JP2010138791A (en) Air-fuel ratio control device
JP4654952B2 (en) Output control device for internal combustion engine
JP5033465B2 (en) Engine and vehicle
JP2008057402A (en) Control system for internal combustion engine
JP2003065027A (en) Control device for exhaust air temperature sensor for internal combustion engine
JP2009024496A (en) Air-fuel ratio control system of internal combustion engine
JP4914875B2 (en) Exhaust gas purification device for internal combustion engine
JP5004935B2 (en) Air-fuel ratio control method for internal combustion engine
JP2007285279A (en) Torque variation preventing and controlling system for internal combustion engine
JP2008038806A (en) Exhaust emission control device of internal combustion engine
JP2007262919A (en) Control device of internal combustion engine
JP2006112286A (en) Catalyst temperature estimation device for internal combustion engine
JP2004076591A (en) Secondary air supply control device for internal combustion engine
JP2005155401A (en) Air fuel ratio control device for internal combustion engine