JP2006110882A - Method for producing complex type optical element and complex type optical element - Google Patents

Method for producing complex type optical element and complex type optical element Download PDF

Info

Publication number
JP2006110882A
JP2006110882A JP2004301242A JP2004301242A JP2006110882A JP 2006110882 A JP2006110882 A JP 2006110882A JP 2004301242 A JP2004301242 A JP 2004301242A JP 2004301242 A JP2004301242 A JP 2004301242A JP 2006110882 A JP2006110882 A JP 2006110882A
Authority
JP
Japan
Prior art keywords
resin
mold
lens blank
optical element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004301242A
Other languages
Japanese (ja)
Inventor
Kazuto Kubo
和人 窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004301242A priority Critical patent/JP2006110882A/en
Publication of JP2006110882A publication Critical patent/JP2006110882A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a complex type optical element having a desired shape which improves productivity in replica molding, reduces costs, and satisfies sufficient optical functions. <P>SOLUTION: In a method for producing a complex type optical element, a photo-curable resin is dropped on the surface of a mold having an optically and structurally desirable shape, pressed/packed by a plane or curved surface lens blank, and irradiated with light. After an interface angle forming means making an angle θ which is formed by the surface of the packed/cured resin on the periphery of the interface between the packed/cured resin generating interfacial peeling during demolding and the mold and expressed on the packed/cured resin side larger than 90° and smaller than 180°, the optical element is demolded. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、成形用型により光硬化性樹脂に成形面を転写して所望の光学面形状を得る所謂レプリカ成形法、およびそれを用いて形成された複合型光学素子に係る複合型光学素子の製造方法および複合型光学素子に関するものである。   The present invention relates to a so-called replica molding method for obtaining a desired optical surface shape by transferring a molding surface to a photocurable resin by a molding die, and a composite optical element according to a composite optical element formed using the same. The present invention relates to a manufacturing method and a composite optical element.

従来、非球面レンズや回折光学素子など複合型光学素子の成形技術のひとつとして、大面積成形性と高転写性に優れたことを特徴とし、その成形技術の容易さから大量生産に適しているレプリカ成形技術がある。このレプリカ成形技術は、所望の光学形状の反転形状を有する成形型面上に光硬化性樹脂を滴下し、その上からレンズブランクを圧着させて押し広げ、所望の形状になったところで、光源からの光を照射し光硬化性樹脂を硬化させ、当該硬化樹脂をレンズブランクと共に離型することで成形を行う。   Conventionally, as one of the molding technologies for composite optical elements such as aspherical lenses and diffractive optical elements, it is characterized by excellent large-area moldability and high transferability, and is suitable for mass production due to its ease of molding technology. There is replica molding technology. In this replica molding technique, a photocurable resin is dropped onto a mold surface having a reversal shape of a desired optical shape, and a lens blank is crimped and spread out from the mold surface. Is performed by curing the photocurable resin and releasing the cured resin together with the lens blank.

当該レプリカ成形の離型においては、硬化樹脂の一部が成形型表面に接着してしまうことや、回折光学素子などの光学微細形状が離型時の応力により変形あるいは欠損を受けるなどして、成形品を容易に精度良く離型することが難しい。   In the mold release of the replica molding, a part of the cured resin adheres to the surface of the mold, or the optical fine shape such as the diffractive optical element is deformed or damaged by the stress at the time of mold release. It is difficult to release the molded product easily and accurately.

所望形状を有する複合型光学素子を成形する当該レプリカ成形法においては、離型性を向上させて転写性に優れた高精度な成形品を得る目的でのレプリカ離型方法が数多く提案されている。   In the replica molding method for molding a composite optical element having a desired shape, many replica mold release methods have been proposed for the purpose of obtaining a highly accurate molded product with improved transferability and excellent transferability. .

当該課題を対象とした先例提案としては、既に一般的な手法である離型剤の成形型面への塗布、または離型剤の樹脂材料への添加などが知られている。   As a prior proposal for the subject, application of a release agent to a mold surface or addition of a release agent to a resin material, which is a general technique, is already known.

本発明の課題についての先例提案としては、特許文献1において、樹脂層の偏肉に対応した強度分布を有する光を照射し、重合率変化に対応した圧力を型より樹脂に与えることで樹脂の転写性を向上させる方法が提案されている。また、特許文献2においては、成形樹脂の硬化収縮によるレンズ基材の変形量が最も大きい位置での当該レンズ基材の変形量を打ち消すように金型とレンズ基材を光軸に平行な方向に相対的に接近させることで樹脂の硬化収縮による光学素子の変形を軽減する方法が提案されている。また、特許文献3においては、接液樹脂の端部と接する金型光学有効径外外周の型中心軸との角度θを15°<θ<45°とすることで、接触角と表面張力による接液樹脂端部形状を制御し、外周部から欠損なく離型する方法が提案されている。また、特許文献4においては、レンズブランク上の光学有効径外でのマスキングを介して放射線を照射することで、非マスク部の樹脂の硬化収縮分を当マスク部の未硬化樹脂から補い供給することで成形品の転写性を向上させる方法が提案されている。   As a precedent proposal for the subject of the present invention, in Patent Document 1, light having an intensity distribution corresponding to the uneven thickness of the resin layer is irradiated, and a pressure corresponding to a change in the polymerization rate is applied to the resin from the mold. A method for improving transferability has been proposed. Further, in Patent Document 2, the mold and the lens substrate are parallel to the optical axis so as to cancel the deformation amount of the lens base material at the position where the deformation amount of the lens base material due to the curing shrinkage of the molding resin is the largest. There has been proposed a method of reducing the deformation of the optical element due to curing shrinkage of the resin by being relatively close to the substrate. In Patent Document 3, the angle θ between the outer periphery of the mold optical effective diameter and the mold center axis in contact with the end of the wetted resin is 15 ° <θ <45 °, so that the contact angle and the surface tension A method has been proposed in which the shape of the wetted resin end is controlled to release from the outer peripheral portion without any defects. Moreover, in patent document 4, the radiation shrinkage | radiation is irradiated through the masking outside the optical effective diameter on a lens blank, and the cure shrinkage of resin of a non-mask part is supplemented and supplied from the uncured resin of this mask part. Thus, a method for improving the transferability of a molded product has been proposed.

しかしながら、下記特許文献においては、プロセス構成やその目的に差異があるだけでなく、より高精度な離型性と効率的な生産性を求める場合には次に上げるような課題が発生する。
特開平6−304936号公報 特開平8−99367号公報 特開平7−68569号公報 特開平6−75106号公報
However, in the following patent documents, not only the process configuration and its purpose are different, but also the following problems occur when more precise release properties and efficient productivity are required.
JP-A-6-304936 JP-A-8-99367 Japanese Unexamined Patent Publication No. 7-68569 JP-A-6-75106

非球面レンズや回折光学素子など複合型光学素子のレプリカ成形技術の離型プロセスにおいて、離型時応力による光学形状の変形または欠損は多少なりとも避けがたい。   In the mold release process of the replica molding technology for composite optical elements such as aspherical lenses and diffractive optical elements, it is difficult to avoid any deformation or loss of the optical shape due to stress at the time of mold release.

レプリカ成形の離型メカニズムは、成形樹脂と成形型からなる界面の外周端部に、成形型面に垂直な負荷を集中的に与えることで界面亀裂を発生させ、この界面亀裂を内部成形面へと連続的に進行させることで離型を行う。この離型プロセスの間に界面に与えられる離型時応力は、小さければ小さいほど良く、とりわけ大きな離型時応力が負荷された場合には、非球面レンズにおける光学曲面や回折光学素子における格子面などに変形や欠損を与える。これらの変形部や欠損部は複合型光学素子の光学性能を著しく低下させることは言うまでもない。   In the mold release mechanism of replica molding, an interface crack is generated by concentrating a load perpendicular to the mold surface at the outer peripheral edge of the interface between the molding resin and the mold, and this interface crack is transferred to the inner molding surface. The mold release is performed by making it continuously proceed. The smaller the release stress applied to the interface during this release process, the better. Especially when a large release stress is applied, an optical curved surface in an aspheric lens or a grating surface in a diffractive optical element. Give deformation or deficiency. Needless to say, these deformed portions and missing portions significantly deteriorate the optical performance of the composite optical element.

しかるに、この障害を回避するための一般的な特許文献のひとつとして、成形型面上に離型剤を塗布して成形型と硬化樹脂との密着力を低下させる方法が上げられるが、液剤塗布による液垂れまたは表面張力による膜厚の不均一性などによって、極めて精密に加工された成形型面上の光学曲面や微細形状を歪めることになる。   However, as one of the general patent documents for avoiding this obstacle, a method of reducing the adhesion between the mold and the cured resin by applying a release agent on the mold surface can be raised. The optical curved surface and the fine shape on the surface of the molding die processed extremely precisely are distorted due to liquid dripping or non-uniformity of the film thickness due to surface tension.

一方、離型剤を樹脂材料そのものへ添加する方法においては、樹脂材料の耐環境性の悪化や屈折率低下等の影響が観察され、複合型光学素子を成形する光学材料としては好ましくない。   On the other hand, in the method of adding a release agent to the resin material itself, effects such as deterioration of the environmental resistance of the resin material and a decrease in refractive index are observed, which is not preferable as an optical material for molding a composite optical element.

しかるに、レプリカ成形における成形樹脂の転写性を向上させる目的での前記特許文献1においては、圧力負荷等のプロセス構成が異なるだけでなく、充填樹脂の外周端部の形状を制御することで離型性を向上させる効果を十分に与えていない。さらには、重合率変化と硬化収縮力とが一致しない樹脂材料に対する応用展開が困難である。また、レプリカ成形における樹脂の硬化収縮による光学素子の変形を軽減する目的での前記特許文献2においても、プロセス構成が異なるだけでなく、充填樹脂の外周端部の形状を制御することで離型性を向上させる効果を十分に与えていない。また、レプリカ成形における離型性の向上を目的とした前記特許文献3においては、本発明と同様の効果を目的としているが、プロセス構成や成形型の構成が異なるだけでなく、充填樹脂の外周端部を凹形状にするという本発明と相反する形状制御を提案している。また、レプリカ成形品の転写性の向上を目的とした前記特許文献4においては、光照射等のプロセス構成や目的が異なるだけでなく、充填樹脂の外周端部の形状を制御することで離型性を向上させる効果を十分に与えていない。   However, in Patent Document 1 for the purpose of improving the transferability of the molding resin in replica molding, not only the process configuration such as pressure load is different, but also the mold release by controlling the shape of the outer peripheral end of the filling resin. The effect of improving the performance is not given sufficiently. Furthermore, it is difficult to develop applications for resin materials in which the polymerization rate change and the curing shrinkage force do not match. Further, in Patent Document 2 for the purpose of reducing the deformation of the optical element due to the curing shrinkage of the resin in replica molding, not only the process configuration is different, but also the mold release is performed by controlling the shape of the outer peripheral end of the filled resin. The effect of improving the performance is not given sufficiently. Moreover, in the said patent document 3 aiming at the improvement of the mold release property in replica shaping | molding, although it aims at the effect similar to this invention, not only a process structure and the structure of a shaping | molding die but the outer periphery of filling resin Proposal of shape control contrary to the present invention in which the end is made concave is proposed. In Patent Document 4 for the purpose of improving the transferability of a replica molded product, not only the process configuration and purpose such as light irradiation are different, but also the mold release by controlling the shape of the outer peripheral end of the filled resin. The effect of improving the performance is not given sufficiently.

さらに、これら前記した特許文献においては、本発明による充填樹脂の外周端部の形状制御が行われないかまたは不十分なために、離型時における硬化樹脂の凝集破壊によって生じる成形型面上への樹脂残留が多く発生する。この現象が生産現場において発生した場合、成形型面上に付着した残留樹脂を作業者が毎回拭き取らなければならないため、生産性を低下させ大幅なコストアップとなるだけでなく、成形型の耐久性も低くなる。大きな凝集破壊が生じて離型した複合型光学素子は、製品不良となってしまうことは言うまでもない。   Furthermore, in these above-mentioned patent documents, since the shape control of the outer peripheral end portion of the filling resin according to the present invention is not performed or is insufficient, onto the mold surface caused by the cohesive failure of the cured resin at the time of mold release. Many resin residues occur. If this phenomenon occurs at the production site, the operator must wipe off the residual resin adhering to the mold surface every time, which not only reduces productivity and increases costs, but also increases the durability of the mold. The nature is also lowered. It goes without saying that a composite optical element that has been released due to large cohesive failure results in a defective product.

因って、本発明においては、前述した方法例を使うことなく、レプリカ成形の離型時に界面剥離を発生させる充填硬化樹脂と成形型からなる界面の外周部での当該充填硬化樹脂面が成形型面となす充填硬化樹脂側で表した角θを90°<θ<180°にするという界面角の形成手段を用いることで、離型時の初期亀裂を小さい力で発生させて、離型性を向上させるものである。   Therefore, in the present invention, without using the above-described method example, the filling cured resin surface at the outer peripheral portion of the interface composed of the filling cured resin and the mold that generates interface peeling at the time of releasing the replica molding is molded. By using an interface angle forming means that makes the angle θ represented by the filling cured resin side of the mold surface 90 ° <θ <180 °, an initial crack at the time of mold release is generated with a small force, and the mold release It improves the performance.

これにより、レプリカ成形における生産性を向上させ、コスト削減を図り、かつ十分な光学的機能を満たした所望形状の複合型光学素子を得ることを目的とする。   Accordingly, an object of the present invention is to obtain a composite optical element having a desired shape that improves productivity in replica molding, reduces costs, and satisfies a sufficient optical function.

前述の課題を解決するための請求項1の発明は、光学的所望かつ機構的所望の光学形状を有する成形型面上に光硬化性樹脂を滴下し、当該光硬化性樹脂を、平面または曲面レンズブランクで押圧充填し、光照射することにより複合型光学素子を製造する製造技術において、離型時に界面剥離を発生させる充填硬化樹脂と成形型からなる界面の外周部での当該充填硬化樹脂面が成形型面となす充填硬化樹脂側で表した角θを90°<θ<180°とする界面角の形成手段の後に当該複合型光学素子を離型することを特徴とする複合型光学素子の製造方法である。   The invention of claim 1 for solving the above-mentioned problem is that a photocurable resin is dropped on a molding die surface having an optically desired and mechanically desired optical shape, and the photocurable resin is flattened or curved. In a manufacturing technology for manufacturing a composite optical element by press-filling with a lens blank and irradiating with light, the filled cured resin surface at the outer peripheral portion of the interface composed of a filled cured resin and a mold that generates interface peeling at the time of mold release The composite optical element is released after the interface angle forming means in which the angle θ expressed on the side of the filled cured resin that forms the mold surface is 90 ° <θ <180 ° It is a manufacturing method.

請求項2の発明は、レンズブランクと成形型の間に充填された光硬化性樹脂への光照射による光硬化時において、樹脂内部で連続的に発生する樹脂の硬化収縮力に比較して、当該硬化収縮力よりも常に大きな内部応力を、レンズブランクまたは成形型による当該光硬化性樹脂への押圧手段をもって連続的に負荷することを特徴とする請求項1記載の複合型光学素子の製造方法である。   The invention of claim 2 is compared with the curing shrinkage force of the resin continuously generated inside the resin at the time of photocuring by light irradiation to the photocurable resin filled between the lens blank and the mold. 2. The method of manufacturing a composite optical element according to claim 1, wherein an internal stress always larger than the curing shrinkage force is continuously applied by a pressing means to the photocurable resin by a lens blank or a mold. It is.

請求項3の発明は、レンズブランクにより光硬化性樹脂を押圧充填された成形型面上の光学有効径外と光硬化用光源との間に遮光体を設置し、当該遮光体による未硬化充填樹脂の遮光部と非遮光部との境界条件において、入射する硬化光によって硬化する充填樹脂面が成形型面となす硬化する充填樹脂側で表した角θを90°<θ<180°とすることを特徴とする請求項1記載の複合型光学素子の製造方法である。   According to the invention of claim 3, a light-shielding body is installed between the outside of the optical effective diameter on the mold surface press-filled with a photocurable resin by a lens blank and the light-curing light source, and uncured filling by the light-shielding body. In the boundary condition between the light shielding portion and the non-light shielding portion of the resin, the angle θ represented on the side of the filling resin to be cured that the filling resin surface cured by the incident curing light and the molding die surface is 90 ° <θ <180 °. The method of manufacturing a composite optical element according to claim 1.

請求項4の発明は、請求項1ないし3いずれかに記載の製造方法を用いて製造されたことを特徴とする複合型光学素子である。   A fourth aspect of the present invention is a composite optical element manufactured using the manufacturing method according to any one of the first to third aspects.

[作用]
請求項1の構成を用いることにより、以下に示すような作用を得る。
[Action]
By using the configuration of the first aspect, the following operation is obtained.

図1,図2は、レプリカ成形における光硬化性樹脂の硬化プロセスを表した模式図である。成形型1とレンズブランク3の間に押圧充填された硬化前の光硬化性樹脂2の雰囲気に接する外周端部は、充填直後の光照射前の未硬化状態において、4に示されるような外に向く凸形状を形成する。この外周端部の凸面形状は、成形型1やレンズブランク3の撥水性などの表面状態、または用いる硬化前の光硬化性樹脂2の粘弾性、さらには重力や雰囲気温度による経時変化等の諸条件によって形成される。   1 and 2 are schematic views showing a curing process of a photocurable resin in replica molding. The outer peripheral end portion in contact with the atmosphere of the pre-curing photocurable resin 2 that is press-filled between the mold 1 and the lens blank 3 is an outer surface as shown in 4 in an uncured state immediately after light irradiation before filling. A convex shape that faces the surface is formed. The convex shape of the outer peripheral end is a surface state such as the water repellency of the mold 1 or the lens blank 3, or the viscoelasticity of the photo-curing resin 2 before curing used, and changes with time due to gravity or ambient temperature. It is formed according to conditions.

さらに、光硬化用光源5の光を硬化前の光硬化性樹脂2に対して照射することで、硬化後の光硬化性樹脂2’の雰囲気に接する外周端部は、図2の4’に示されるような内に向く凹形状を形成する。これは、硬化後の光硬化性樹脂2’内に図示した矢印(↑)で表される硬化収縮が、界面エネルギーが比較的に高い硬化前の光硬化性樹脂2と成形型1またはレンズブランク3との界面にわずかしか発生せずに、界面エネルギーが比較的に低い硬化前の光硬化性樹脂2と雰囲気との界面に集中的に発生したことによる。ここで示した硬化プロセスにおいて、レンズブランク保持部材7によりレンズブランク3は成形型1に対して等間隔で保持されているが、硬化前の光硬化性樹脂2と成形型1との界面に硬化収縮が働くならば、所謂ひけと呼ばれる当該界面の剥離現象として発生する。一方、硬化前の光硬化性樹脂2とレンズブランク3との界面に生じる硬化収縮は、レンズブランク3の歪みとして発生するが、レンズブランク3が厚いほどまたはその弾性が小さいほどその歪みは軽減する。   Further, by irradiating the light curable resin 2 before curing with the light of the light curing light source 5, the outer peripheral end portion in contact with the atmosphere of the cured photocurable resin 2 ′ is shown in 4 ′ of FIG. 2. Form an inwardly concave shape as shown. This is because the curing shrinkage represented by the arrow (↑) shown in the cured photocurable resin 2 ′ is relatively high in interfacial energy, and the cured photocurable resin 2 and the mold 1 or the lens blank. 3 is generated at the interface between the photo-curing resin 2 and the atmosphere before curing with a relatively low interface energy. In the curing process shown here, the lens blank 3 is held at equal intervals with respect to the mold 1 by the lens blank holding member 7, but is cured at the interface between the photocurable resin 2 and the mold 1 before curing. If the contraction works, it occurs as a peeling phenomenon of the interface called so-called sink. On the other hand, curing shrinkage that occurs at the interface between the photocurable resin 2 and the lens blank 3 before curing occurs as distortion of the lens blank 3, but the distortion decreases as the lens blank 3 is thicker or its elasticity is smaller. .

図3,図4,図5は、レプリカ成形における複合型光学素子の離型プロセスを表した模式図である。各々の図は、離型時に界面剥離を発生させる充填した硬化後の光硬化性樹脂2’と成形型1からなる界面の外周部での当該充填硬化樹脂面4’が成形型面となす充填硬化樹脂側で表した角θの0°<θ<90°、θ=90°、90°<θ<180°の断面を表したものである。   3, 4, and 5 are schematic views showing a mold release process of the composite optical element in replica molding. Each figure shows the filling that the filled cured resin surface 4 ′ at the outer peripheral portion of the interface composed of the filled cured photocurable resin 2 ′ and the mold 1 that causes interface peeling at the time of mold release and the mold surface. The cross section of 0 ° <θ <90 °, θ = 90 °, 90 ° <θ <180 ° of the angle θ expressed on the cured resin side is shown.

図3は、充填硬化樹脂面4’が内に向く凹形状を形成した断面であり(0°<θ<90°)、図中に示した離型力Fをレンズブランク3の端部に対して垂直に負荷した場合の、離型の亀裂進行を図中の破線矢印6で示したものである。離型力Fによって凹形状の充填硬化樹脂面4’に負荷される応力分布は、成形型1と硬化後の光硬化性樹脂2’の界面からわずかに離れた離型の亀裂進行6の始点において最も大きく、充填硬化樹脂面4’の凹形状中央部のそれに比較しておよそ3倍の応力が負荷されている。具体的には、図6において示されるように、膜厚50μmで充填硬化樹脂面4’が曲率半径25μmの凹形状にて形成された硬化後の光硬化性樹脂2’において、レンズブランク3の端部に垂直方向1.0[N/mm]の離型力を負荷した場合、充填硬化樹脂面4’と成形型1との接触界面より水平方向に15μm、垂直方向に4μmの位置にて応力集中が確認された。これは、離型亀裂が充填硬化樹脂面4’と成形型1との接触界面よりも充填硬化樹脂面4’上にて発生するという樹脂の凝集破壊の可能性が高いことを示している。充填した硬化後の光硬化性樹脂2’の凝集破壊においては、離型の際により大きな離型力を必要とするだけでなく、成形型1上に残留樹脂を残すことになる。 FIG. 3 is a cross section in which the filled cured resin surface 4 ′ is formed in a concave shape facing inward (0 ° <θ <90 °), and the release force F shown in the figure is applied to the end of the lens blank 3. The progress of the release crack when the load is applied vertically is indicated by a broken line arrow 6 in the figure. The stress distribution applied to the concave filling resin surface 4 ′ by the releasing force F is the starting point of the release crack progression 6 slightly away from the interface between the mold 1 and the cured photocurable resin 2 ′. The stress is about three times as large as that of the central portion of the concave shape of the filled cured resin surface 4 ′. Specifically, as shown in FIG. 6, in the photocurable resin 2 ′ after curing in which the filling cured resin surface 4 ′ is formed in a concave shape with a curvature radius of 25 μm with a film thickness of 50 μm, the lens blank 3 When a release force of 1.0 [N / mm 2 ] in the vertical direction is applied to the end, 15 μm in the horizontal direction and 4 μm in the vertical direction from the contact interface between the filled cured resin surface 4 ′ and the mold 1. Stress concentration was confirmed. This indicates that there is a high possibility of cohesive failure of the resin, in which the release crack occurs on the filled cured resin surface 4 ′ rather than the contact interface between the filled cured resin surface 4 ′ and the mold 1. In the cohesive failure of the filled photocurable resin 2 ′ after curing, not only a larger mold release force is required at the time of mold release, but also a residual resin is left on the mold 1.

図4は、充填硬化樹脂面4’が成形型1に対して垂直面を形成した断面であり(θ=90°)、図中に示した離型力Fをレンズブランク3の端部に対して垂直に負荷した場合の、離型の亀裂進行を図中の破線矢印6で示したものである。離型力Fによって垂直な充填硬化樹脂面4’に負荷される応力分布は、成形型1と充填硬化樹脂面4’との界面において最も大きく、充填硬化樹脂面4’の垂直面中央部のそれに比較しておよそ2倍の応力が負荷されている。これは、離型亀裂が成形型1と充填硬化樹脂面4’との接触界面にて発生する可能性が高いことを示している。成形型1と充填硬化樹脂面4’との界面破壊においては、離型の際に大きな離型力を必要とせず、成形型1上に残留樹脂は残さない。   FIG. 4 is a cross section in which the filling cured resin surface 4 ′ forms a vertical surface with respect to the mold 1 (θ = 90 °), and the release force F shown in the figure is applied to the end of the lens blank 3. The progress of the release crack when the load is applied vertically is indicated by a broken line arrow 6 in the figure. The stress distribution applied to the vertical filling cured resin surface 4 ′ by the release force F is the largest at the interface between the mold 1 and the filling cured resin surface 4 ′. Compared to this, approximately twice as much stress is applied. This indicates that there is a high possibility that a release crack will occur at the contact interface between the mold 1 and the filled cured resin surface 4 '. In the interface fracture between the mold 1 and the filled cured resin surface 4 ′, a large release force is not required at the time of mold release, and no residual resin is left on the mold 1.

図5は、充填硬化樹脂面4’が外に向く凸形状を形成した断面であり(90°<θ<180°)、図中に示した離型力Fをレンズブランク3の端部に対して垂直に負荷した場合の、離型の亀裂進行を図中の破線矢印6で示したものである。離型力Fによって凸形状の充填硬化樹脂面4’に負荷される応力分布は、成形型1と充填硬化樹脂面4’との界面において最も大きく、充填硬化樹脂面4’の凸形状中央部のそれに比較してもおよそ5倍以上の応力が集中的に負荷される。これは、離型亀裂が成形型1と充填硬化樹脂面4’との接触界面にて発生する可能性がより高いことを示している。成形型1と充填硬化樹脂面4’との界面破壊においては、離型の際に大きな離型力を必要とせず、成形型1上に残留樹脂は残さない。さらには、充填硬化樹脂面4’において比較的に均一な応力分布を示す図4の垂直面を形成した離型プロセスとは異なり、離型応力を成形型1と充填硬化樹脂面4’との界面に集中できるためより効率的に小さい応力で離型することができる。以上の結果は、実験と構造解析のシミュレーションにより得られたものである。   FIG. 5 is a cross section in which the filling cured resin surface 4 ′ forms a convex shape facing outward (90 ° <θ <180 °), and the release force F shown in the figure is applied to the end of the lens blank 3. The progress of the release crack when the load is applied vertically is indicated by a broken line arrow 6 in the figure. The stress distribution applied to the convex filling cured resin surface 4 ′ by the mold release force F is greatest at the interface between the mold 1 and the filling cured resin surface 4 ′, and the convex central portion of the filling cured resin surface 4 ′. Compared with that of the above, stress of about 5 times or more is concentrated. This indicates that there is a higher possibility that a release crack will occur at the contact interface between the mold 1 and the filled cured resin surface 4 '. In the interface fracture between the mold 1 and the filled cured resin surface 4 ′, a large release force is not required at the time of mold release, and no residual resin is left on the mold 1. Furthermore, unlike the mold release process in which the vertical surface of FIG. 4 showing a relatively uniform stress distribution on the filled cured resin surface 4 ′ is formed, the mold release stress is applied between the mold 1 and the filled cured resin surface 4 ′. Since it can concentrate on the interface, it can be released more efficiently with less stress. The above results were obtained through simulations of experiments and structural analysis.

また、図3,図4,図5で示される各離型プロセスにおいては、成形型1とレンズブランク3が充填した硬化後の光硬化性樹脂2’となす両界面に上下対称性があるため、当該硬化後の光硬化性樹脂2’内に負荷される応力分布も樹脂の中心線を挟んで上下対称なものとなる。ただし、レンズブランク3と硬化後の光硬化性樹脂2’との界面については、成形型1と硬化後の光硬化性樹脂2’の界面に同様の応力が負荷されるが、ガラスと樹脂との密着処理を施してあるために亀裂は発生しない。   Moreover, in each mold release process shown by FIG.3, FIG.4, FIG.5, since both interfaces with the photocurable resin 2 'after hardening filled with the shaping | molding die 1 and the lens blank 3 have a vertical symmetry. The stress distribution applied to the photocurable resin 2 ′ after the curing is also vertically symmetric with respect to the center line of the resin. However, regarding the interface between the lens blank 3 and the cured photocurable resin 2 ′, the same stress is applied to the interface between the mold 1 and the cured photocurable resin 2 ′. No cracking occurs because of the adhesion treatment.

さらに、請求項2の構成を用いることにより、以下に示すような作用を得る。   Further, by using the configuration of the second aspect, the following operation is obtained.

図11は、前述した図2において、レンズブランク保持部材7によりレンズブランク3が成形型1に対して等間隔で保持されている時の、硬化後の光硬化性樹脂2’の内部に発生する光照射量ごとの硬化収縮力(硬化収縮する硬化後の光硬化性樹脂2’が成形型1とレンズブランク3を引きつける力)を測定したものである。光照射の初期において急激に硬化収縮が発生し、光照射による硬化後の光硬化性樹脂2’の重合硬化が進むにつれて、ある一定の値に収束していくのがわかる。この時のレンズブランク3は、図12にあるように硬化後の光硬化性樹脂2’の硬化収縮力fにより、凹形状に歪曲する。   FIG. 11 is generated inside the photo-curing resin 2 ′ after curing when the lens blank 3 is held at equal intervals by the lens blank holding member 7 in FIG. 2 described above. This is a measurement of the curing shrinkage force (the force by which the cured photocurable resin 2 ′ that cures and shrinks attracts the mold 1 and the lens blank 3) for each light irradiation amount. It can be seen that curing shrinkage occurs abruptly in the early stage of light irradiation, and converges to a certain value as polymerization hardening of the photocurable resin 2 ′ after curing by light irradiation proceeds. The lens blank 3 at this time is distorted into a concave shape by the curing shrinkage force f of the cured photocurable resin 2 'as shown in FIG.

ここで、図13に示されるように、硬化後の光硬化性樹脂2’の硬化収縮力fに同調した同方向で等しい力fをレンズブランク3に対して与えた場合、充填硬化樹脂面4’は充填未硬化樹脂面4に等しく変化しない。これは、硬化後の光硬化性樹脂2’の硬化収縮力とレンズブランク3を押圧することによって負荷された樹脂の内部応力とが釣り合ったためである。   Here, as shown in FIG. 13, when the same force f is applied to the lens blank 3 in the same direction in synchronization with the curing shrinkage force f of the cured photocurable resin 2 ′, the filled cured resin surface 4 'Does not change equally to the filled uncured resin surface 4. This is because the curing shrinkage of the cured photocurable resin 2 ′ balances with the internal stress of the resin loaded by pressing the lens blank 3.

さらに、図14に示されるように、硬化後の光硬化性樹脂2’の硬化収縮力fに同方向でより大きな力f’をレンズブランク3に対して与えた場合、充填硬化樹脂面4’は充填未硬化樹脂面4よりも外へ張り出した凸形状を形成する。これは、レンズブランク3を力f’で押圧することによって負荷された樹脂の内部応力が硬化後の光硬化性樹脂2’の硬化収縮力fにまさったことで、その応力差(f’−f)が充填硬化樹脂面4’を押し出したことによる。   Furthermore, as shown in FIG. 14, when a larger force f ′ is applied to the lens blank 3 in the same direction as the curing shrinkage force f of the cured photocurable resin 2 ′, the filled cured resin surface 4 ′. Forms a convex shape protruding outward from the filled uncured resin surface 4. This is because the internal stress of the resin loaded by pressing the lens blank 3 with the force f ′ exceeds the curing contraction force f of the cured photocurable resin 2 ′, and the stress difference (f′− This is because f) extruded the filling cured resin surface 4 ′.

さらに、請求項3の構成を用いることにより、以下に示すような作用を得る。   Further, by using the configuration of the third aspect, the following operation is obtained.

図15は、成形型1とレンズブランク3との間に充填された硬化前の光硬化性樹脂2に、遮光体9を介して図示の光線10を入射させた当該硬化前の光硬化性樹脂2の硬化プロセスを示す。この時の硬化後の光硬化性樹脂2’と硬化前の光硬化性樹脂2は、図示の角θで示される境界の充填硬化樹脂面4’で分けられる。   FIG. 15 shows a photocurable resin before curing, in which the illustrated light beam 10 is incident on the photocurable resin 2 filled between the mold 1 and the lens blank 3 through a light shield 9. 2 illustrates the curing process. At this time, the cured photocurable resin 2 ′ and the uncured photocurable resin 2 are divided by a filled cured resin surface 4 ′ at the boundary indicated by the angle θ shown in the drawing.

因って、前述したこれら接触界面と界面離型の作用を有効に活用し、以下に示す実施例において応用することで、離型時の初期亀裂を小さい力で発生させて離型性を向上させることを目的とする。   Therefore, by effectively utilizing the above-mentioned contact interface and interface mold release action, and applying it in the examples shown below, the initial crack at the time of mold release is generated with a small force and the mold release property is improved. The purpose is to let you.

本願の請求項1及び請求項2及び請求項3及び請求項4に記載した発明によるその効果は、レプリカ成形における複合型光学素子の離型性を向上させることが可能となる。   The effects of the invention described in claims 1, 2, 3, and 4 of the present application can improve the releasability of the composite optical element in replica molding.

以下本発明を実施するための最良の形態を、実施例により詳しく説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.

図7,図10は本発明のレプリカ成形装置における実施例1を示す概略構成図である。1は所望とする光学機能形状の反転形状8をその成形面に設けた成形型である。成形型1は固定されており、成形型1を嵌め込んでいるリング状のレンズブランク保持部材7にはレンズブランク3が嵌合され、レンズブランク3の中心軸と成形型1の成形面の中心軸との合わせは、当該レンズブランク保持部材7の嵌合部にレンズブランク3を嵌め込むことで実現する。レンズブランク3は、ガラスの材質から成り、光学面においては平面または曲面を有する。リング状のレンズブランク保持部材7は上下動自在に保持されており、垂直方向に対して0〜300[kgf]までの負荷をかけることができる油圧機構を備えている。成形型1の成形面上には不図示のディスペンサーにより硬化前の光硬化性樹脂2が供給されており、レンズブランク3の上方には光硬化用光源5が成形型光学機能面に対して紫外線が垂直に入射されるように設置されている。硬化前の光硬化性樹脂2としては、波長365nm付近をピークとして重合が開始されるアクリレート系またはメタクリレート系またはエポキシ等の光学樹脂を使用しており、光硬化用光源5は、高圧水銀ランプまたは超高圧水銀ランプ等の波長365nm付近に発振のピークを有する光源を使用する。   7 and 10 are schematic configuration diagrams showing Example 1 in the replica molding apparatus of the present invention. Reference numeral 1 denotes a molding die provided with a reversal shape 8 of a desired optical function shape on its molding surface. The molding die 1 is fixed, and the lens blank 3 is fitted into a ring-shaped lens blank holding member 7 into which the molding die 1 is fitted, and the center axis of the lens blank 3 and the center of the molding surface of the molding die 1. The alignment with the shaft is realized by fitting the lens blank 3 into the fitting portion of the lens blank holding member 7. The lens blank 3 is made of a glass material, and has a flat surface or a curved surface on the optical surface. The ring-shaped lens blank holding member 7 is held in a vertically movable manner, and includes a hydraulic mechanism that can apply a load of 0 to 300 [kgf] in the vertical direction. On the molding surface of the mold 1, a photo-curing resin 2 before curing is supplied by a dispenser (not shown), and a light source 5 for photo-curing is disposed above the lens blank 3 with respect to the optical function surface of the mold. Are installed so as to be incident vertically. As the photocurable resin 2 before curing, an optical resin such as an acrylate, methacrylate, or epoxy whose polymerization is started with a peak at a wavelength of around 365 nm is used, and the photocuring light source 5 is a high-pressure mercury lamp or A light source having an oscillation peak in the vicinity of a wavelength of 365 nm such as an ultra high pressure mercury lamp is used.

図8は、本実施例における成形型1の上面図と側面図を示す。光学機能面8を形成する微細形状は、光学有効径20mmにおいて、平面上に格子高さ5〜20μm、格子幅0.1〜3mmのブレーズ型回折格子を有し、上面図に示されるように中心への凸形状で同心円状に配置されている。   FIG. 8 shows a top view and a side view of the mold 1 in this embodiment. The fine shape forming the optical functional surface 8 has a blazed diffraction grating having a grating height of 5 to 20 μm and a grating width of 0.1 to 3 mm on a plane at an optical effective diameter of 20 mm, as shown in the top view. Concentric with a convex shape toward the center.

図9は、当該成形型1により理想的に作製される回折光学素子を示す。レンズブランク3上に形成された樹脂層の光学機能面8’は、ブレーズ型回折格子の中心への凹形状、即ち当該成形型の反転形状として同心円状に形成される。   FIG. 9 shows a diffractive optical element ideally produced by the mold 1. The optical functional surface 8 'of the resin layer formed on the lens blank 3 is formed concentrically as a concave shape toward the center of the blazed diffraction grating, that is, as an inverted shape of the mold.

以下、本実施例における成形プロセスを図7,図10において説明する。まず、成形型1の成形面上中央付近に不図示のディスペンサーにて硬化前の光硬化性樹脂2を適量供給し、あらかじめ樹脂との密着力を上げるためのカップリング処理を片面に施したレンズブランク3を、カップリング処理面を下にしてリング状のレンズブランク保持部材7に嵌め込む。この際に、芯だし用チャックやベルクランプ方式等、さらにレンズブランク3を保持するための機構を備えても良い。その後、リング状のレンズブランク保持部材7を油圧式機構によって下降させ、成形型1とレンズブランク3を相対的に接近させ、硬化前の光硬化性樹脂2に対して5.0[kgf]の一定荷重を加える。さらに、当該一定荷重により押圧されていく硬化前の光硬化性樹脂2が、所望の厚みかつ光学有効径外の外周部まで満たすように充填された瞬間に、光硬化用光源5からの30[mW/cm]の光照射を行うことで当該硬化前の光硬化性樹脂2を硬化させる。この時、硬化前の光硬化性樹脂2への気泡混入や型上の光学有効形状への樹脂未充填を防止するために、樹脂の粘度や型成形面の濡れ性を考慮して、光学有径内での樹脂充填時に負荷する一定荷重を0.1[kgf]として、光学有効径外での樹脂充填時に負荷する一定荷重を5.0[kgf]とした不連続な荷重プロセスとしても良い。さらに、硬化前の光硬化性樹脂2は、30[mW/cm]の光硬化用光源5により10分間照射されることで完全に硬化される。その後、リング状のレンズブランク保持部材7を上昇させることで、成形型1から硬化後の光硬化性樹脂2’とレンズブランク3から成る回折光学素子を剥離させる。 Hereinafter, the molding process in the present embodiment will be described with reference to FIGS. First, an appropriate amount of photo-curing resin 2 before curing is supplied to the vicinity of the center of the molding surface of the molding die 1 with a dispenser (not shown), and a lens that has been subjected to a coupling process on one side in advance to increase the adhesion with the resin in advance. The blank 3 is fitted into the ring-shaped lens blank holding member 7 with the coupling processing surface facing down. At this time, a mechanism for holding the lens blank 3, such as a centering chuck or a bell clamp system, may be provided. Thereafter, the ring-shaped lens blank holding member 7 is lowered by a hydraulic mechanism to bring the mold 1 and the lens blank 3 relatively close to each other, and 5.0 [kgf] relative to the photocurable resin 2 before curing. Apply a constant load. Further, at the moment when the pre-curing photo-curable resin 2 that is pressed by the constant load is filled up to the outer peripheral portion outside the optical effective diameter with a desired thickness, 30 [ The photocurable resin 2 before curing is cured by performing light irradiation of [mW / cm 2 ]. At this time, in order to prevent air bubbles from being mixed into the photocurable resin 2 before curing and resin unfilling into the optically effective shape on the mold, the optical properties are considered in consideration of the viscosity of the resin and the wettability of the molding surface. It may be a discontinuous load process in which the constant load applied when filling the resin within the diameter is 0.1 [kgf] and the constant load applied when filling the resin outside the optical effective diameter is 5.0 [kgf]. . Furthermore, the photocurable resin 2 before curing is completely cured by being irradiated for 10 minutes by a light curing light source 5 of 30 [mW / cm 2 ]. Thereafter, the ring-shaped lens blank holding member 7 is raised, and the diffractive optical element composed of the cured photocurable resin 2 ′ and the lens blank 3 is peeled off from the mold 1.

本発明の作用において前述したように、本実施例においては、レンズブランク3を5.0[kgf]の一定荷重によって押圧することで、硬化後の光硬化性樹脂2’の硬化収縮力にまさる内部応力を当該硬化後の光硬化性樹脂2’に与えて、その充填硬化樹脂面4’を外に張り出した凸形状とした。この時の、離型時に界面剥離を発生させる充填硬化樹脂と成形型からなる界面の外周部での当該充填硬化樹脂面4’が成形型面となす充填硬化樹脂側で表した角θは、90°<θ<180°となる。さらに、本発明の作用において前述したように、本実施例の離型プロセスにおいては、得られた当該角θ(90°<θ<180°)に離型応力を集中できるため、より効率的に小さい力で離型することができた。   As described above in the operation of the present invention, in this embodiment, the lens blank 3 is pressed by a constant load of 5.0 [kgf], which surpasses the curing shrinkage force of the cured photocurable resin 2 ′. An internal stress was applied to the cured photocurable resin 2 ′ to form a convex shape with the filled cured resin surface 4 ′ protruding outward. At this time, the angle θ represented on the side of the filling and curing resin that the filling and curing resin surface 4 ′ at the outer peripheral portion of the interface composed of the filling and curing resin and the mold that generates the interface peeling at the time of mold release is the following: 90 ° <θ <180 °. Furthermore, as described above in the operation of the present invention, in the mold release process of the present embodiment, the mold release stress can be concentrated on the obtained angle θ (90 ° <θ <180 °), so that it is more efficient. The mold could be released with a small force.

因って、本実施例の構成において、回折光学素子の充填硬化樹脂面4’を形成して離型性を向上させるものである。これにより、レプリカ成形における生産性を向上させ、コスト削減を図り、かつ十分な光学的機能を満たした所望形状の回折光学素子を得ることを目的とする。   Therefore, in the configuration of the present embodiment, the filling cured resin surface 4 'of the diffractive optical element is formed to improve the releasability. Accordingly, an object of the present invention is to obtain a diffractive optical element having a desired shape that improves productivity in replica molding, reduces costs, and satisfies a sufficient optical function.

図16,図17,図18は本発明のレプリカ成形装置における実施例2を示す概略構成図である。1は所望とする光学機能形状の反転形状8をその成形面に設けた成形型である。成形型1は固定されており、成形型1を嵌め込んでいるリング状のレンズブランク保持部材7にはレンズブランク3が嵌合され、レンズブランク3の中心軸と成形型1の成形面の中心軸との合わせは、当該レンズブランク保持部材7の嵌合部にレンズブランク3を嵌め込むことで実現する。レンズブランク3は、光学用プラスティックの材質から成り、光学面においては曲面と平面を有する。リング状のレンズブランク保持部材7は上下動自在に保持されており、内に離型用の突き上げ部材11を備えている。成形型1の成形面上には不図示のディスペンサーにより硬化前の光硬化性樹脂2が供給されており、レンズブランク3の斜め上方には光硬化用光源5が成形型光学機能面に対して紫外線が斜めに入射されるように設置されている。硬化前の光硬化性樹脂2としては、波長365nm付近をピークとして重合が開始されるアクリレート系またはメタクリレート系またはエポキシ等の光学樹脂を使用しており、光硬化用光源5は、高圧水銀ランプまたは超高圧水銀ランプ等の波長365nm付近に発振のピークを有する光源を使用する。   16, FIG. 17, and FIG. 18 are schematic configuration diagrams showing Embodiment 2 in the replica molding apparatus of the present invention. Reference numeral 1 denotes a molding die provided with a reversal shape 8 of a desired optical function shape on its molding surface. The molding die 1 is fixed, and the lens blank 3 is fitted into a ring-shaped lens blank holding member 7 into which the molding die 1 is fitted, and the center axis of the lens blank 3 and the center of the molding surface of the molding die 1. The alignment with the shaft is realized by fitting the lens blank 3 into the fitting portion of the lens blank holding member 7. The lens blank 3 is made of an optical plastic material and has a curved surface and a flat surface on the optical surface. The ring-shaped lens blank holding member 7 is held so as to be movable up and down, and has a release member 11 for releasing. On the molding surface of the mold 1, a photocurable resin 2 before curing is supplied by a dispenser (not shown), and a light source 5 for photocuring is obliquely above the lens blank 3 with respect to the optical function surface of the mold. It is installed so that ultraviolet rays are incident obliquely. As the photocurable resin 2 before curing, an optical resin such as an acrylate, methacrylate, or epoxy whose polymerization is started with a peak at a wavelength of around 365 nm is used, and the photocuring light source 5 is a high-pressure mercury lamp or A light source having an oscillation peak in the vicinity of a wavelength of 365 nm such as an ultra high pressure mercury lamp is used.

図19は、本実施例におけるφ64mm(光学有効径φ54mm),曲率半径R=77mmの成形型1の上面図と側面図を示す。   FIG. 19 shows a top view and a side view of the mold 1 of φ64 mm (optical effective diameter φ54 mm) and radius of curvature R = 77 mm in this example.

図20は、当該成形型1により理想的に作製される球面レンズを示す。レンズブランク3上に形成された樹脂層の光学機能面8’は、φ60mm(光学有効径φ54mm),膜厚〜200μm,曲率半径R=77mm、即ち当該成形型の反転形状として形成される。   FIG. 20 shows a spherical lens ideally produced by the mold 1. The optical functional surface 8 ′ of the resin layer formed on the lens blank 3 is formed as φ60 mm (optical effective diameter φ54 mm), film thickness up to 200 μm, curvature radius R = 77 mm, that is, as an inverted shape of the mold.

以下、本実施例における成形プロセスを図16,図17,図18において説明する。まず、成形型1の成形面上中央付近に不図示のディスペンサーにて硬化前の光硬化性樹脂2を適量供給し、あらかじめ樹脂との密着力を上げるためのカップリング処理を片面に施したレンズブランク3を、カップリング処理面を下にしてリング状のレンズブランク保持部材7に嵌め込む。この際に、芯だし用チャックやベルクランプ方式等、さらにレンズブランク3を保持するための機構を備えても良い。その後、リング状のレンズブランク保持部材7を下降させ、成形型1とレンズブランク3を相対的に接近させ、硬化前の光硬化性樹脂2を所望の厚み、かつ光学有効径外の外周まで満たすように充填させる。この時、硬化前の光硬化性樹脂2への気泡混入や型成形形状への樹脂未充填を防止するために、樹脂の粘度や型成形面の濡れ性を考慮して、接液速度を調整しなければならない。   Hereinafter, the molding process in this example will be described with reference to FIGS. 16, 17, and 18. First, an appropriate amount of photo-curing resin 2 before curing is supplied to the vicinity of the center of the molding surface of the molding die 1 with a dispenser (not shown), and a lens that has been subjected to a coupling process on one side in advance to increase the adhesion with the resin in advance. The blank 3 is fitted into the ring-shaped lens blank holding member 7 with the coupling processing surface facing down. At this time, a mechanism for holding the lens blank 3, such as a centering chuck or a bell clamp system, may be provided. Thereafter, the ring-shaped lens blank holding member 7 is lowered, the mold 1 and the lens blank 3 are relatively brought close to each other, and the uncured photocurable resin 2 is filled to a desired thickness and an outer periphery outside the optical effective diameter. To fill. At this time, the liquid contact speed is adjusted in consideration of the viscosity of the resin and the wettability of the mold molding surface in order to prevent air bubbles from being mixed into the photocurable resin 2 before curing and the resin not filling the mold molding shape. Must.

その後、図21の上面図において示されるような厚さ1mmのゴム板より切り抜かれた遮光体9をレンズブランク3上の光学有効径外の外周部に正確に設置して、光硬化用光源5により150[mW/cm]の紫外線を、光軸に対して40°の角度で入射するように、4分間照射する。ここで、図18に示されるように、遮光部と非遮光部の境界上にある当該入射光10は、雰囲気とレンズブランク3と硬化前の光硬化性樹脂2のそれぞれの界面で屈折を繰り返すが、最終的に光学有効径外のφ56mmの成形面上にて、光軸に対して35°の角度で入射する。この時のφ56mmの成形面上にて、入射光が成形面となす充填硬化樹脂側4’で表した角θはおよそ93°である。また、本実施例において、当該遮光体9の素材をゴム板としたが、レンズブランク3に傷を付けず且つ硬化光を透さない素材であればこれに限定されない。さらに、光照射による硬化前の光硬化性樹脂2の重合硬化が完了した後、リング状のレンズブランク保持部材7の内に備えた離型用の突き上げ部材11を上昇させることで、成形型1から硬化後の光硬化性樹脂2’とレンズブランク3から成る複合型光学素子を剥離させる。さらに、離型してから硬化後の光硬化性樹脂2’やレンズブランク3に付着している硬化前の光硬化性樹脂2の処理については、拭き取るか、再び紫外線を照射することで当該硬化前の光硬化性樹脂2を硬化させる。 Thereafter, the light-shielding body 9 cut out from a rubber plate having a thickness of 1 mm as shown in the top view of FIG. 21 is accurately placed on the outer peripheral portion outside the optical effective diameter on the lens blank 3, and the light curing light source 5. 150 [mW / cm 2 ] of ultraviolet light is irradiated for 4 minutes so as to be incident at an angle of 40 ° with respect to the optical axis. Here, as shown in FIG. 18, the incident light 10 on the boundary between the light shielding portion and the non-light shielding portion is repeatedly refracted at each interface between the atmosphere, the lens blank 3 and the photocurable resin 2 before curing. However, it is incident at an angle of 35 ° with respect to the optical axis on the molding surface of φ56 mm outside the effective optical diameter. At this time, on the molding surface of φ56 mm, the angle θ represented by the filled cured resin side 4 ′ that the incident light makes with the molding surface is approximately 93 °. In the present embodiment, the material of the light shield 9 is a rubber plate, but the material is not limited to this as long as the material does not damage the lens blank 3 and does not transmit the curing light. Further, after the polymerization and curing of the photocurable resin 2 before curing by light irradiation is completed, the mold 1 is lifted by raising the release member 11 provided in the ring-shaped lens blank holding member 7. The composite optical element composed of the photo-curing resin 2 ′ and the lens blank 3 after curing is peeled off. Furthermore, about the process of the photocurable resin 2 'after hardening and the photocurable resin 2 before hardening adhering to the lens blank 3, it is the said hardening by wiping off or irradiating an ultraviolet-ray again. The previous photocurable resin 2 is cured.

本発明の作用において前述したように、本実施例においては、遮光体9を介した光照射による入射光10によって、光硬化性樹脂内に硬化前の光硬化性樹脂2と硬化後の光硬化性樹脂2’との界面を形成した。この時の、離型時に界面剥離を発生させる充填硬化樹脂と成形型からなる界面の外周部での当該充填硬化樹脂面4’が成形型面となす充填硬化樹脂側で表した角θは、90°<θ<180°となる。さらに、本発明の作用において前述したように、本実施例の離型プロセスにおいては、得られた当該角θ(90°<θ<180°)に離型応力を集中できるため、より効率的に小さい力で離型することができた。   As described above in the operation of the present invention, in this embodiment, the photocurable resin 2 before curing and the photocuring after curing in the photocurable resin by the incident light 10 by the light irradiation through the light shield 9. An interface with the conductive resin 2 ′ was formed. At this time, the angle θ represented on the side of the filling and curing resin that the filling and curing resin surface 4 ′ at the outer peripheral portion of the interface composed of the filling and curing resin and the mold that generates the interface peeling at the time of mold release is the following: 90 ° <θ <180 °. Furthermore, as described above in the operation of the present invention, in the mold release process of the present embodiment, the mold release stress can be concentrated on the obtained angle θ (90 ° <θ <180 °), so that it is more efficient. The mold could be released with a small force.

因って、本実施例の構成において、複合型光学素子の充填硬化樹脂面4’を形成して離型性を向上させるものである。これにより、レプリカ成形における生産性を向上させ、コスト削減を図り、かつ十分な光学的機能を満たした所望形状の複合型光学素子を得ることを目的とする。   Therefore, in the configuration of the present embodiment, the filling and curing resin surface 4 'of the composite optical element is formed to improve the releasability. Accordingly, an object of the present invention is to obtain a composite optical element having a desired shape that improves productivity in replica molding, reduces costs, and satisfies a sufficient optical function.

本発明の硬化プロセスの作用を説明する図である。It is a figure explaining the effect | action of the hardening process of this invention. 本発明の硬化プロセスの作用を説明する図である。It is a figure explaining the effect | action of the hardening process of this invention. 本発明の離型プロセスの作用を説明する図である。It is a figure explaining the effect | action of the mold release process of this invention. 本発明の離型プロセスの作用を説明する図である。It is a figure explaining the effect | action of the mold release process of this invention. 本発明の離型プロセスの作用を説明する図である。It is a figure explaining the effect | action of the mold release process of this invention. 本発明の離型プロセスの作用を説明する図である。It is a figure explaining the effect | action of the mold release process of this invention. 本発明の実施例1を示す成形型と成形装置の断面図である。It is sectional drawing of the shaping | molding die which shows Example 1 of this invention, and a shaping | molding apparatus. 本発明の実施例1を示す成形型の断面図と上面図である。It is sectional drawing and the top view of the shaping | molding die which show Example 1 of this invention. 本発明の実施例1を示す光学素子の断面図と上面図である。It is sectional drawing and the top view of an optical element which show Example 1 of this invention. 本発明の実施例1を示す成形型と成形装置の断面図である。It is sectional drawing of the shaping | molding die which shows Example 1 of this invention, and a shaping | molding apparatus. 本発明の硬化プロセスの作用を説明するグラフである。It is a graph explaining the effect | action of the hardening process of this invention. 本発明の硬化プロセスの作用を説明する図である。It is a figure explaining the effect | action of the hardening process of this invention. 本発明の硬化プロセスの作用を説明する図である。It is a figure explaining the effect | action of the hardening process of this invention. 本発明の硬化プロセスの作用を説明する図である。It is a figure explaining the effect | action of the hardening process of this invention. 本発明の硬化プロセスの作用を説明する図である。It is a figure explaining the effect | action of the hardening process of this invention. 本発明の実施例2を示す成形型と成形装置の断面図である。It is sectional drawing of the shaping | molding die which shows Example 2 of this invention, and a shaping | molding apparatus. 本発明の実施例2を示す成形型と成形装置の断面図である。It is sectional drawing of the shaping | molding die which shows Example 2 of this invention, and a shaping | molding apparatus. 本発明の実施例2を示す成形型と成形装置の断面図である。It is sectional drawing of the shaping | molding die which shows Example 2 of this invention, and a shaping | molding apparatus. 本発明の実施例2を示す成形型の断面図と上面図である。It is sectional drawing and the top view of the shaping | molding die which show Example 2 of this invention. 本発明の実施例2を示す光学素子の断面図と上面図である。It is sectional drawing and the top view of an optical element which show Example 2 of this invention. 本発明の実施例2を示す遮光体の上面図である。It is a top view of the light-shielding body which shows Example 2 of this invention.

符号の説明Explanation of symbols

1 成形型
2 硬化前の光硬化性樹脂
2’ 硬化後の光硬化性樹脂
3 レンズブランク
4 充填未硬化樹脂面
4’ 充填硬化樹脂面
5 光源
6 離型の亀裂進行
7 レンズブランク保持部材
8 成形型の光学機能面
8’ 光学素子の光学機能面
9 遮光体
10 光源からの入射光
11 離型用の突き上げ部材
DESCRIPTION OF SYMBOLS 1 Mold 2 Photocurable resin before hardening 2 'Photocurable resin after hardening 3 Lens blank 4 Filling uncured resin surface 4' Filling cured resin surface 5 Light source 6 Crack progress of mold release 7 Lens blank holding member 8 Molding Optical functional surface of mold 8 'Optical functional surface of optical element 9 Light shield 10 Incident light from light source 11 Push-up member for mold release

Claims (4)

光学的所望かつ機構的所望の光学形状を有する成形型面上に光硬化性樹脂を滴下し、当該光硬化性樹脂を、平面または曲面レンズブランクで押圧充填し、光照射することにより複合型光学素子を製造する製造技術において、離型時に界面剥離を発生させる充填硬化樹脂と成形型からなる界面の外周部での当該充填硬化樹脂面が成形型面となす充填硬化樹脂側で表した角θを90°<θ<180°とする界面角の形成手段の後に当該複合型光学素子を離型することを特徴とする複合型光学素子の製造方法。   A compound type optical system is formed by dropping a photocurable resin onto a mold surface having an optical shape that is optically desired and mechanically desired, press-filling the photocurable resin with a flat or curved lens blank, and irradiating with light. In the manufacturing technology for manufacturing the element, the angle θ expressed on the side of the filled curable resin formed by the surface of the filled curable resin at the outer periphery of the interface formed by the filled curable resin and the mold that causes interface peeling at the time of mold release. The composite optical element is released after the means for forming the interface angle such that the angle is 90 ° <θ <180 °. 前記界面角の形成手段は、レンズブランクと成形型の間に充填された光硬化性樹脂への光照射による光硬化時において、樹脂内部で連続的に発生する樹脂の硬化収縮力に比較して、当該硬化収縮力よりも常に大きな内部応力を、レンズブランクまたは成形型による当該光硬化性樹脂への押圧手段をもって連続的に負荷することを特徴とする請求項1記載の複合型光学素子の製造方法。   The means for forming the interface angle is compared with the curing shrinkage force of the resin continuously generated in the resin during photocuring by light irradiation to the photocurable resin filled between the lens blank and the mold. 2. The composite optical element according to claim 1, wherein an internal stress always larger than the curing shrinkage force is continuously applied by a pressing means to the photocurable resin by a lens blank or a mold. Method. 前記界面角の形成手段は、レンズブランクにより光硬化性樹脂を押圧充填された成形型面上の光学有効径外と光硬化用光源との間に遮光体を設置し、当該遮光体による未硬化充填樹脂の遮光部と非遮光部との境界条件において、入射する硬化光によって硬化する充填樹脂面が成形型面となす硬化する充填樹脂側で表した角θを90°<θ<180°とすることを特徴とする請求項1記載の複合型光学素子の製造方法。   The means for forming the interface angle includes a light-shielding body placed between the outside of the optical effective diameter on the mold surface press-filled with a photocurable resin by a lens blank and a light source for photocuring, and uncured by the light-shielding body. In the boundary condition between the light shielding portion and the non-light shielding portion of the filling resin, the angle θ represented on the side of the filling resin to be cured, which is formed by the filling resin surface cured by the incident curing light, is 90 ° <θ <180 °. The method of manufacturing a composite optical element according to claim 1. 請求項1ないし3いずれかに記載の製造方法を用いて製造されたことを特徴とする複合型光学素子。   A composite optical element manufactured using the manufacturing method according to claim 1.
JP2004301242A 2004-10-15 2004-10-15 Method for producing complex type optical element and complex type optical element Withdrawn JP2006110882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301242A JP2006110882A (en) 2004-10-15 2004-10-15 Method for producing complex type optical element and complex type optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301242A JP2006110882A (en) 2004-10-15 2004-10-15 Method for producing complex type optical element and complex type optical element

Publications (1)

Publication Number Publication Date
JP2006110882A true JP2006110882A (en) 2006-04-27

Family

ID=36379791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301242A Withdrawn JP2006110882A (en) 2004-10-15 2004-10-15 Method for producing complex type optical element and complex type optical element

Country Status (1)

Country Link
JP (1) JP2006110882A (en)

Similar Documents

Publication Publication Date Title
JP5208778B2 (en) Bonding optical element and manufacturing method thereof
KR101020634B1 (en) Manufacturing method of lens having nanopattern
JP2006337985A (en) Method of manufacturing high sag lens and lens manufactured by using the same method
JP5948157B2 (en) Surface shape molding method
NL2015330B1 (en) A method of fabricating an array of optical lens elements
KR100938643B1 (en) Device and method for fabricating compound lens
JP2008213210A (en) Transfer method and optical element manufactured thereby
JPH0313902A (en) Compound optical parts and production thereof
JP2849299B2 (en) Manufacturing method of composite precision molded products
JP2007326330A (en) Mold for molding composite optical element, and composite optical element
JP3731017B2 (en) Optical device manufacturing method
JP2003291159A (en) Resin curing method, manufacturing method for resin molding, etc., appliance used for them, and product to be obtained
JP6823381B2 (en) Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating
JP5349777B2 (en) Optical element manufacturing method
JP2006110882A (en) Method for producing complex type optical element and complex type optical element
JP2000326348A (en) Mold for lens, its manufacture, and manufacture of lens
JP2012018309A (en) Method for forming optical element
JP5136648B2 (en) Wafer lens manufacturing apparatus and manufacturing method
JP2004042493A (en) Mold and optical element
TW201941913A (en) Resin-stacked optical body and method of manufacture therefor
JP2006113339A (en) Molding method of diffraction optical element and diffraction optical element molded by using the method
JP2006113340A (en) Manufacturing method of composite optical element and composite optical element
JP2006130790A (en) Aspheric surface hybrid lens, apparatus and method of manufacturing the lens
JPH04261501A (en) Manufacture of minute optical element
JP2008299148A (en) Junction type optical element and manufacturing method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108