JP2006110402A - Composite material for easily releasing carbon dioxide and catalyst for cleaning exhaust gas - Google Patents

Composite material for easily releasing carbon dioxide and catalyst for cleaning exhaust gas Download PDF

Info

Publication number
JP2006110402A
JP2006110402A JP2004297286A JP2004297286A JP2006110402A JP 2006110402 A JP2006110402 A JP 2006110402A JP 2004297286 A JP2004297286 A JP 2004297286A JP 2004297286 A JP2004297286 A JP 2004297286A JP 2006110402 A JP2006110402 A JP 2006110402A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
carbon dioxide
ceo
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004297286A
Other languages
Japanese (ja)
Inventor
Junji Ito
淳二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004297286A priority Critical patent/JP2006110402A/en
Publication of JP2006110402A publication Critical patent/JP2006110402A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material for easily releasing carbon dioxide which has remarkably improved CO shift performance by promoting the release of CO<SB>2</SB>, and to provide a hydrogen enrichment catalyst, an exhaust gas cleaning catalyst, an exhaust gas cleaning catalyst system and an exhaust gas cleaning system in each of which the composite material is used. <P>SOLUTION: The composite material for easily releasing carbon dioxide has such a structure that a phase of CeO<SB>2</SB>is in contact with a phase of an M-Zr compound oxide (wherein M is lanthanide) and easily releases the CO<SB>2</SB>bonded to the phase of CeO<SB>2</SB>. The hydrogen enrichment catalyst is obtained by depositing Pt on this composite material. The exhaust gas cleaning catalyst contains the hydrogen enrichment catalyst. The exhaust gas cleaning catalyst system is composed of the exhaust gas cleaning catalyst and an NOx removal catalyst. The exhaust gas cleaning system is provided with the exhaust gas cleaning catalyst, so that the atmosphere of exhaust gas is varied between a hydrogen-lean atmosphere and a hydrogen-rich atmosphere and the exhaust gas having the varied atmosphere is supplied to the exhaust gas cleaning catalyst. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二酸化炭素易脱離性複合体、水素富化触媒、排気ガス浄化用触媒、排気ガス浄化用触媒システム及び排気ガス浄化システムに係り、更に詳細には、二酸化炭素の脱離を促進させる二酸化炭素易脱離性複合体、これを用いた水素富化触媒、排気ガス浄化用触媒、排気ガス浄化用触媒システム及び排気ガス浄化システムに関する。   The present invention relates to a carbon dioxide easily desorbing complex, a hydrogen-enriched catalyst, an exhaust gas purifying catalyst, an exhaust gas purifying catalyst system, and an exhaust gas purifying system, and more particularly, promoting carbon dioxide desorption. The present invention relates to an easily desorbable carbon dioxide complex, a hydrogen-enriched catalyst using the same, an exhaust gas purification catalyst, an exhaust gas purification catalyst system, and an exhaust gas purification system.

今後ますます厳しくなる排気ガス規制に対応するためには、これまでよりも更に広い温度範囲での排気ガス浄化を行わなければならない。特に、希薄燃焼による内燃機関の燃焼効率が向上するに従い排気ガス温度が更に低下することを考慮すると、より低温域においても排気ガス、特に窒素酸化物(NOx)を浄化する必要がある。   In order to comply with exhaust gas regulations that will become stricter in the future, it is necessary to purify exhaust gas in a wider temperature range than before. In particular, considering that the exhaust gas temperature further decreases as the combustion efficiency of the internal combustion engine by lean combustion improves, it is necessary to purify exhaust gas, particularly nitrogen oxide (NOx), even in a lower temperature range.

現在使用されているNOx吸着型触媒によるNOx浄化は主に300℃以上の比較的高温域では非常に有効であるが、それ以下の低温域ではNOx浄化率は著しく低下する。
これは、トラップしたNOxの脱離が低温域では困難になるためである。この点について詳細に検討した結果、例えば自動車の排気ガス浄化システムにおいては、排気ガス雰囲気を一時的に短時間リッチ状態にする(以下「リッチスパイクを入れる」という。)ことがあるが、これにより発生した炭化水素(HC)、一酸化炭素(CO)及び水素(H)のうちCOがNOxの脱離を抑制していることが分かった。
The NOx purification using the NOx adsorption type catalyst currently used is very effective mainly in a relatively high temperature range of 300 ° C. or higher, but the NOx purification rate is remarkably lowered in a low temperature range below that.
This is because the trapped NOx is difficult to desorb at low temperatures. As a result of examining this point in detail, for example, in an exhaust gas purification system of an automobile, the exhaust gas atmosphere may be temporarily rich for a short time (hereinafter referred to as “rich spike”). Of the generated hydrocarbon (HC), carbon monoxide (CO), and hydrogen (H 2 ), CO was found to suppress NOx desorption.

そこで、NOxの脱離を抑制しているCOを選択的に除去してHのみを還元剤として用いたところ、NOxの脱離が著しく促進され、NOx浄化性能が飛躍的に向上することが分かった。これに対し、リッチスパイク時に発生するCO、HのうちCOを選択的に除去する触媒をNOx吸着型触媒の上流側に配置するシステムが提案されている(例えば、特許文献1参照。)。 Therefore, when CO that suppresses NOx desorption is selectively removed and only H 2 is used as a reducing agent, NOx desorption is remarkably promoted and NOx purification performance is dramatically improved. I understood. On the other hand, a system has been proposed in which a catalyst that selectively removes CO out of CO and H 2 generated during rich spikes is arranged on the upstream side of the NOx adsorption catalyst (see, for example, Patent Document 1).

また、COを選択的に除去する反応としては、(i)CO選択酸化反応や(ii)COシフト反応が挙げられ、酸化セリウムに貴金属を担持させた触媒がこのような反応の促進に効果的であることが確認されている(例えば、特許文献2及び3参照。)。   Examples of the reaction for selectively removing CO include (i) a CO selective oxidation reaction and (ii) a CO shift reaction, and a catalyst in which a noble metal is supported on cerium oxide is effective in promoting such a reaction. (For example, refer to Patent Documents 2 and 3).

一方で、COシフト反応を促進する触媒の改良法としては、CO被毒解除を目的としてPtとCOの吸着力を弱めるために、例えばPt/TiOに硫黄分を添加することが提案されている(例えば、特許文献4参照。)。
特開2001−234737号公報 特開2003−024749号公報 特開2003−013728号公報 特開2002−224570号公報
On the other hand, as a method for improving the catalyst for promoting the CO shift reaction, for example, adding sulfur to Pt / TiO 2 has been proposed in order to weaken the adsorption power of Pt and CO for the purpose of releasing CO poisoning. (For example, refer to Patent Document 4).
JP 2001-234737 A JP 2003-024749 A JP 2003-013728 A JP 2002-224570 A

しかしながら、CO選択酸化反応だけでは、CO選択性が高くないために還元剤中の水素の比率を高めることが困難であり、従ってCOシフト反応の性能を大幅に向上させる必要がある。また、上述した従来の触媒やシステムでは、COシフト性能が触媒被毒により徐々に低下するため改善の余地があった。   However, with the CO selective oxidation reaction alone, it is difficult to increase the ratio of hydrogen in the reducing agent because the CO selectivity is not high. Therefore, it is necessary to greatly improve the performance of the CO shift reaction. Further, the conventional catalysts and systems described above have room for improvement because the CO shift performance gradually decreases due to catalyst poisoning.

一方で、本発明者は、CeOを主とした水素富化触媒は実用的な300℃付近の温度、リッチ雰囲気において、CeOと結合したCOの脱離がCOシフト反応の律速であるという技術知見を得た。 On the other hand, the present inventors have hydrogen-rich catalyst mainly CeO 2 practical 300 ° C. vicinity of the temperature, in a rich atmosphere, desorption of CO 2 combined with CeO 2 is rate-limiting in the CO shift reaction I got the technical knowledge.

本発明は、上述の如き従来技術の有する課題、更には技術知見に鑑みてなされたものであり、その目的とするところは、COの脱離を促進させてCOシフト性能を著しく向上させ得る二酸化炭素易脱離性複合体、これを用いた水素富化触媒、排気ガス浄化用触媒、排気ガス浄化用触媒システム及び排気ガス浄化システムを提供することにある。 The present invention has been made in view of the above-described problems of the prior art and further technical knowledge. The object of the present invention is to promote the desorption of CO 2 and remarkably improve the CO shift performance. An object of the present invention is to provide a carbon dioxide easy-releasing composite, a hydrogen-enriched catalyst, an exhaust gas purification catalyst, an exhaust gas purification catalyst system, and an exhaust gas purification system using the same.

本発明者は、上記目的を達成すべく、鋭意研究を重ねた結果、CeO相とM−Zr複合酸化物相(M:ランタノイド元素)とを接触させることなどにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor is able to achieve the above object by bringing a CeO 2 phase and an M-Zr composite oxide phase (M: lanthanoid element) into contact with each other. The headline and the present invention were completed.

即ち、本発明の二酸化炭素易脱離性複合体は、CeO相とM−Zr複合酸化物相(M:ランタノイド元素)が接触して成り、該CeO相に結合したCOを脱離し易いものである。
また、本発明の水素富化触媒は、上記本発明の二酸化炭素易脱離性複合体にPtを担持させて成るものである。
更に、本発明の排気ガス浄化用触媒は、上記本発明の水素富化触媒を含有して成るものである。
That is, the carbon dioxide readily desorbing complex of the present invention is formed by contacting a CeO 2 phase and an M-Zr complex oxide phase (M: lanthanoid element), and desorbing CO 2 bound to the CeO 2 phase. It is easy.
The hydrogen-enriched catalyst of the present invention is obtained by supporting Pt on the carbon dioxide easy-releasing complex of the present invention.
Furthermore, the exhaust gas purifying catalyst of the present invention comprises the hydrogen-enriched catalyst of the present invention.

また、本発明の排気ガス浄化触媒システムは、上記本発明の排気ガス浄化用触媒とNOx浄化触媒を備えるものである。
更にまた、本発明の排気ガス浄化システムは、上記本発明の排気ガス浄化用触媒を備える排気ガス浄化システムであって、排気ガスの雰囲気をリーンないしリッチ雰囲気に亘って変化させ、該排気ガス浄化用触媒に該排気ガスを供給するシステムである。
The exhaust gas purification catalyst system of the present invention includes the exhaust gas purification catalyst and the NOx purification catalyst of the present invention.
Furthermore, the exhaust gas purification system of the present invention is an exhaust gas purification system comprising the exhaust gas purification catalyst of the present invention, wherein the exhaust gas atmosphere is changed over a lean or rich atmosphere, and the exhaust gas purification system is changed. A system for supplying the exhaust gas to the catalyst for use.

本発明によれば、CeO相とM−Zr複合酸化物相(M:ランタノイド元素)とを接触させることなどにより、COの脱離を促進させてCOシフト性能を著しく向上させ得る二酸化炭素易脱離性複合体、これを用いた水素富化触媒、排気ガス浄化用触媒、排気ガス浄化用触媒システム及び排気ガス浄化システムを提供することができる。 According to the present invention, carbon dioxide that can promote the desorption of CO 2 and remarkably improve the CO shift performance by bringing the CeO 2 phase into contact with the M-Zr composite oxide phase (M: lanthanoid element). An easily desorbable composite, a hydrogen-enriched catalyst, an exhaust gas purification catalyst, an exhaust gas purification catalyst system, and an exhaust gas purification system using the same can be provided.

以下、本発明の二酸化炭素易脱離性複合体について説明する。
上述の如く、本発明の二酸化炭素易脱離性複合体は、CeO相とM−Zr複合酸化物相(M:ランタノイド元素)が接触して成り、該CeO相に結合したCOを脱離し易いものである。
ここで、現時点で推定されている水素富化触媒における反応機構を図面を用いて説明する。
図1は、種々の条件下での水素富化触媒における反応機構を示す模式的説明図である。同図に示すように、水素富化触媒は、例えばセリア上に触媒貴金属であるPtを有する。
まず、同図(a)は、リッチ雰囲気下において通常の反応サイクルが回っている場合を示すものであり、同図(a)(1)に示すように、リッチスパイク時に発生したCOはPtとの親和性が高く吸着されることが知られている。同図(a)(2)に示すように、この際にCOはPtの近傍のセリアと反応して酸素原子(O)を引き抜くことにより、同図(a)(3)に示すように、COとして脱離する。同図(a)(4)に示すように、酸素原子(O)が一部欠損したセリアは、リッチスパイク時に発生した水(HO)を吸着して酸素原子(O)を引き抜き、吸着されたHOは同図(a)(5)に示すように、Hとして脱離し、排気ガスのH濃度が高くなる。なお、同図(a)(5)から同図(a)(1)に戻り反応サイクルが回る。
Hereinafter, the carbon dioxide easily detachable complex of the present invention will be described.
As described above, the carbon dioxide easily detachable complex of the present invention is formed by contacting a CeO 2 phase and an M-Zr composite oxide phase (M: lanthanoid element), and CO 2 bonded to the CeO 2 phase. It is easy to detach.
Here, the reaction mechanism in the hydrogen enriched catalyst estimated at present will be described with reference to the drawings.
FIG. 1 is a schematic explanatory view showing a reaction mechanism in a hydrogen-enriched catalyst under various conditions. As shown in the figure, the hydrogen-enriched catalyst has, for example, Pt which is a catalyst noble metal on ceria.
First, (a) in the figure shows a case where a normal reaction cycle is rotating in a rich atmosphere. As shown in (a) (1), CO generated during rich spike is Pt and It is known that the affinity is high and adsorbed. As shown in FIGS. 6A and 6B, CO reacts with ceria in the vicinity of Pt and pulls out oxygen atoms (O) at this time, so that, as shown in FIGS. desorbed as CO 2. As shown in FIGS. 4A and 4C, the ceria partially lacking oxygen atoms (O) adsorbs the water (H 2 O) generated during the rich spike and pulls out the oxygen atoms (O). the H 2 O which is as shown in FIG. (a) (5), eliminated as H 2, the concentration of H 2 in the exhaust gas becomes high. It should be noted that the reaction cycle is returned from FIGS. 5A to 5A to 5A.

一方で、同図(b)は、リッチスパイクを繰り返した後、リッチ雰囲気下において通常のサイクルが回らなくなっている場合を示すものであり、同図(b)(1)に示すように、リッチスパイク時に発生したCOがPtに吸着される。同図(b)(2)に示すように、COが気相へと拡散し難くなり、セリア上に比較的安定な炭酸塩を形成して、その後の反応が進行し難くなる。 On the other hand, FIG. 7B shows a case where the normal cycle does not rotate in the rich atmosphere after the rich spike is repeated. As shown in FIG. CO generated during the spike is adsorbed by Pt. As shown in FIGS. 2B and 2B, CO 2 hardly diffuses into the gas phase, forms a relatively stable carbonate on ceria, and subsequent reaction does not proceed easily.

ところで、同図(c)は、リーン雰囲気下の場合を示すものであるが、同図(c)に示すようにリーン雰囲気下においてはセリアは反応に関与せず、同図(c)(1)〜(3)に示すようにPt上で酸化反応が進行する。なお、同図(c)(3)から同図(c)(1)に戻り反応サイクルが回る。   Incidentally, FIG. 4C shows the case in a lean atmosphere, but as shown in FIG. 2C, ceria does not participate in the reaction in the lean atmosphere, and FIG. ) To (3), the oxidation reaction proceeds on Pt. It should be noted that the reaction cycle is returned from (c) (3) to (c) (1).

本発明の二酸化炭素易脱離性複合体は、同図(b)においてセリア上に比較的安定な炭酸塩を形成しないように、CeO相とM−Zr複合酸化物相を接触させて、例えば接触面積が大きくなり好ましいという観点からCeO相とM−Zr複合酸化物相とを2次粒子の表面ないし表面近傍で接触させて、CeOとCOが結合する前にCOを気相へ放出することで、COの脱離を促進し、酸化反応とCOシフト反応の性能が向上できる。 The carbon dioxide easily detachable complex of the present invention is obtained by bringing the CeO 2 phase and the M-Zr complex oxide phase into contact so as not to form a relatively stable carbonate on ceria in FIG. for example, a CeO 2 phase and M-Zr composite oxide phase is contacted with the surface to near the surface of the secondary particles from the viewpoint of preferable contact area is increased, the gas of CO 2 before the CeO 2 and CO 2 are bonded By releasing into the phase, CO 2 desorption is promoted, and the performance of the oxidation reaction and the CO shift reaction can be improved.

また、本発明の二酸化炭素易脱離性複合体は、CeO相及びM−Zr複合酸化物相の一方がコア部を形成し、他方がシェル部を形成するコアシェル構造を有するものとすることが、COシフト反応の性能をより向上させる観点から好ましい。 In addition, the carbon dioxide easily detachable composite of the present invention has a core-shell structure in which one of the CeO 2 phase and the M-Zr composite oxide phase forms a core portion and the other forms a shell portion. Is preferable from the viewpoint of further improving the performance of the CO shift reaction.

更に、本発明の二酸化炭素易脱離性複合体は、該複合体の内側から外側へ移行するにしたがって、M−Zr複合酸化物相の含有率が高くなることが好ましい。このようなコアシェル構造が形成される場合には、COの脱離を促進し、よりCOシフト反応の性能を向上させることができる。なお、上述のように2次粒子の表面ないし表面近傍で接触する場合の好適例としては、CeO相をコア部としてM−Zr複合酸化物相の薄いシェル部が形成されているものが挙げられる。 Furthermore, it is preferable that the content of the M-Zr composite oxide phase of the carbon dioxide easy-release complex of the present invention increases as the complex moves from the inside to the outside. When such a core-shell structure is formed, the elimination of CO 2 can be promoted, and the performance of the CO shift reaction can be further improved. As the preferred example in which the contact surface or near the surface of the secondary particles as described above, include those thin shell of M-Zr composite oxide phase are formed a CeO 2 phase as the core portion It is done.

また、本発明の二酸化炭素易脱離性複合体において、M−Zr複合酸化物相を構成するランタノイド元素としてはセリア相と比較してM−Zr複合酸化物相が酸素を放出し易いことが好ましく、Ce、Pr、Nd又はSm及びこれらの任意の元素を組み合わせて用いることができる。   Further, in the carbon dioxide readily detachable complex of the present invention, as the lanthanoid element constituting the M-Zr composite oxide phase, the M-Zr composite oxide phase is likely to release oxygen as compared with the ceria phase. Preferably, Ce, Pr, Nd or Sm and any of these elements can be used in combination.

更に、本発明の二酸化炭素易脱離性複合体においては、M−Zr複合酸化物相が、次の一般式(1)
Zr1−x…(1)
(式中のMはランタノイド元素を示し、xは0<x<1を満足する数を示す。)で表される。また、M−Zr複合酸化物は、Mの酸化物とZrの酸化物の混合酸化物ではなく、M−Zr複合酸化物として存在しており、xを0.16〜0.75とすることで、酸素放出能が高くなり、COが蓄積することを抑制し、また、COの脱離を促進して、COシフト性能を更に向上させることができる。
Furthermore, in the carbon dioxide easily detachable composite of the present invention, the M-Zr composite oxide phase has the following general formula (1):
M x Zr 1-x O 2 (1)
(M in the formula represents a lanthanoid element, and x represents a number satisfying 0 <x <1). Further, the M-Zr composite oxide is not a mixed oxide of M oxide and Zr oxide but exists as M-Zr composite oxide, and x is set to 0.16 to 0.75. Thus, the oxygen releasing ability is increased, the accumulation of CO 2 is suppressed, the desorption of CO 2 is promoted, and the CO shift performance can be further improved.

次に、本発明の水素富化触媒について説明する。
上述の如く、本発明の水素富化触媒は、上記本発明の二酸化炭素易脱離性複合体にPtを担持させて成り、Hを透過・生成して、H/CO比を向上させるものである。
このように、Ptと二酸化炭素易脱離性複合体を近接させることにより、CeOの場合と比較してCOが脱離し易くなり、その結果、COシフト反応がより促進される。
Next, the hydrogen-enriched catalyst of the present invention will be described.
As described above, the hydrogen-enriched catalyst of the present invention is composed by supporting Pt on the carbon dioxide easily leaving complexes of the present invention, by transmitting and generate H 2, to improve the H 2 / CO ratio Is.
Thus, by bringing Pt and the carbon dioxide easily detachable complex close to each other, CO 2 is easily desorbed as compared with CeO 2 , and as a result, the CO shift reaction is further promoted.

次に、本発明の排気ガス浄化用触媒について説明する。
上述の如く、本発明の排気ガス浄化用触媒は、上記本発明の水素富化触媒を含有して成るものである。なお、本発明が奏する効果を損なわない限り、アルミナ等の高比表面積基材に担持してもよく、更に、例えばPdやRhなどの貴金属や、例えばRhを担持する場合に含有させるジルコニウム含有アルミナなど他の助触媒を添加してもよい。これにより、NOx被毒が抑制され、COが脱離し易く、よりCOシフト反応の性能に優れた排気ガス浄化用触媒となる。
Next, the exhaust gas purifying catalyst of the present invention will be described.
As described above, the exhaust gas purifying catalyst of the present invention contains the hydrogen-enriched catalyst of the present invention. In addition, as long as the effect of the present invention is not impaired, it may be supported on a high specific surface area substrate such as alumina, and further, for example, a noble metal such as Pd or Rh, or a zirconium-containing alumina that is included when supporting Rh, for example. Other cocatalysts may be added. Thereby, NOx poisoning is suppressed, CO 2 is easily desorbed, and the exhaust gas purifying catalyst is more excellent in CO shift reaction performance.

次に、本発明の排気ガス浄化触媒システムについて説明する。
上述の如く、本発明の排気ガス浄化触媒システムは、上記本発明の排気ガス浄化用触媒と、NOx浄化触媒を備えるものである。かかる排気ガス浄化用触媒とNOx浄化触媒は、排気ガス流路に排気ガスの流れ方向に対して、上流側に排気ガス浄化用触媒、下流側にNOx浄化触媒を配置することが望ましい。これにより、リッチスパイクを入れたときに、上流側の排気ガス浄化用触媒が、排気ガス中のH/CO比を高め、結果としてNOx転化率向上させることができる。
Next, the exhaust gas purification catalyst system of the present invention will be described.
As described above, the exhaust gas purification catalyst system of the present invention includes the exhaust gas purification catalyst of the present invention and a NOx purification catalyst. With respect to the exhaust gas purification catalyst and the NOx purification catalyst, it is desirable to dispose the exhaust gas purification catalyst on the upstream side and the NOx purification catalyst on the downstream side in the exhaust gas flow direction in the exhaust gas flow path. Thereby, when the rich spike is inserted, the exhaust gas purification catalyst on the upstream side can increase the H 2 / CO ratio in the exhaust gas, and as a result, the NOx conversion rate can be improved.

次に、本発明の排気ガス浄化システムについて説明する。
上述の如く、本発明の排気ガス浄化システムは、上記本発明の排気ガス浄化用触媒を備え、排気ガスの雰囲気をリーンないしリッチ雰囲気に亘って変化させ、該排気ガス浄化用触媒に該排気ガスを供給するものである。
排気ガスの雰囲気をリーンないしリッチ雰囲気に亘って適切に変化させる、つまり、運転状況に応じて、リッチスパイクを適切に制御して入れることなどにより、COの脱離をより容易なものとし、COシフト反応の性能を向上させることが可能となる。また、これにより、燃費を向上させることもできる。
なお、本発明の排気ガス浄化システムには、備えられる排気ガス浄化用触媒が水素富化触媒である場合も含まれる。
Next, the exhaust gas purification system of the present invention will be described.
As described above, the exhaust gas purification system of the present invention includes the exhaust gas purification catalyst of the present invention, changes the atmosphere of the exhaust gas over a lean or rich atmosphere, and supplies the exhaust gas purification catalyst to the exhaust gas. Supply.
By appropriately changing the exhaust gas atmosphere over a lean or rich atmosphere, that is, by appropriately controlling the rich spike according to the operating conditions, the CO 2 desorption can be made easier, The performance of the CO shift reaction can be improved. Thereby, fuel consumption can also be improved.
The exhaust gas purification system of the present invention includes a case where the exhaust gas purification catalyst provided is a hydrogen enriched catalyst.

本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   The present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.

(実施例1)
[二酸化炭素易脱離性複合体の作製]
硝酸セリウム・6水和物に、イオン交換水を酸化物濃度2%になるまで加え、金属塩溶液を調製した。その溶液を25%アンモニア水(酸化物に対して5倍量)で中和し、沈殿物をろ別・洗浄した。得られた沈殿物に純水を酸化物濃度5%になるまで加え、スラリーを調製し、予め溶解しておいたCeO/ZrO重量比で60/40となる硝酸セリウム液と硝酸ジルコニウム混合液(沈殿物に対して200%)を加え、撹拌後、25%アンモニア水で中和し、沈殿物をろ別・洗浄した。得られた沈殿物を150℃で24時間乾燥し、400℃で5時間焼成して、Ce0.16Zr0.84/CeOを得た。
Example 1
[Preparation of carbon dioxide detachable complex]
Ion exchange water was added to cerium nitrate hexahydrate until the oxide concentration reached 2% to prepare a metal salt solution. The solution was neutralized with 25% aqueous ammonia (5 times the amount of oxide), and the precipitate was filtered and washed. Pure water is added to the resulting precipitate until an oxide concentration of 5% is obtained, and a slurry is prepared. A cerium nitrate solution and a zirconium nitrate mixture in which the weight ratio of CeO 2 / ZrO 2 is 60/40 previously dissolved is mixed. A liquid (200% with respect to the precipitate) was added, and after stirring, neutralized with 25% aqueous ammonia, and the precipitate was filtered and washed. The obtained precipitate was dried at 150 ° C. for 24 hours and calcined at 400 ° C. for 5 hours to obtain Ce 0.16 Zr 0.84 O 2 / CeO 2 .

[排気ガス浄化用触媒の作製]
テトラアンミンPt水酸塩水溶液に、得られたCe0.16Zr0.84/CeO粉末を投入する。1時間撹拌した後、150℃で一昼夜乾燥を行った。その後、400℃で2時間空気中で焼成することにより、2%Pt/Ce0.16Zr0.84/CeO粉末を得た。
[Production of exhaust gas purification catalyst]
The obtained Ce 0.16 Zr 0.84 O 2 / CeO 2 powder is put into a tetraammine Pt hydrochloride aqueous solution. After stirring for 1 hour, drying was performed at 150 ° C. for a whole day and night. Then, 2% Pt / Ce 0.16 Zr 0.84 O 2 / CeO 2 powder was obtained by firing in air at 400 ° C. for 2 hours.

磁性ボールミルに全コート量に対して、79.9%となるように、2%Pt/Ce0.16Zr0.84/CeO粉末と、全コート量に対して9.9%となるようにアルミナゾルを混合し、また全コート量に対して10.5%のγ−アルミナを混合し、10%硝酸溶液を投入し、30分間粉砕してスラリーを得た。
このスラリーをコーディエライト質モノリス担体(触媒容量:1.2L、セル数:900セル/2.0ミル)の排気ガス接触面にコートし、空気気流により余剰のスラリーを除去し、乾燥後、400℃で30分焼成した。単位容積当たり477g/Lをコートして本例の排気ガス浄化用触媒を得た。これを排気ガス浄化用触媒1とした。排気ガス浄化用触媒1は、Pt/Ce0.16Zr0.84/CeOとして380g/L、金属Ptとして7.6g/L含有する。
In a magnetic ball mill, 2% Pt / Ce 0.16 Zr 0.84 O 2 / CeO 2 powder and 9.9% with respect to the total coating amount so as to be 79.9% with respect to the total coating amount. Alumina sol was mixed so that 10.5% γ-alumina was mixed with respect to the total coating amount, 10% nitric acid solution was added, and pulverized for 30 minutes to obtain a slurry.
This slurry is coated on the exhaust gas contact surface of a cordierite monolith support (catalyst capacity: 1.2 L, number of cells: 900 cells / 2.0 mils), excess slurry is removed by an air stream, and after drying, Firing was performed at 400 ° C. for 30 minutes. The exhaust gas purifying catalyst of this example was obtained by coating 477 g / L per unit volume. This was designated as an exhaust gas purifying catalyst 1. The exhaust gas purifying catalyst 1 contains 380 g / L as Pt / Ce 0.16 Zr 0.84 O 2 / CeO 2 and 7.6 g / L as metal Pt.

(実施例2)
[二酸化炭素易脱離性複合体の作製]
硝酸セリウム・6水和物と硝酸ジルコニウム・2水和物をCeO/ZrO重量比で60/40となるよう分取し、イオン交換水を酸化物濃度2%になるまで加え、金属塩を溶解し、混合液を得た。その混合液を25%アンモニア水(酸化物に対して5倍量)で中和し、沈殿物(60C40Z)をろ別・洗浄した。得られた沈殿物に純水を酸化物濃度5%になるまで加え、スラリーを調製し、予め溶解しておいた硝酸セリウム液(60C40Z酸化物に対して50%分)を加え、撹拌後、25%アンモニア水で中和し、沈殿物をろ別・洗浄した。得られた沈殿物を150℃で24時間乾燥し、400℃で5時間焼成して、CeO/Ce0.75Zr0.25を得た。
(Example 2)
[Preparation of carbon dioxide detachable complex]
Separating cerium nitrate hexahydrate and zirconium nitrate dihydrate to a CeO 2 / ZrO 2 weight ratio of 60/40, adding ion-exchanged water to an oxide concentration of 2%, and adding a metal salt Was dissolved to obtain a mixed solution. The mixture was neutralized with 25% aqueous ammonia (5 times the amount of oxide), and the precipitate (60C40Z) was filtered and washed. Pure water was added to the resulting precipitate until the oxide concentration reached 5%, and a slurry was prepared. A pre-dissolved cerium nitrate solution (50% for 60C40Z oxide) was added, and after stirring, The mixture was neutralized with 25% aqueous ammonia, and the precipitate was filtered and washed. The obtained precipitate was dried at 150 ° C. for 24 hours and calcined at 400 ° C. for 5 hours to obtain CeO 2 / Ce 0.75 Zr 0.25 O 2 .

[排気ガス浄化用触媒の作製]
実施例1で用いたCe0.16Zr0.84/CeO粉末の代わりに、得られたCeO/Ce0.75Zr0.25粉末を用いた以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。これを排気ガス浄化用触媒2とした。排気ガス浄化用触媒2は、Pt/CeO/Ce0.75Zr0.25として380g/L、金属Ptとして7.6g/L含有する。
[Preparation of exhaust gas purification catalyst]
Example 1 except that the obtained CeO 2 / Ce 0.75 Zr 0.25 O 2 powder was used instead of the Ce 0.16 Zr 0.84 O 2 / CeO 2 powder used in Example 1. The same operation was repeated to obtain an exhaust gas purifying catalyst of this example. This was designated as an exhaust gas purification catalyst 2. The exhaust gas purifying catalyst 2 contains 380 g / L as Pt / CeO 2 / Ce 0.75 Zr 0.25 O 2 and 7.6 g / L as metal Pt.

(実施例3)
[排気ガス浄化用触媒システムの作製]
実施例1で作製した排気ガス浄化用触媒1を、排気ガス流路の上流側に配置し、下流側には、下記に示すNOx浄化触媒を配置し、本例の排ガス浄化用触媒システムを得た。
ジニトロジアンミンPt溶液を活性アルミナに含浸し、乾燥後空気中400℃で1時間焼成して、Pt担持アルミナ粉末(粉末A)を得た。この粉末のPt濃度は3.0%であった。次に硝酸Rh水溶液を活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Rh担持アルミナ粉末(B粉末)を得た。この粉末のRh濃度は2.0%であった。
上記粉末Aを576g、粉末Bを86g、活性アルミナ粉末を238g、水900gを磁性ボールミルに入れ、混合粉砕してスラリーを得た。このスラリーをコージェライト質モノリス担体(触媒容量:1.7L、セル数:400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層200g/Lの触媒を得た。
これにBa水溶液を含浸し、乾燥後空気中400℃で1時間焼成してコート層250g/LのNOx浄化触媒を得た。
(Example 3)
[Production of exhaust gas purification catalyst system]
The exhaust gas purifying catalyst 1 produced in Example 1 is arranged on the upstream side of the exhaust gas flow path, and the NOx purification catalyst shown below is arranged on the downstream side to obtain the exhaust gas purifying catalyst system of this example. It was.
Activated alumina was impregnated with dinitrodiammine Pt solution, dried, and then fired in air at 400 ° C. for 1 hour to obtain Pt-supported alumina powder (powder A). The Pt concentration of this powder was 3.0%. Next, an activated alumina powder was impregnated with an aqueous Rh nitrate solution, dried and then fired in air at 400 ° C. for 1 hour to obtain an Rh-supported alumina powder (B powder). The Rh concentration of this powder was 2.0%.
576 g of powder A, 86 g of powder B, 238 g of activated alumina powder, and 900 g of water were placed in a magnetic ball mill and mixed and ground to obtain a slurry. This slurry was attached to a cordierite monolith support (catalyst capacity: 1.7 L, number of cells: 400 cells), excess slurry in the cells was removed by air flow, and the slurry was dried at 130 ° C. The catalyst was fired for a period of time to obtain a coat layer 200 g / L catalyst.
This was impregnated with an aqueous Ba solution, dried, and calcined in air at 400 ° C. for 1 hour to obtain a NOx purification catalyst having a coat layer of 250 g / L.

(比較例1)
実施例1で用いたCe0.16Zr0.84/CeO粉末の代わりに、CeO(第一希元素社製)粉末を用いたこと以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。この触媒は、Pt/CeOとして380g/L、金属Ptとして7.6g/L含有する。各例の排気ガス浄化用触媒の仕様を表1に示す。
(Comparative Example 1)
The same operation as in Example 1 was repeated except that CeO 2 (manufactured by Daiichi Rare Element Co., Ltd.) powder was used instead of Ce 0.16 Zr 0.84 O 2 / CeO 2 powder used in Example 1. Thus, an exhaust gas purifying catalyst of this example was obtained. This catalyst contains 380 g / L as Pt / CeO 2 and 7.6 g / L as metal Pt. Table 1 shows the specifications of the exhaust gas purifying catalyst in each example.

Figure 2006110402
Figure 2006110402

ここで、図2は、実施例1に用いたCe0.16Zr0.84/CeO粉末と実施例2に用いたCeO/Ce0.75Zr0.25粉末のX線回折分析(XRD)による結果を示すグラフである。このグラフより、それぞれの結晶構造が存在していることが分かる。
また、図3は、(a)実施例1に用いたCe0.16Zr0.84/CeO粉末と(b)実施例2に用いたCeO/Ce0.75Zr0.25粉末の粒子の表面状態を観察した走査型電子顕微鏡(SEM)写真である。
更に、図4は、実施例1に用いたCe0.16Zr0.84/CeO粉末の粒子をスライスし、断面を観察することにより粒子の内部状態を観察したSEM写真である。
XRDの結果とSEM写真から、二酸化炭素易脱離性複合体におけるCeO相とM−Zr複合酸化物相は粒子レベルで接触していると考えられる。
Here, FIG. 2 shows X of the Ce 0.16 Zr 0.84 O 2 / CeO 2 powder used in Example 1 and the CeO 2 / Ce 0.75 Zr 0.25 O 2 powder used in Example 2. It is a graph which shows the result by a line diffraction analysis (XRD). From this graph, it can be seen that each crystal structure exists.
3 shows (a) Ce 0.16 Zr 0.84 O 2 / CeO 2 powder used in Example 1 and (b) CeO 2 / Ce 0.75 Zr 0.25 used in Example 2. O 2 powder scanning electron microscope to observe the surface state of the particles (SEM) photographs.
Further, FIG. 4 is an SEM photograph in which the internal state of the particles was observed by slicing the particles of Ce 0.16 Zr 0.84 O 2 / CeO 2 powder used in Example 1 and observing the cross section.
From the results of XRD and SEM photographs, it is considered that the CeO 2 phase and the M-Zr composite oxide phase in the carbon dioxide easy-release complex are in contact at the particle level.

また、図5は、図4中の矢印で示される測定位置1〜5におけるエネルギー分散型蛍光X線分析(EDX)によるCe/Zrの重量比を示すグラフである。Ceの重量比が高いほどCeOとCe0.16Zr0.84のうち、CeOの含有量が多いことを示す。この結果によれば、内部はCeO成分が多く、表面に移行するほどCe0.16Zr0.84成分が多いと考えられる。
更に、図6〜図10は、それぞれ図4の矢印で示される測定位置1〜5における、重量比データ、原子比データを示すグラフである。
FIG. 5 is a graph showing the weight ratio of Ce / Zr by energy dispersive X-ray fluorescence analysis (EDX) at measurement positions 1 to 5 indicated by arrows in FIG. As the weight ratio of Ce is higher among the CeO 2 and Ce 0.16 Zr 0.84 O 2, indicating that the content of CeO 2 is large. According to this result, it is considered that there are many CeO 2 components inside and there are many Ce 0.16 Zr 0.84 O 2 components as they move to the surface.
6 to 10 are graphs showing weight ratio data and atomic ratio data at measurement positions 1 to 5 indicated by arrows in FIG. 4, respectively.

[性能評価]
各例の排気ガス浄化用触媒を、下記の条件で急速耐久を行い、その後モデルガス評価をして、酸化量、COシフト率を測定した。得られた結果を表1に併記する。
[Performance evaluation]
The exhaust gas purifying catalyst of each example was subjected to rapid durability under the following conditions, and then the model gas was evaluated to measure the oxidation amount and the CO shift rate. The obtained results are also shown in Table 1.

(耐久条件)
・エンジン排気量 3000cc
・燃料 ガソリン(商品名:日石ダッシュ)
・耐久温度 750℃
・耐久時間 30時間
(Endurance conditions)
-Engine displacement 3000cc
・ Fuel Gasoline (Product name: Nisseki Dash)
・ Durable temperature 750 ℃
Durability 30 hours

(モデルガス評価条件)
・反応ガス組成
(リッチガス1) CO:1vol%
(リッチガス2) CO:1vol%、H:1vol%、HO:3vol%
(リーンガス) CO:0.1vol%、HO:3vol%
NOx:0.1vol%、O:3vol%
・反応温度 300℃
・空間速度 72000h−1
(Model gas evaluation conditions)
-Reaction gas composition (rich gas 1) CO: 1 vol%
(Rich gas 2) CO: 1vol%, H 2: 1vol%, H 2 O: 3vol%
(Lean gas) CO: 0.1vol%, H 2 O: 3vol%
NOx: 0.1vol%, O 2: 3vol%
・ Reaction temperature 300 ℃
・ Space velocity 72000h -1

ここで、酸化量について説明する。図11は、酸化量の定義を示した説明図である。酸化量とは、上記(リッチガス1)を流したときのCO生成量をいい、この場合には、気相には酸素原子が存在しないので、酸素吸蔵材(OSC)の酸素原子の反応量に相当する。
また、COシフト率とは、上記(リッチガス2)を流したときにほぼ一定になったときのCO転化率をいう。つまり、次式(2)
COシフト率(%)=((入口CO濃度)−(出口CO濃度))/(入口CO濃度)×100…(2)から算出される。
Here, the oxidation amount will be described. FIG. 11 is an explanatory diagram showing the definition of the oxidation amount. The amount of oxidation refers to the amount of CO 2 produced when the above (rich gas 1) is flowed. In this case, since there are no oxygen atoms in the gas phase, the reaction amount of oxygen atoms in the oxygen storage material (OSC). It corresponds to.
The CO shift rate means the CO conversion rate when the above (rich gas 2) is made to flow and becomes almost constant. That is, the following equation (2)
CO shift rate (%) = ((inlet CO concentration) − (outlet CO concentration)) / (inlet CO concentration) × 100 (2).

図12は、COシフト率の定義を示した説明図である。
このCO転化率をCOシフト反応によるものとみなしてよい理由は、図面に基づいて説明すると、図11において20〜30秒の付近ではCOの転化が生じていない一方で、図12においては、HOが存在することによりCOの転化が生じている。これは、COシフト反応(CO+HO→CO+H)が進行していると説明できる。なお、図12中点線で示した曲線は、図11中の酸化部分に相当する。
FIG. 12 is an explanatory diagram showing the definition of the CO shift rate.
The reason why this CO conversion rate may be regarded as being due to the CO shift reaction is explained based on the drawings. In FIG. 11, no CO conversion occurs in the vicinity of 20 to 30 seconds, whereas in FIG. The conversion of CO occurs due to the presence of 2 O. This can be explained as a CO shift reaction (CO + H 2 O → CO 2 + H 2 ) progressing. The curve indicated by the dotted line in FIG. 12 corresponds to the oxidized portion in FIG.

表1より、本発明の範囲に属する実施例1及び2の排気ガス浄化用触媒は、本発明外の比較例1の排気ガス浄化用触媒に対して、酸化量が大きく、またCOシフト率が高く優れていることが分かる。
また、CO消費の方がH消費より多いという特性、つまりH透過特性が大きく、優れていることが分かる。即ち、本発明の範囲に属する排気ガス浄化用触媒は、本発明外の比較例1の排気ガス浄化用触媒に比べて、高いH透過能を有することが分かる。
From Table 1, the exhaust gas purifying catalysts of Examples 1 and 2 belonging to the scope of the present invention have a larger oxidation amount and the CO shift rate than the exhaust gas purifying catalyst of Comparative Example 1 outside the present invention. It turns out that it is high and excellent.
In addition, it can be seen that CO consumption is greater than H 2 consumption, that is, H 2 transmission characteristics are large and excellent. That is, it can be seen that the exhaust gas purifying catalyst within the scope of the present invention has a higher H 2 permeability than the exhaust gas purifying catalyst of Comparative Example 1 outside the present invention.

現時点で推定される水素富化触媒における反応機構を示す模式的説明図である。It is typical explanatory drawing which shows the reaction mechanism in the hydrogen enrichment catalyst estimated at this time. 実施例1又は2に用いた粉末のXRDによる結果を示すグラフである。It is a graph which shows the result by XRD of the powder used for Example 1 or 2. 実施例1又は2に用いた粉末の粒子の表面状態を観察したSEM写真である。2 is an SEM photograph observing the surface state of powder particles used in Example 1 or 2. 実施例1に用いた粉末の粒子の内部状態を観察したSEM写真である。2 is an SEM photograph observing an internal state of powder particles used in Example 1. FIG. 図4の各測定位置におけるCe/Zrの重量比である。It is the weight ratio of Ce / Zr in each measurement position of FIG. 図4の測定位置1におけるEDXによる結果を示すグラフである。It is a graph which shows the result by EDX in the measurement position 1 of FIG. 図4の測定位置2におけるEDXによる結果を示すグラフである。It is a graph which shows the result by EDX in the measurement position 2 of FIG. 図4の測定位置3におけるEDXによる結果を示すグラフである。It is a graph which shows the result by EDX in the measurement position 3 of FIG. 図4の測定位置4におけるEDXによる結果を示すグラフである。It is a graph which shows the result by EDX in the measurement position 4 of FIG. 図4の測定位置5におけるEDXによる結果を示すグラフである。It is a graph which shows the result by EDX in the measurement position 5 of FIG. 酸化量の定義を示す説明図である。It is explanatory drawing which shows the definition of oxidation amount. COシフト率の定義を示す説明図である。It is explanatory drawing which shows the definition of CO shift rate.

Claims (10)

CeO相とM−Zr複合酸化物相(M:ランタノイド元素)が接触して成り、
上記CeO相に結合したCOを脱離し易いことを特徴とする二酸化炭素易脱離性複合体。
The CeO 2 phase and the M-Zr composite oxide phase (M: lanthanoid element) are in contact with each other,
A carbon dioxide readily desorbing complex characterized in that CO 2 bound to the CeO 2 phase is easily desorbed.
上記CeO相及びM−Zr複合酸化物相の一方がコア部を形成し、他方がシェル部を形成するコアシェル構造を有することを特徴とする請求項1に記載の二酸化炭素易脱離性複合体。 2. The carbon dioxide easily detachable composite according to claim 1, wherein one of the CeO 2 phase and the M-Zr composite oxide phase has a core-shell structure in which a core part is formed and the other forms a shell part. body. 請求項1又は2に記載の二酸化炭素易脱離性複合体であって、該複合体の内側から外側へ移行するにしたがって、M−Zr複合酸化物相の含有率が高くなることを特徴とする二酸化炭素易脱離性複合体。   It is a carbon dioxide easily detachable composite according to claim 1 or 2, wherein the content of the M-Zr composite oxide phase increases as it moves from the inside to the outside of the composite. Carbon dioxide readily detachable complex. 上記ランタノイド元素が、Ce、Pr、Nd及びSmから成る群より選ばれた少なくとも1種の元素であることを特徴とする請求項1〜3のいずれか1つの項に記載の二酸化炭素易脱離性複合体。   4. The carbon dioxide easy desorption according to claim 1, wherein the lanthanoid element is at least one element selected from the group consisting of Ce, Pr, Nd, and Sm. Sex complex. 上記M−Zr複合酸化物が、次の一般式(1)
Zr1−x…(1)
(式中のMはランタノイド元素を示し、xは0<x<1を満足する数を示す。)で表されることを特徴とする請求項1〜4のいずれか1つの項に記載の二酸化炭素易脱離性複合体。
The M-Zr composite oxide has the following general formula (1)
M x Zr 1-x O 2 (1)
(Wherein M represents a lanthanoid element and x represents a number satisfying 0 <x <1). The dioxide according to any one of claims 1 to 4, Carbon detachable complex.
上記(1)式におけるxが0.16≦x≦0.75を満足することを特徴とする請求項5に記載の二酸化炭素易脱離性複合体。   X in said Formula (1) satisfies 0.16 <= x <= 0.75, The carbon dioxide easy desorption complex of Claim 5 characterized by the above-mentioned. 請求項1〜6のいずれか1つの項に記載の二酸化炭素易脱離性複合体にPtを担持させて成ることを特徴とする水素富化触媒。   A hydrogen-enriched catalyst comprising Pt supported on the carbon dioxide easy-releasing complex according to any one of claims 1 to 6. 請求項7に記載の水素富化触媒を含有して成ることを特徴とする排気ガス浄化用触媒。   An exhaust gas purifying catalyst comprising the hydrogen-enriched catalyst according to claim 7. 請求項8に記載の排気ガス浄化用触媒と、NOx浄化触媒を備えることを特徴とする排気ガス浄化触媒システム。   An exhaust gas purification catalyst system comprising the exhaust gas purification catalyst according to claim 8 and a NOx purification catalyst. 請求項8に記載の排気ガス浄化用触媒を備える排気ガス浄化システムであって、排気ガスの雰囲気をリーンないしリッチ雰囲気に亘って変化させ、該排気ガス浄化用触媒に該排気ガスを供給することを特徴とする排気ガス浄化システム。
An exhaust gas purification system comprising the exhaust gas purification catalyst according to claim 8, wherein the exhaust gas atmosphere is changed over a lean or rich atmosphere, and the exhaust gas is supplied to the exhaust gas purification catalyst. Exhaust gas purification system.
JP2004297286A 2004-10-12 2004-10-12 Composite material for easily releasing carbon dioxide and catalyst for cleaning exhaust gas Withdrawn JP2006110402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297286A JP2006110402A (en) 2004-10-12 2004-10-12 Composite material for easily releasing carbon dioxide and catalyst for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297286A JP2006110402A (en) 2004-10-12 2004-10-12 Composite material for easily releasing carbon dioxide and catalyst for cleaning exhaust gas

Publications (1)

Publication Number Publication Date
JP2006110402A true JP2006110402A (en) 2006-04-27

Family

ID=36379363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297286A Withdrawn JP2006110402A (en) 2004-10-12 2004-10-12 Composite material for easily releasing carbon dioxide and catalyst for cleaning exhaust gas

Country Status (1)

Country Link
JP (1) JP2006110402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013423A (en) * 2006-06-30 2008-01-24 Daiichi Kigensokagaku Kogyo Co Ltd Cerium oxide-zirconium oxide-based compound oxide and method for producing the same
WO2012005277A1 (en) * 2010-07-06 2012-01-12 株式会社ルネッサンス・エナジー・リサーチ Apparatus and process for carbon monoxide shift conversion, and hydrogen production equipment
JP2015178109A (en) * 2015-06-19 2015-10-08 三井金属鉱業株式会社 Carrier for catalyst for cleaning exhaust gas from internal-combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013423A (en) * 2006-06-30 2008-01-24 Daiichi Kigensokagaku Kogyo Co Ltd Cerium oxide-zirconium oxide-based compound oxide and method for producing the same
WO2012005277A1 (en) * 2010-07-06 2012-01-12 株式会社ルネッサンス・エナジー・リサーチ Apparatus and process for carbon monoxide shift conversion, and hydrogen production equipment
CN102971252A (en) * 2010-07-06 2013-03-13 株式会社新生能源研究 Apparatus and process for carbon monoxide shift conversion, and hydrogen production equipment
JP2015178109A (en) * 2015-06-19 2015-10-08 三井金属鉱業株式会社 Carrier for catalyst for cleaning exhaust gas from internal-combustion engine

Similar Documents

Publication Publication Date Title
JP3642273B2 (en) Exhaust gas purification system
JP5350614B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
JP4019357B2 (en) Method for producing exhaust gas purification catalyst powder and method for producing exhaust gas purification catalyst
JP5458973B2 (en) Exhaust gas purification catalyst
JP5589321B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2009165904A (en) Exhaust gas purifier
WO2007145152A1 (en) Exhaust gas purifying catalyst
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP5157068B2 (en) Hydrogen sulfide production inhibitor and exhaust gas purification catalyst
JP2005021880A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning catalyst system
JP4573993B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3704701B2 (en) Exhaust gas purification catalyst
JP2011183319A (en) Catalyst and method for cleaning exhaust gas
WO2013132895A1 (en) Oxidation catalyst and exhaust gas purification method using same
JP5094049B2 (en) Exhaust gas purification catalyst
JP5078638B2 (en) Exhaust gas purification device
JP3800200B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JP2006110402A (en) Composite material for easily releasing carbon dioxide and catalyst for cleaning exhaust gas
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP2013072334A (en) Exhaust gas purifying device and exhaust gas purifying catalyst unit
JP3560147B2 (en) Exhaust gas purification system
JP5488402B2 (en) Exhaust gas purification catalyst
JP4239679B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2008279319A (en) Catalyst for cleaning exhaust gas and method for producing acidic oxide-deposited alumina to be used therefor
JP4019351B2 (en) NOx purification catalyst and NOx purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090904