JP2006108402A - Method for drying and treating fine structure, its device and sample holder - Google Patents

Method for drying and treating fine structure, its device and sample holder Download PDF

Info

Publication number
JP2006108402A
JP2006108402A JP2004293285A JP2004293285A JP2006108402A JP 2006108402 A JP2006108402 A JP 2006108402A JP 2004293285 A JP2004293285 A JP 2004293285A JP 2004293285 A JP2004293285 A JP 2004293285A JP 2006108402 A JP2006108402 A JP 2006108402A
Authority
JP
Japan
Prior art keywords
pressure
fluid
pressure vessel
liquid
fine structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004293285A
Other languages
Japanese (ja)
Other versions
JP4409399B2 (en
Inventor
Sakae Takabori
栄 高堀
Hisayuki Takasu
久幸 高須
Toru Iwatani
徹 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Science Systems Ltd
Original Assignee
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Science Systems Ltd filed Critical Hitachi Science Systems Ltd
Priority to JP2004293285A priority Critical patent/JP4409399B2/en
Publication of JP2006108402A publication Critical patent/JP2006108402A/en
Application granted granted Critical
Publication of JP4409399B2 publication Critical patent/JP4409399B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for drying and treating a fine structure without generating pattern collapsing and sticking to a large-diameter substrate forming a fine structure on its surface and being capable of uniformly drying the fine structure, in a short time, because rinsing liquid can be removed in the short time, and to provide a device for the method and a sample holder. <P>SOLUTION: The method for drying and treating the fine structure has a process in which the sample holder with the installed substrate is mounted in a high-pressure vessel, and the process in which a fluid under a gas state at a normal temperature and at a normal pressure and under a liquid state at a high pressure is introduced into the high-pressure vessel up to a set pressure under the liquid state or a supercritical state. The method further has a process in which the rinsing liquid is collected on the upper side or the lower side in the high-pressure vessel through a specified path for the sample holder, formed by inclining the high-pressure vessel and by an inclination, and the process in which the collected rinsing liquid is discharged, from at least one discharge opening formed on the upper side or the lower side in the inclined high-pressure vessel. The method further has a process in which the temperature of the fluid is increased at a critical temperature or higher as the pressure of the fluid is left kept, as it is, at a critical pressure or higher, and the process in which the fluid is discharged as the temperature of the fluid is left as it is kept at the critical temperature or higher. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規な微細構造乾燥処理方法及びその装置に関する。   The present invention relates to a novel fine structure drying method and apparatus.

従来、大規模で高密度、高性能デバイスは、シリコンウェハ上に成膜したレジストに対して露光、現像、リンス洗浄及び乾燥を経てパターンを形成した後、コーティング、エッチング、リンス洗浄、乾燥等のプロセスを経て製造される。特に、レジストは、光、X線、電子線などに感光する高分子材料であり、各工程において、現像、リンス洗浄工程では現像液、リンス液等の薬液を使用しているため、リンス洗浄工程後は乾燥工程が必須である。   Conventionally, a large-scale, high-density, high-performance device forms a pattern on a resist formed on a silicon wafer through exposure, development, rinsing, and drying, followed by coating, etching, rinsing, and drying. Manufactured through a process. In particular, the resist is a polymer material that is sensitive to light, X-rays, electron beams, etc., and in each process, a chemical solution such as a developer or a rinse solution is used in the development and rinse cleaning process, so the rinse cleaning process After that, a drying process is essential.

この乾燥工程において、基板上に形成したレジストパターン間のスペース幅が100nm程度以下になるとパターン間に残存する薬液の表面張力の作用により、パターン間にラプラス力(毛細管力)が作用してパターン倒れが発生する問題が生ずる。   In this drying process, when the space width between the resist patterns formed on the substrate is about 100 nm or less, the surface tension of the chemical solution remaining between the patterns causes Laplace force (capillary force) to act between the patterns and the pattern collapses. The problem that occurs occurs.

他方では、例えば加速センサーやアクチュエータ等の可動部を持つ三次元微細構造部品のMEMS(Micro Electromechanical System)部品の製造は、フッ酸等のエッチング液で可動部位を含む微細構造を形成する工程と、純水リンスでエッチング液を洗浄除去する工程と乾燥工程を含んでいる。この乾燥工程においてもレジストパターンと同様に微細構造間に残る薬液による表面張力が作用して、可動部が基板に張り付く現象が発生している。この微細構造間に残存する薬液の表面張力の作用によるパターン倒れや張付きを防止するために、微細構造物間に作用する表面張力を軽減する乾燥プロセスとして、特許文献1〜3に示す所定の圧力容器を用いると共に、二酸化炭素等の超臨界流体を用いた方法がある。   On the other hand, for example, manufacturing a MEMS (Micro Electromechanical System) part of a three-dimensional microstructure part having a movable part such as an acceleration sensor or an actuator includes a step of forming a microstructure including a movable part with an etching solution such as hydrofluoric acid, It includes a step of cleaning and removing the etching solution with pure water rinse and a drying step. Also in this drying process, the surface tension due to the chemical solution remaining between the fine structures acts like the resist pattern, and the phenomenon that the movable part sticks to the substrate occurs. In order to prevent pattern collapse and sticking due to the action of the surface tension of the chemical solution remaining between the microstructures, as a drying process for reducing the surface tension acting between the microstructures, predetermined processes shown in Patent Documents 1 to 3 There is a method using a supercritical fluid such as carbon dioxide while using a pressure vessel.

この従来の二酸化炭素等の超臨界流体を用いた乾燥法は、以下の基本工程を有する。
(1)液体又は超臨界状態の流体に可溶でない試料中の例えば水等の残存液体は、予め流体に可溶な例えばエタノールや2−プロパノール等の有機溶剤と置換しておく工程。
(2)リンス液に浸漬、又は濡れた状態、具体的には基板上にリンス液が載った状態で乾燥室となる高圧容器に水平に搬送して設置する工程。
(3)高圧容器を密閉して液体状態又は超臨界状態の流体を高圧容器内に導入し、所定の圧力まで昇圧する工程。
(4)高圧容器内に導入した液体又は超臨界状態の流体とリンス液を置換させる工程。
(5)高圧容器内に液体の流体を導入した場合は、その流体とリンス液の置換後に高圧容器内の流体を臨界点以上に昇圧及び昇温させる工程。
(6)高圧容器内から超臨界状態の流体を排出させる工程。
(7)高圧容器から基板を取り出す工程。
This conventional drying method using a supercritical fluid such as carbon dioxide has the following basic steps.
(1) A step in which a remaining liquid such as water in a sample that is not soluble in a liquid or a fluid in a supercritical state is previously replaced with an organic solvent such as ethanol or 2-propanol that is soluble in the fluid.
(2) A step of horizontally transporting and setting in a high-pressure container serving as a drying chamber in a state dipped or wetted in the rinse liquid, specifically, a condition in which the rinse liquid is placed on the substrate.
(3) A step of sealing the high-pressure vessel, introducing a liquid or supercritical fluid into the high-pressure vessel, and increasing the pressure to a predetermined pressure.
(4) A step of replacing the liquid or supercritical fluid introduced into the high-pressure vessel with the rinse liquid.
(5) In the case where a liquid fluid is introduced into the high-pressure vessel, the step of raising the pressure and raising the temperature of the fluid in the high-pressure vessel to a critical point or higher after the replacement of the fluid and the rinse liquid
(6) A step of discharging a fluid in a supercritical state from the high-pressure vessel.
(7) A step of taking out the substrate from the high-pressure vessel.

特開2003−109933号公報JP 2003-109933 A 特開平09−139374号公報JP 09-139374 A 特開平05−315241号公報JP 05-315241 A

しかし、従来の超臨界流体を用いた乾燥法は、数10分程度から1時間以上の乾燥時間を要し、特に、直径100mm以上の大口径基板上に一様に形成した微細構造に対して、均一にパターン倒れや張り付きが無く、乾燥することができなかった。これは、大口径基板上に載ったリンス液が数百ml以上もあり、液体又は超臨界流体との置換が短時間で均一に行えないことによるものであった。   However, the conventional drying method using a supercritical fluid requires a drying time of about several tens of minutes to 1 hour or more, especially for a fine structure uniformly formed on a large-diameter substrate having a diameter of 100 mm or more. There was no pattern collapse or sticking uniformly, and it was impossible to dry. This is due to the fact that the rinsing liquid on the large-diameter substrate is several hundred ml or more, and the replacement with the liquid or the supercritical fluid cannot be performed uniformly in a short time.

本発明の目的は、リンス液を短時間で除去できることにより、表面に微細な構造を形成した大口径基板に対してパターン倒れや張り付きがなく、短時間で均一に乾燥させることができる微細構造乾燥処理方法とその装置及びそのサンプルホルダを提供することにある。   The object of the present invention is that the rinse liquid can be removed in a short time, and there is no pattern collapse or sticking to a large-diameter substrate having a fine structure formed on the surface, and the fine structure drying can be uniformly dried in a short time. It is to provide a processing method, an apparatus thereof, and a sample holder thereof.

本発明は、リンス液に浸漬又は濡れた状態の微細構造を有する基板を設置したサンプルホルダを高圧容器内に設置する工程と、前記高圧容器内に常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で設定圧力まで導入する工程と、前記高圧容器を傾斜させると共に該傾斜によって形成される前記サンプルホルダの特定の通路、好ましくは前記高圧容器を傾斜させる方向に沿って所定の幅の前記サンプルホルダに形成された傾斜溝を通して前記リンス液を前記高圧容器内の上側又は下側に集める工程及び前記高圧容器を前記傾斜と同じ方向での回転振動させることにより前記基板上の前記リンス液を前記傾斜した高圧容器内の上側又は下側に集める工程の少なくとも一方の工程と、前記集められた前記リンス液を前記傾斜した高圧容器内の上側又は下側に設けられた少なくとも一方の排出口より排出させる工程と、前記流体の圧力を臨界圧力以上に保ったまま前記流体の温度を臨界温度以上に昇温させる工程と、前記流体の温度を臨界温度以上に保ったまま前記流体を排出する工程とを順次有することを特徴とする微細構造乾燥処理方法にある。   The present invention includes a step of installing a sample holder in which a substrate having a fine structure immersed or wet in a rinsing solution is installed in a high-pressure vessel, a gas at normal temperature and normal pressure, and a liquid at high pressure in the high-pressure vessel. A fluid or a supercritical state up to a set pressure, and tilting the high-pressure vessel and a specific passage of the sample holder formed by the tilt, preferably along the direction of tilting the high-pressure vessel A step of collecting the rinse liquid on the upper side or the lower side in the high-pressure vessel through an inclined groove formed in the sample holder having a predetermined width and rotating the high-pressure vessel on the substrate in the same direction as the inclination. At least one of the steps of collecting the rinse liquid on the upper side or the lower side in the inclined high-pressure vessel, and the collected rinse liquid on the inclined side. A step of discharging from at least one discharge port provided on the upper side or the lower side in the high-pressure vessel, and a step of raising the temperature of the fluid to a critical temperature or higher while maintaining the pressure of the fluid at a critical pressure or higher. And a step of discharging the fluid while keeping the temperature of the fluid at a critical temperature or higher in order.

即ち、本発明の実施形態によれば、露光後の現像又は薬液によるエッチング及びリンスを経て表面にレジストパターンやガラスマスク、MEMS部品等の微細構造が形成された基板を、リンス液に浸漬又は濡れた状態で高圧容器内に設置し、高圧容器内に常温及び常圧では気体で高圧下では液体となる流体を高圧容器を水平に保ち、前記サンプルホルダの下部より流体を液体又は超臨界状態で導入し、更に高圧容器内の昇圧速度を制御し、流体とリンス液の混濁と基板上の微細構造物への圧力衝撃を抑えて導入する。その後、高圧容器を傾斜させると共にその傾斜方向に上下に回転振動させることにより、また高圧容器内の流体の温度及び圧力の少なくとも一方を変化させ流体の比重を変化させることにより、リンス液と流体との比重差を形成すると共に、比重の変化による渦流又は対流を発生させることにより流体トリンス液の置換を促進させ、リンス液を高圧容器内の上側又は下側に集める時間を短縮することができる。   That is, according to the embodiment of the present invention, a substrate on which a fine structure such as a resist pattern, a glass mask, or a MEMS part is formed on the surface through development after exposure or etching and rinsing with a chemical solution is immersed or wetted in the rinse solution. In a high-pressure container, keep the high-pressure container horizontal in the high-pressure container, which is a gas at normal temperature and normal pressure, and a liquid under high pressure. In addition, the pressure increase rate in the high-pressure vessel is controlled to suppress the turbidity of the fluid and the rinse liquid and the pressure impact on the fine structure on the substrate. Thereafter, the high pressure vessel is tilted and rotated and vibrated up and down in the tilt direction, and at least one of the temperature and pressure of the fluid in the high pressure vessel is changed to change the specific gravity of the fluid. In addition, a vortex or convection due to a change in specific gravity is generated to facilitate replacement of the fluid Trins solution, and the time for collecting the rinse liquid on the upper side or the lower side in the high-pressure vessel can be shortened.

しかし、基板外周やサンプルホルダと基板との円周方向の接触部近傍やサンプルホルダと基板との間には表面張力により一部のリンス液は比重差があっても分離出来ずに残存してしまう。この残存するリンス液を効率良く分離するために、サンプルホルダに設けられた傾斜溝を通して傾斜し分離する際の通り道を確保すること及びサンプルホルダ自体へ撥水処理又は鏡面仕上げを施すことでリンス液を分離し易くし、分離したリンス液を高圧容器の上側又は下側に集める時間を短縮できる。最適に分離させるためには、特に高圧容器の下方に集まるリンス液の場合は、サンプルホルダの溝位置を傾斜方向へ、また、リンス液が高圧容器の上方へ集まる場合は、サンプルホルダの溝位置を水平方向へ其々任意に設置することで更に効率が上がり、更に、傾斜してリンス液を高圧容器内の上側又は下側に集める際に、高圧容器を上下に振動させながらリンス液を分離する工程とを有することを特徴とする。   However, some rinsing liquids cannot be separated due to the surface tension between the outer periphery of the substrate, the vicinity of the circumferential contact between the sample holder and the substrate, or between the sample holder and the substrate, even if there is a difference in specific gravity. End up. In order to efficiently separate the remaining rinsing liquid, the rinsing liquid is secured by providing a path for inclining and separating through an inclined groove provided in the sample holder and applying a water-repellent treatment or mirror finish to the sample holder itself. Can be easily separated, and the time for collecting the separated rinse liquid on the upper side or the lower side of the high-pressure vessel can be shortened. For optimal separation, especially in the case of rinsing liquid gathering under the high-pressure vessel, the groove position of the sample holder is inclined, and when the rinsing liquid is gathering upward of the high-pressure vessel, the groove position of the sample holder When the rinsing liquid is tilted and collected at the upper or lower side of the high-pressure container, the rinsing liquid is separated while vibrating the high-pressure container up and down. And a step of performing.

更に、基板を設置するためのサンプルホルダの上部及び下部に設置されたヒータにて温度制御され、リンス液を排出させる工程で基板上の微細構造物近傍に残存したリンス液と流体を温度制御し、リンス液及び流体に密度変化よる渦流又は対流による状態変化を発生させ、流体とリンス液の置換を促進すること、また基板近傍以外特には高圧容器への熱伝導を最小に抑えること、高圧容器内に流体を導入し、所定の圧力に達した後、高圧容器を傾斜させ、次いで流体の導入を停止し、高圧容器内の流体の流れを止めることが好ましい。   Furthermore, the temperature is controlled by heaters installed at the top and bottom of the sample holder for installing the substrate, and the temperature of the rinsing liquid and fluid remaining in the vicinity of the fine structure on the substrate is controlled in the process of discharging the rinsing liquid. , To generate a change in state due to vortex or convection due to density change in the rinsing liquid and fluid, to promote replacement of the fluid and rinsing liquid, and to minimize heat conduction to the high-pressure vessel except near the substrate, high-pressure vessel After introducing the fluid into the interior and reaching a predetermined pressure, it is preferable to incline the high-pressure vessel and then stop the introduction of fluid and stop the flow of fluid in the high-pressure vessel.

更に、本発明の実施形態によれば、流体が液体又は超臨界状態の二酸化炭素であり、その密度を0.65〜0.95g/mlの所定の密度に変化させること、基板がシリコン又はガラスマスクであること、高圧容器内への流体導入時に、サンプルホルダの下側より導入され高圧容器内の昇圧速度を制御し流体とリンス液の混濁を抑えることが好ましい。   Furthermore, according to an embodiment of the present invention, the fluid is liquid or supercritical carbon dioxide, the density is changed to a predetermined density of 0.65 to 0.95 g / ml, and the substrate is silicon or glass. It is preferable to be a mask and to introduce the fluid from the lower side of the sample holder when the fluid is introduced into the high-pressure vessel, thereby controlling the pressure increase rate in the high-pressure vessel to suppress turbidity between the fluid and the rinsing liquid.

また、本発明の実施形態によれば、流体より比重の大きいリンス液と、流体より比重の小さいリンス液とを同時またはいずれか一方を使用でき、傾斜した高圧容器の上側と下側に各々集めて排出することができる。流体の比重変化を繰り返す行程と、高圧容器内の流体の流れを抑えるプロセスとポンプで置換流体を導入する工程とを順次繰り返すリンス液と流体との置換工程とを有することはMEMS部品のような立体構造を乾燥する場合は特に有効である。   Further, according to the embodiment of the present invention, the rinsing liquid having a specific gravity greater than that of the fluid and the rinsing liquid having a specific gravity smaller than that of the fluid can be used at the same time or one of them, and are collected on the upper side and the lower side of the inclined high-pressure vessel. Can be discharged. It is like a MEMS part that has a process of repeating the specific gravity change of the fluid, a process of suppressing the flow of the fluid in the high-pressure vessel, and a process of introducing the replacement fluid with a pump in order to replace the rinse liquid and the fluid in sequence. This is particularly effective when the three-dimensional structure is dried.

また、本発明の実施形態によれば、流体を圧縮して送出するためのプランジャポンプ又は、ダイアフラムポンプによって高圧容器に圧送することにより、高圧容器内のリンス液を溶解するために十分な流体を供給できる手段を持ち、流体導入時に少なからず生ずる流体とリンス液の混濁を短時間で収束させるため、流体をポンプで圧送する流量をゼロにして、高圧容器内の置換流体の流速を最小、特にゼロにする工程を有する。   Further, according to the embodiment of the present invention, sufficient fluid to dissolve the rinsing liquid in the high-pressure vessel is obtained by pumping the fluid to the high-pressure vessel by a plunger pump or a diaphragm pump for compressing and sending the fluid. In order to condense the turbidity of the fluid and the rinse liquid that occurs at the time of fluid introduction in a short time, the flow rate of pumping the fluid to zero is set to zero, and the flow rate of the replacement fluid in the high-pressure vessel is minimized. A step of zeroing.

更に、リンス液の排出口を高圧容器の上部及び下部に少なくとも一方に装備することにより、置換流体より比重の大きいリンス液と、置換流体より比重の小さいリンス液を2種類以上同時に使用する場合にも、流体に溶けずに高圧容器内に残るリンスを選択的に高圧容器から排出することができる。   Furthermore, when two or more types of rinse liquids having a specific gravity higher than that of the replacement fluid and rinse liquids having a specific gravity lower than that of the replacement fluid are used at the same time by disposing a discharge port for the rinse liquid on at least one of the upper and lower parts of the high-pressure vessel. However, the rinse remaining in the high-pressure vessel without dissolving in the fluid can be selectively discharged from the high-pressure vessel.

基板を設置するためのサンプルホルダの上部及び下部に温度制御の為の温度調整器を装備して基板近傍のみを温度調整することにより高圧処理容器への熱伝導を最小にすること、更に導入する流体の流量をゼロにする工程によりリンス液と置換流体の混濁した状態での対流を最小にでき、短時間でリンス液の混濁状態を収束させて、大部分のリンス液を傾斜した高圧容器の上側又は下側に集めて排出することができる。   Equipped with temperature regulators for temperature control at the top and bottom of the sample holder for installing the substrate, and the heat control to the high-pressure processing vessel is minimized by adjusting the temperature only in the vicinity of the substrate. The process of zeroing the flow rate of the fluid can minimize the convection in the turbid state of the rinse liquid and the replacement fluid, converge the turbid state of the rinse liquid in a short time, and It can be collected on the upper side or the lower side and discharged.

そして、置換溶媒のリンス液に対する濃度を最小に維持できるため、溶解度の低下も最小にでき、溶媒の微細構造物間に残存するリンス液に対する溶解度の低下を抑えることにより、高い置換効率を得ることができると共に、置換プロセスを短縮することができる。又、種々のリンス液の使用が可能となる。   In addition, since the concentration of the substitution solvent in the rinse solution can be kept to a minimum, the decrease in solubility can also be minimized, and high substitution efficiency can be obtained by suppressing the decrease in solubility in the rinse solution remaining between the fine structures of the solvent. And the replacement process can be shortened. In addition, various rinse solutions can be used.

更に、本発明は、リンス液に浸漬又は濡れた状態の微細構造を有する基板をサンプルホルダに搭載し設置する高圧容器と、常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で貯蔵する流体貯蔵容器と、前記高圧容器を傾斜させる手段と、前記高圧容器を前記傾斜方向に振動させる手段及び前記サンプルホルダは前記基板の搭載面側に設けられた溝を通して前記リンス液を前記高圧容器の上側又は下側に集める手段の少なくとも一方と、前記傾斜した高圧容器内の上側又は下側に集めた前記リンス液を排出させる前記高圧容器の上側又は下側の少なくとも一方に設けられた排出口とを有する特徴とする微細構造乾燥処理装置にある。   Furthermore, the present invention relates to a high-pressure container in which a substrate having a fine structure immersed or wet in a rinsing liquid is mounted on a sample holder, and a fluid that is a gas at normal temperature and normal pressure and a liquid at high pressure. A fluid storage container for storing in a critical state, a means for inclining the high-pressure container, a means for vibrating the high-pressure container in the inclining direction, and the sample holder through the groove provided on the mounting surface side of the substrate. At least one of the means for collecting the liquid at the upper side or the lower side of the high-pressure vessel and at least one of the upper side or the lower side of the high-pressure vessel for discharging the rinse liquid collected at the upper side or the lower side in the inclined high-pressure vessel And a microstructural drying apparatus characterized by having a discharged outlet.

又、本発明は、高圧容器内にリンス液に浸漬又は濡れた状態の微細構造を有する基板を搭載して設置し、常温及び常圧では気体で高圧下では液体となる流体によって前記リンス液を乾燥除去する微細構造乾燥処理装置用サンプルホルダにおいて、前記基板の搭載部の接触部の所定の位置から外側に亘って前記高圧容器を傾斜させる方向に沿って形成された所定の幅の傾斜溝を有することを特徴とする。   In the present invention, a substrate having a fine structure immersed or wet in a rinsing liquid is mounted in a high-pressure vessel, and the rinsing liquid is supplied by a fluid that is a gas at normal temperature and normal pressure and a liquid at high pressure. In the sample holder for a fine structure drying processing apparatus to be dried and removed, an inclined groove having a predetermined width formed along a direction in which the high-pressure vessel is inclined outward from a predetermined position of a contact portion of the mounting portion of the substrate. It is characterized by having.

本発明によれば、リンス液を短時間で除去できることにより、表面に微細な構造を形成した大口径基板に対してパターン倒れや張り付きがなく、短時間で均一に乾燥させることができる微細構造乾燥処理方法とその装置及びそのサンプルホルダを提供することができる。   According to the present invention, the rinsing liquid can be removed in a short time, so that there is no pattern collapse or sticking to a large-diameter substrate having a fine structure formed on the surface, and the fine structure drying can be uniformly dried in a short time. A processing method, an apparatus thereof, and a sample holder thereof can be provided.

以下、本発明を実施するための最良の形態を具体的な実施例によって説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to specific examples.

図1は本発明の微細構造乾燥処理装置の一例を示す断面図である。図1に示すように、リンス液102に浸漬又は濡れた状態の微細構造を有する基板101をサンプルホルダ104に搭載し設置する高圧容器103と、常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で貯蔵する流体貯蔵容器115と、高圧容器103を傾斜させる手段と、高圧容器103を傾斜方向に振動させる手段と、傾斜した高圧容器103内の上側又は下側に集めたリンス液121を排出させる高圧容器103の上側又は下側の少なくとも一方に設けられた排出口119とを有する。又、サンプルホルダ104は後述する基板101の搭載面より外側に向かって設けられた傾斜溝1を有する。   FIG. 1 is a cross-sectional view showing an example of the fine structure drying apparatus of the present invention. As shown in FIG. 1, a high-pressure vessel 103 in which a substrate 101 having a fine structure immersed or wet in a rinsing liquid 102 is mounted on a sample holder 104 and installed, is a gas at normal temperature and normal pressure, and a liquid at high pressure Fluid storage container 115 for storing fluid in a liquid or supercritical state, means for inclining high-pressure container 103, means for vibrating high-pressure container 103 in an inclining direction, and collecting on the upper side or lower side in inclined high-pressure container 103 And a discharge port 119 provided on at least one of the upper side and the lower side of the high-pressure vessel 103 for discharging the rinse liquid 121. Moreover, the sample holder 104 has the inclined groove 1 provided toward the outer side from the mounting surface of the board | substrate 101 mentioned later.

乾燥処理室である高圧容器103は上部の蓋105及び下部容器124から構成され、蓋105を開放して基板101を設置する。高圧容器103は、水平から垂直まで傾斜できる傾斜手段を持つ。高圧容器103には下部容器124の両側に紙面に対して垂直に傾斜用のギアを有する回転軸が設けられ、モータによって紙面に対して左右のいずれにも水平から90度まで左右両側に傾斜できるものである。フィルタ112、バルブ113は下部容器124に固定され、圧力制御装置123との間が高圧フレキシブル配管によって接続される。更に、背圧制御バルブ109、バルブ110が蓋105に、バルブ117、圧力制御バルブ118が下部容器124に固定され、それらの先が高圧フレキシブル配管によって接続され、回転可能である。   The high-pressure vessel 103 serving as a drying processing chamber is composed of an upper lid 105 and a lower vessel 124, and the lid 101 is opened to install the substrate 101. The high-pressure vessel 103 has tilting means that can tilt from horizontal to vertical. The high-pressure vessel 103 is provided with rotating shafts having gears for tilting perpendicular to the paper surface on both sides of the lower container 124, and can be tilted left and right from the horizontal to 90 degrees from the horizontal to the paper surface by a motor. Is. The filter 112 and the valve 113 are fixed to the lower container 124, and are connected to the pressure control device 123 by a high-pressure flexible pipe. Further, the back pressure control valve 109 and the valve 110 are fixed to the lid 105, and the valve 117 and the pressure control valve 118 are fixed to the lower container 124, and their tips are connected by a high-pressure flexible pipe and can rotate.

基板101は露光後の現像及びリンスの工程を経て表面に微細構造が形成されており、その表面にはリンス液102が全面に載った状態であり、高圧容器103に設けられたサンプルホルダ104に設置される。サンプルホルダ104の上下部には、サンプルホルダ104及び二酸化炭素115を局部的に又は全体を均一に温度制御可能なヒータ106がある。高圧容器103には、バルブ113を介してポンプ114及び液体二酸化炭素容器115が配管によって接続される。高圧容器103は、その上部にバルブ110及び下部にバルブ107を介して背圧制御バルブ109、108がそれぞれ接続され、設定圧力を超えると排出口119又は排出口120より高圧容器103内の流体又はリンス液が排出される。   The substrate 101 has a fine structure formed on the surface through development and rinsing steps after exposure, and a rinse liquid 102 is placed on the entire surface of the substrate 101. The sample holder 104 provided in the high-pressure vessel 103 is attached to the surface of the substrate 101. Installed. Above and below the sample holder 104 are heaters 106 that can control the temperature of the sample holder 104 and carbon dioxide 115 locally or uniformly. A pump 114 and a liquid carbon dioxide container 115 are connected to the high-pressure container 103 through a valve 113 by piping. The high pressure vessel 103 is connected to the back pressure control valves 109 and 108 via the valve 110 at the upper part and the valve 107 at the lower part, respectively. When the set pressure is exceeded, the fluid in the high pressure vessel 103 or from the discharge port 119 or the discharge port 120 The rinse liquid is discharged.

高圧容器103はその容器構成材内部に形成された熱媒体の循環による温度調整機能を持ち、0〜60℃の範囲で流体の温度を制御でき、また、基板101の近傍、特に微細構造を有する面側の温度差による対流を最小限抑えるため、サンプルホルダ104の上下部には、サンプルホルダ104及び二酸化炭素115を局部的に又は全体を均一に温度制御可能な温度調整器106を備える。   The high-pressure vessel 103 has a temperature adjustment function by circulation of a heat medium formed inside the vessel constituent material, can control the temperature of the fluid in the range of 0 to 60 ° C., and has a fine structure in the vicinity of the substrate 101. In order to minimize the convection due to the temperature difference on the surface side, a temperature adjuster 106 capable of controlling the temperature of the sample holder 104 and the carbon dioxide 115 locally or uniformly is provided above and below the sample holder 104.

図2は、本発明に係るサンプルホルダの平面図(a)、B-B断面図(b)、C-C断面図(c)である。平面図(a)には基板101は搭載されていないが、(b)及び(d)には基板101が搭載された状態を示す。図2に示すように、高圧容器103内にリンス液102に浸漬又は濡れた状態の微細構造を有する基板101を搭載して設置し、常温及び常圧では気体で高圧下では液体となる流体によってリンス液102を乾燥除去する微細構造乾燥処理装置用サンプルホルダにあり、基板101の搭載部の接触部の所定の位置から外側に亘って高圧容器103を傾斜させる方向に沿って形成された所定の幅の傾斜溝1を有するものである。   FIG. 2 is a plan view (a), a BB sectional view (b), and a CC sectional view (c) of the sample holder according to the present invention. Although the substrate 101 is not mounted in the plan view (a), (b) and (d) show a state where the substrate 101 is mounted. As shown in FIG. 2, a substrate 101 having a fine structure immersed or wetted in a rinsing liquid 102 is mounted in a high-pressure vessel 103 and installed by a fluid that is a gas at normal temperature and normal pressure and a liquid at high pressure. A sample holder for a microstructural drying processing apparatus for drying and removing the rinsing liquid 102, which is formed along a direction in which the high-pressure vessel 103 is inclined from the predetermined position of the contact portion of the mounting portion of the substrate 101 to the outside. An inclined groove 1 having a width is provided.

基板101には、リンス液が載っていない状態である。本実施例のサンプルホルダ104は、所定の幅を有する傾斜溝1が平坦部9に対して設けられ、4個の保持用ガイド穴2を通して高圧容器103に設けられた保持手段の4本のピンが挿入されて設定される。基板101は、基板挿入部10に挿入され、2個のコイルバネ5によってスライド用溝6内をガイドピン4を通して右側に押し付けられている基板押さえ11によって固定される。基板押さえ11は押さえ保持具7によって保持される。ヒータ逃げ溝3は、高圧容器103内に設けられた棒状のヒータ106が基板101により近づけることができるようにヒータ逃げ溝3に接しないように挿入される。   The substrate 101 is in a state where no rinse liquid is placed thereon. In the sample holder 104 of this embodiment, the inclined groove 1 having a predetermined width is provided in the flat portion 9, and the four pins of the holding means provided in the high-pressure vessel 103 through the four holding guide holes 2. Is inserted and set. The substrate 101 is inserted into the substrate insertion portion 10 and is fixed by the substrate presser 11 that is pressed to the right side through the guide pins 4 in the slide groove 6 by the two coil springs 5. The substrate holder 11 is held by the holding holder 7. The heater escape groove 3 is inserted so as not to contact the heater escape groove 3 so that the rod-like heater 106 provided in the high-pressure vessel 103 can be brought closer to the substrate 101.

以下、本実施例の乾燥工程を説明する。
(1)直径200mmのLSIシリコン基板上にEBレジスト(ZEP−7000:日本ゼオン製)を220nmの膜厚で製膜、乾燥した後、電子線でパターンを60nm以下のパターン幅で描画してから酢酸ノルマルヘキシルで数十秒現像、2−プロパノールのリンス液102で数十秒リンスし、表面に微細構造が形成された基板101を搭載した前述に記載のサンプルホルダ104と共に、蓋105と下部容器124とからなる高圧容器103に設けられた4本のピンを保持用ガイド穴2に通して設置する。このとき、基板101の上には液体二酸化炭素116又は超臨界二酸化炭素に可溶な2−プロパノールからなるリンス液102が厚さ数mmで基板101の全面に載った状態であるか、基板101がリンス液102に浸漬した状態である。
(2)基板101を高圧処理容器103内のサンプルホルダ104に設置する際は、高圧処理容器103が水平の状態で蓋105を開け、設置後蓋105を閉じて高圧処理容器103を気密状態とする。この時、バルブ117、110、107は閉じている。
(3)バルブ113を開放すると液体二酸化炭素116が高圧容器103に導入される。このとき圧力制御装置123により基板101上に形成された微細構造が破損しないように、且つリンス液102と液体二酸化炭素の混濁を最小限に抑えるため、液体二酸化炭素容器115の定常圧力の5MPa程度までを1MPa/数秒程度の速度で導入する。高圧処理容器103に導入される液体二酸化炭素はフィルタ112を通過し不純物が除去される。液体二酸化炭素容器115を定常圧力まで導入した後、ポンプ114を作動させ設定圧力(7.5〜13MPa程度)まで液体二酸化炭素116を圧縮して送出する。
(4)図3は、高圧処理容器103を傾斜させた状態を示す微細構造乾燥装置の断面図である。図3に示すように、高圧処理容器103を傾斜手段によって傾斜回転方向125に傾斜させることにより、基板101に載った2−プロパノールのリンス液102の大半が基板101表面から離れ高圧容器103内に充填した液体状態の二酸化炭素116と殆ど溶けずに混ざり合い混濁状態となる。リンス液102との比重差が大きい時は混濁状態が比較的早く安定するので早く傾斜させることができる。又、傾斜状態から更に傾斜回転方向125と同じ方向にゆっくりした振動130を数回加えることにより効果的に置換、排出を行うことができる。
(5)高圧容器103の温度を熱媒体の循環によって下げ、5℃程度に制御すると、液体二酸化炭素の比重が0.95g/mlになり、2−プロパノールからなるリンス液102の比重0.80g/mlとの比重差が約0.15g/ml程度になるため、図2に示すように、リンス液102は傾斜した高圧処理容器103内の上部に集まる。設定圧力(7.5〜13MPa程度)までの昇圧及び5℃までの降温は同時に移行させても良い。この時、リンス液102がサンプルホルダ104と基板101から前述した傾斜溝1を通して速やかに分離させるために、サンプルホルダ104はその全面が撥水処理皮膜又は鏡面加工処理が施され、更に流れを良くするためにサンプルホルダ104には前述のように高圧容器の傾斜する方向に沿って傾斜溝1が設けられている。
(6)圧力が設定圧力(7.5〜13MPa程度)に達したら、液体二酸化炭素と2−プロパノールからなるリンス液102の混濁状態を収束させるため、数十秒間、ポンプ114で液体二酸化炭素116を圧送することを停止して、高圧処理容器103内に液体二酸化炭素116の流れを生じないようにする。同時に、液体二酸化炭素122の対流を最小に抑えるため高圧処理容器103内のサンプルホルダ104にある局部的に設けられた温度調整器106を5℃に制御する。
(7)傾斜した高圧処理容器103の上部に集められた2−プロパノールのリンス液121と液体二酸化炭素122の混濁が収束したら、再度、ポンプ114で液体二酸化炭素116の圧送を開始する。バルブ110を開放すると、傾斜した高圧処理容器103内の上部に集めた2−プロパノールのリンス液121は排出口119を経て背圧制御バルブ109より選択的に排出される。
(8)この時、図2から見て判るように2−プロパノールのリンス液121は傾斜した高圧容器103内の上部に集まり、バルブ110と背圧制御バルブ109から排出できるが、基板101の外周及びサンプルホルダ104と基板101の間に残っている2−プロパノールのリンス液102を効率良く分離することは難い。この残存する2−プロパノールのリンス液102を基板101とサンプルホルダ104の間から分離、切り離すために図2に示す高圧容器103の傾斜したまま、高圧容器103を傾斜回転方向125と同じ方向に数回振動130させることにより、サンプルホルダ104に設けられた傾斜溝1より効果的に分離させることができる。分離されたリンス液102の2−プロパノールは、前述したように高圧容器103の上部に集められ排出される。
(9)サンプルホルダ104の上下部に設置される温度調整器106を順次5〜60℃の範囲で温度制御を行うことで、微細構造物近傍に残存するリンス液102、121と液体二酸化炭素122を温度制御し、リンス液102,121及び液体二酸化炭素122の密度変化により渦流又は対流の状態変化を発生させ、液体二酸化炭素122とリンス液102,121の置換を促進させることも置換時間短縮に有用である。
(10)ポンプ114での液体二酸化炭素116の圧送を停止させ、高圧容器103の温度を35℃に昇温させる。高圧容器103内の圧力は昇圧するが、設定圧力(7.5〜13MPa程度)を超えると背圧制御バルブ109から排出され、高圧容器103内は設定圧力(7.5〜13MPa程度)に保たれる。この温度変化で、高圧容器103内の液体二酸化炭素は超臨界状態へと状態が変化する。この状態の変化では、液体二酸化炭素の表面張力を微細構造に作用させることが無い。
(11)バルブ113,110を閉じ、バルブ117を開放し、温度を35℃に保ったまま圧力制御バルブ118より超臨界二酸化炭素を排出する。高圧容器103内の圧力が7.38MPa以下になると高圧容器103内を満たしている超臨界に酸化炭素は気体へと状態が変化する。更に、圧力制御バルブ118で排出を続け、高圧容器103内の圧力が大気圧力になった時点で乾燥が終了する。
Hereinafter, the drying process of a present Example is demonstrated.
(1) After forming an EB resist (ZEP-7000: manufactured by ZEON CORPORATION) with a film thickness of 220 nm on an LSI silicon substrate having a diameter of 200 mm and drying, the pattern was drawn with an electron beam with a pattern width of 60 nm or less. A lid 105 and a lower container together with the sample holder 104 described above, which is mounted with the substrate 101 that has been developed for several tens of seconds with normal hexyl acetate, rinsed for several tens of seconds with a 2-propanol rinse solution 102, and has a fine structure formed on the surface. Four pins provided in the high-pressure vessel 103 composed of 124 are installed through the holding guide hole 2. At this time, the rinsing liquid 102 made of 2-propanol soluble in liquid carbon dioxide 116 or supercritical carbon dioxide is on the entire surface of the substrate 101 with a thickness of several millimeters on the substrate 101, or the substrate 101 Is a state immersed in the rinse liquid 102.
(2) When the substrate 101 is installed in the sample holder 104 in the high-pressure processing vessel 103, the lid 105 is opened while the high-pressure processing vessel 103 is in a horizontal state, and the lid 105 is closed after installation to bring the high-pressure processing vessel 103 into an airtight state. To do. At this time, the valves 117, 110, and 107 are closed.
(3) When the valve 113 is opened, liquid carbon dioxide 116 is introduced into the high-pressure vessel 103. At this time, in order not to damage the fine structure formed on the substrate 101 by the pressure control device 123 and to minimize the turbidity of the rinsing liquid 102 and the liquid carbon dioxide, the steady pressure of the liquid carbon dioxide container 115 is about 5 MPa. Up to 1 MPa / several seconds. Liquid carbon dioxide introduced into the high-pressure processing vessel 103 passes through the filter 112 to remove impurities. After introducing the liquid carbon dioxide container 115 to a steady pressure, the pump 114 is operated to compress and deliver the liquid carbon dioxide 116 to a set pressure (about 7.5 to 13 MPa).
(4) FIG. 3 is a cross-sectional view of the microstructure drying apparatus showing a state in which the high-pressure processing vessel 103 is inclined. As shown in FIG. 3, by tilting the high-pressure processing vessel 103 in the tilting and rotating direction 125 by the tilting means, most of the 2-propanol rinsing liquid 102 placed on the substrate 101 is separated from the surface of the substrate 101 and enters the high-pressure vessel 103. The liquid carbon dioxide 116 in the liquid state is almost dissolved and mixed to become a turbid state. When the specific gravity difference with the rinsing liquid 102 is large, the turbid state stabilizes relatively quickly, so that it can be tilted quickly. Further, replacement and discharge can be effectively performed by applying a slow vibration 130 several times in the same direction as the tilt rotation direction 125 from the tilted state.
(5) When the temperature of the high-pressure vessel 103 is lowered by circulation of the heat medium and controlled to about 5 ° C., the specific gravity of liquid carbon dioxide becomes 0.95 g / ml, and the specific gravity of the rinse liquid 102 made of 2-propanol is 0.80 g. Since the specific gravity difference with respect to / ml is about 0.15 g / ml, as shown in FIG. 2, the rinsing liquid 102 collects in the upper portion of the inclined high-pressure processing vessel 103. The pressure increase to the set pressure (about 7.5 to 13 MPa) and the temperature decrease to 5 ° C. may be shifted simultaneously. At this time, in order for the rinsing liquid 102 to be quickly separated from the sample holder 104 and the substrate 101 through the inclined groove 1 described above, the entire surface of the sample holder 104 is subjected to a water-repellent treatment film or a mirror finishing process, and the flow is further improved. Therefore, the sample holder 104 is provided with the inclined groove 1 along the direction in which the high-pressure vessel is inclined as described above.
(6) When the pressure reaches a set pressure (about 7.5 to 13 MPa), in order to converge the turbid state of the rinsing liquid 102 composed of liquid carbon dioxide and 2-propanol, the liquid carbon dioxide 116 is pumped by the pump 114 for several tens of seconds. Is stopped so that the flow of the liquid carbon dioxide 116 does not occur in the high-pressure processing vessel 103. At the same time, in order to minimize the convection of the liquid carbon dioxide 122, the locally provided temperature regulator 106 in the sample holder 104 in the high-pressure processing vessel 103 is controlled to 5 ° C.
(7) When the turbidity of the 2-propanol rinse liquid 121 and the liquid carbon dioxide 122 collected in the upper part of the inclined high-pressure processing vessel 103 has converged, the pump 114 starts pumping the liquid carbon dioxide 116 again. When the valve 110 is opened, the 2-propanol rinse liquid 121 collected at the upper part in the inclined high-pressure processing vessel 103 is selectively discharged from the back pressure control valve 109 through the discharge port 119.
(8) At this time, as can be seen from FIG. 2, the 2-propanol rinse liquid 121 gathers at the top of the inclined high-pressure vessel 103 and can be discharged from the valve 110 and the back pressure control valve 109. In addition, it is difficult to efficiently separate the 2-propanol rinse solution 102 remaining between the sample holder 104 and the substrate 101. In order to separate and separate the remaining 2-propanol rinse solution 102 from between the substrate 101 and the sample holder 104, the high-pressure vessel 103 is moved in the same direction as the inclined rotation direction 125 while the high-pressure vessel 103 shown in FIG. By making the rotational vibration 130, it is possible to effectively separate from the inclined groove 1 provided in the sample holder 104. The separated 2-propanol of the rinsing liquid 102 is collected and discharged on the upper portion of the high-pressure vessel 103 as described above.
(9) The temperature adjusters 106 installed on the upper and lower portions of the sample holder 104 are sequentially controlled in the range of 5 to 60 ° C., so that the rinsing liquids 102 and 121 and the liquid carbon dioxide 122 remaining in the vicinity of the fine structure. It is possible to reduce the replacement time by controlling the temperature and generating a vortex or convection state change by changing the density of the rinsing liquids 102 and 121 and the liquid carbon dioxide 122 to promote the replacement of the liquid carbon dioxide 122 and the rinsing liquids 102 and 121. Useful.
(10) The pumping of the liquid carbon dioxide 116 by the pump 114 is stopped, and the temperature of the high-pressure vessel 103 is raised to 35 ° C. Although the pressure in the high-pressure vessel 103 is increased, when the set pressure (about 7.5 to 13 MPa) is exceeded, the pressure is discharged from the back pressure control valve 109 and the inside of the high-pressure vessel 103 is maintained at the set pressure (about 7.5 to 13 MPa). Be drunk. With this temperature change, the state of the liquid carbon dioxide in the high-pressure vessel 103 changes to a supercritical state. This change in state does not cause the surface tension of liquid carbon dioxide to act on the microstructure.
(11) The valves 113 and 110 are closed, the valve 117 is opened, and supercritical carbon dioxide is discharged from the pressure control valve 118 while maintaining the temperature at 35 ° C. When the pressure in the high-pressure vessel 103 becomes 7.38 MPa or less, the state of the carbon oxide changes into a gas supercritically filling the inside of the high-pressure vessel 103. Further, the discharge is continued with the pressure control valve 118, and the drying is finished when the pressure in the high-pressure vessel 103 becomes the atmospheric pressure.

本実施例は、微細構造乾燥のために利用する流体として比較的低い温度、低い圧力で超臨界状態となる二酸化炭素を用いた場合を例として示したが、二酸化炭素の臨界圧力は7.38MPa、臨界温度は31℃である。そして、温度を5℃から60℃、圧力を3MPaから10MPaに可変させることで液体二酸化炭素の密度を0.65から0.95g/mlに変化させることができ、本実施例に示す2−プロパノールをリンス液として用いた場合、短時間かつ均一な乾燥結果を得ることができる乾燥プロセスを達成できるものである。   In this example, carbon dioxide that is in a supercritical state at a relatively low temperature and low pressure is used as the fluid used for drying the microstructure. For example, the critical pressure of carbon dioxide is 7.38 MPa. The critical temperature is 31 ° C. The density of liquid carbon dioxide can be changed from 0.65 to 0.95 g / ml by changing the temperature from 5 ° C. to 60 ° C. and the pressure from 3 MPa to 10 MPa. Is used as a rinsing liquid, a drying process capable of obtaining a uniform drying result in a short time can be achieved.

以上、本実施例によれば、表面に微細な構造を形成した大口径基板に対してパターン倒れや張り付きがなく、短時間で均一に乾燥させることができる。   As described above, according to this embodiment, there is no pattern collapse or sticking to a large-diameter substrate having a fine structure formed on the surface, and the substrate can be uniformly dried in a short time.

従って、本実施例によれば、従来の臨界点乾燥法が乾燥処理時間が長いこと、又、大口径基板に対しては均一な乾燥結果を得ることができないという欠点を解決できるものである。そして、本実施例によれば、LSI等を大規模に製作するための露光、現像、リンス後のレジスト等のパターン幅が100nm以下、更にパターン幅70nm以下、特にパターン幅(スペース幅)30nm以下の表面微細構造を持ち、直径100mm以上の大口径基板の乾燥処理をパターン倒れ無く、更に短時間で均一に乾燥できるため、デバイス製造ラインへの適用が可能な処理速度を有するものである。   Therefore, according to the present embodiment, the conventional critical point drying method can solve the disadvantage that the drying process time is long and a uniform drying result cannot be obtained for a large-diameter substrate. According to this embodiment, the pattern width of resist, etc. after exposure, development, and rinsing for manufacturing LSI or the like on a large scale is 100 nm or less, and further, the pattern width is 70 nm or less, particularly the pattern width (space width) is 30 nm or less. Since the drying process of a large-diameter substrate having a surface microstructure of 100 mm or more can be uniformly dried in a short time without pattern collapse, it has a processing speed that can be applied to a device manufacturing line.

実施例1の(4)の工程において、高圧容器103の温度を高圧容器103の側壁自身内を熱媒体が循環できる構造により、その中に熱媒体を循環させることによって、28℃程度に制御すると、液体二酸化炭素の比重は0.70g/mlになり、リンス液である2−プロパノールの比重0.80g/mlとの比重差が約0.10程度になるため、2−プロパノールのリンス液は傾斜した高圧容器103内の下部に集まる。本実施例のサンプルホルダ104は図2に示したものと全く同じものであるが、保持用ガイド穴2が図2と左右反対になるだけである。   In the step (4) of the first embodiment, when the temperature of the high-pressure vessel 103 is controlled to about 28 ° C. by circulating the heat medium in the structure in which the heat medium can circulate in the side wall of the high-pressure vessel 103 itself. The specific gravity of liquid carbon dioxide is 0.70 g / ml, and the specific gravity difference from the specific gravity of 0.80 g / ml of 2-propanol, which is the rinsing liquid, is about 0.10. Collect in the lower part of the inclined high-pressure vessel 103. The sample holder 104 of this embodiment is exactly the same as that shown in FIG. 2, except that the holding guide hole 2 is opposite to that in FIG.

下部に集まった2−プロパノールのリンス液を実施例1と同様に傾斜させることによって排出口120に集め、排出口120より実施例1の(5)の工程以降と同様に操作することによって選択的に排出させ、その後は、実施例1と同じプロセスを経て大気圧まで降圧させて乾燥を終了させる。本実施例においても、実施例1と同様の効果を有するものである。   The 2-propanol rinsing liquid collected at the bottom is collected at the outlet 120 by inclining in the same manner as in Example 1, and selectively operated from the outlet 120 in the same manner as in the step (5) and after in Example 1. After that, the pressure is reduced to atmospheric pressure through the same process as in Example 1 to finish drying. This embodiment also has the same effect as that of the first embodiment.

本実施例は、MEMSサンプルのようなフッ酸エッチングで微細構造を有するパターンが形成され、純水でリンス処理した後の乾燥工程を行うものであるが、実施例1又は2と同様に行うことができる。フッ酸エッチングによるパターン形成において、レジストパターンと同様に表面張力の作用によりシリコン三次元構造体の可動部が基板(ベース部)と貼りつく現象が生じ、デバイス不良の要因となるが、本実施例によりこの現象を防止することができる。   In this example, a pattern having a fine structure is formed by hydrofluoric acid etching like a MEMS sample, and a drying process is performed after rinsing with pure water. However, the same process as in Example 1 or 2 is performed. Can do. In the pattern formation by hydrofluoric acid etching, the phenomenon that the movable part of the silicon three-dimensional structure sticks to the substrate (base part) due to the action of the surface tension as in the case of the resist pattern causes the device failure. This can prevent this phenomenon.

先ず、リンス液としての純水は液体又は超臨界状態の二酸化炭素に殆ど溶けないため、基板を予め二酸化炭素に可溶なリンス液に浸漬させて置換しておく。本実施例のMEMSサンプルのリンス液としては、HCFC系洗浄剤とエタノールとを数対1に混合したものである。使用したHCFCは比重1.55g/mlであるので、二酸化炭素の比重を制御しても基板上に載ったHCFCを高圧容器の上側に集めることができないが、本実施例では高圧容器を傾斜させて基板上に載ったリンス液を傾斜した高圧容器下部に集めて選択的に排出させ、その後は、実施例1と同じプロセスを経て大気圧まで降圧させて乾燥を終了させることにより短時間で且つ均一な乾燥結果を得ることができる。   First, since pure water as a rinsing liquid is hardly soluble in liquid or supercritical carbon dioxide, the substrate is previously immersed in a rinsing liquid soluble in carbon dioxide and replaced. The rinse liquid for the MEMS sample of this example is a mixture of HCFC-based cleaning agent and ethanol several to one. Since the used HCFC has a specific gravity of 1.55 g / ml, even if the specific gravity of carbon dioxide is controlled, the HCFC placed on the substrate cannot be collected on the upper side of the high-pressure vessel, but in this embodiment, the high-pressure vessel is inclined. The rinsing liquid placed on the substrate is collected in the lower part of the inclined high-pressure vessel and selectively discharged, and then the pressure is reduced to atmospheric pressure through the same process as in Example 1 to complete the drying in a short time and A uniform drying result can be obtained.

本実施例のHCFCとエタノールの混合液をリンス液としたのは、エタノールは水と置換するためであり、HCFCは二酸化炭素と置換するために使用する。   The reason why the mixed liquid of HCFC and ethanol in this embodiment is used as a rinse liquid is to replace ethanol with water, and HCFC is used to replace carbon dioxide.

以上のように、本実施例によってMEMS部品のようなデバイスに対しても100mm以上の大口径基板に形成した微細構造の可動部が張り付くことなく短時間で均一に乾燥することができる。   As described above, according to the present embodiment, even a device such as a MEMS component can be uniformly dried in a short time without sticking a fine structure movable portion formed on a large-diameter substrate of 100 mm or more.

本発明の一例を示す微細構造乾燥処理装置の断面図である。It is sectional drawing of the fine structure drying processing apparatus which shows an example of this invention. 本発明の微細構造乾燥処理装置用サンプルホルダの平面図とその断面図である。It is the top view and sectional drawing of the sample holder for fine structure drying processing apparatuses of this invention. 本発明の高圧容器を傾斜させた後の微細構造乾燥処理装置の断面図である。It is sectional drawing of the fine structure drying processing apparatus after inclining the high-pressure container of this invention.

符号の説明Explanation of symbols

1…傾斜溝、2…保持用ガイド穴、3…ヒータ逃げ溝、4…ガイドピン、5…コイルバネ、6…スライド用溝、7…押さえ保持具、9…平坦部、10…基板搭載部、11…基板押さえ、12、13…ボルト、101…基板、102、121、300…リンス液、103…高圧容器、104…サンプルホルダ、105…蓋、106…ヒータ、107、110、113、117…バルブ、108、109…背圧制御バルブ、112…フィルタ、114…ポンプ、115…液体二酸化炭素容器、116、122…液体二酸化炭素、118…背圧制御バルブ、119、120…排出口、123…圧力制御装置、124…下部容器、125…傾斜回転方向、130…振動。
DESCRIPTION OF SYMBOLS 1 ... Inclination groove, 2 ... Holding guide hole, 3 ... Heater escape groove, 4 ... Guide pin, 5 ... Coil spring, 6 ... Sliding groove, 7 ... Holding holder, 9 ... Flat part, 10 ... Board mounting part, DESCRIPTION OF SYMBOLS 11 ... Substrate presser, 12, 13 ... Bolt, 101 ... Substrate, 102, 121, 300 ... Rinse solution, 103 ... High pressure vessel, 104 ... Sample holder, 105 ... Lid, 106 ... Heater, 107, 110, 113, 117 ... Valves 108, 109 ... back pressure control valve, 112 ... filter, 114 ... pump, 115 ... liquid carbon dioxide container, 116, 122 ... liquid carbon dioxide, 118 ... back pressure control valve, 119, 120 ... discharge port, 123 ... Pressure control device, 124 ... lower container, 125 ... tilt rotation direction, 130 ... vibration.

Claims (17)

リンス液に浸漬又は濡れた状態の微細構造を有する基板を搭載したサンプルホルダを高圧容器内に設置する工程と、前記高圧容器内に常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で設定圧力まで導入する工程と、前記高圧容器を傾斜させると共に該傾斜によって形成される前記サンプルホルダの特定の通路を通して前記リンス液を前記高圧容器内の上側又は下側に集める工程と、前記集められた前記リンス液を前記傾斜した高圧容器内の上側又は下側に設けられた少なくとも一方の排出口より排出させる工程と、前記流体の圧力を臨界圧力以上に保ったまま前記流体の温度を臨界温度以上に昇温させる工程と、前記流体の温度を臨界温度以上に保ったまま前記流体を排出する工程とを順次有することを特徴とする微細構造乾燥処理方法。   A step of installing in a high-pressure vessel a sample holder equipped with a substrate having a fine structure immersed or wet in a rinsing liquid, and a fluid that is a gas at normal temperature and normal pressure and a liquid that is liquid under high pressure in the high-pressure vessel Or a step of introducing a set pressure in a supercritical state, and a step of inclining the high-pressure vessel and collecting the rinse liquid on the upper side or the lower side in the high-pressure vessel through a specific passage of the sample holder formed by the inclination. Discharging the collected rinse liquid from at least one discharge port provided on the upper side or the lower side in the inclined high-pressure vessel; and maintaining the pressure of the fluid at a critical pressure or higher The temperature of the fluid is increased to a critical temperature or higher, and the fluid is discharged sequentially while maintaining the temperature of the fluid at a critical temperature or higher. Fine structure dry processing method. 請求項1において、前記高圧容器を傾斜した高圧容器をその傾斜回転方向での回転振動により前記リンス液を前記傾斜した高圧容器内の上側又は下側に集める工程を有することを特徴とする微細構造乾燥処理方法。   2. The microstructure according to claim 1, further comprising a step of collecting the rinsing liquid on an upper side or a lower side in the inclined high-pressure vessel by rotating and rotating the high-pressure vessel inclined in the inclined rotation direction. Drying method. リンス液に浸漬又は濡れた状態の微細構造を有する基板を搭載したサンプルホルダを高圧容器内に設置する工程と、前記高圧容器内に常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で設定圧力まで導入する工程と、前記高圧容器を傾斜させると共にその傾斜回転方向での回転振動により前記基板上の前記リンス液を前記傾斜した高圧容器内の上側又は下側に集める工程と、前記集められた前記リンス液を前記傾斜した高圧容器内の上側又は下側に設けられた少なくとも一方の排出口より排出させる工程と、前記流体の圧力を臨界圧力以上に保ったまま前記流体の温度を臨界温度以上に昇温させる工程と、前記流体の温度を臨界温度以上に保ったまま前記流体を排出する工程とを順次有することを特徴とする微細構造乾燥処理方法。   A step of installing in a high-pressure vessel a sample holder equipped with a substrate having a fine structure immersed or wet in a rinsing liquid, and a fluid that is a gas at normal temperature and normal pressure and a liquid that is liquid under high pressure in the high-pressure vessel Alternatively, the step of introducing a set pressure in a supercritical state, and the high-pressure vessel is inclined, and the rinse liquid on the substrate is collected on the upper side or the lower side in the inclined high-pressure vessel by the rotation vibration in the inclined rotation direction. A step of discharging the collected rinse liquid from at least one discharge port provided on the upper side or the lower side of the inclined high-pressure vessel, while maintaining the pressure of the fluid at a critical pressure or higher. A microstructure comprising a step of raising the temperature of the fluid to a critical temperature or higher and a step of discharging the fluid while maintaining the temperature of the fluid above the critical temperature.燥 processing method. 請求項1乃至3のいずれかにおいて、前記リンス液を前記高圧容器内の上側又は下側に集める工程に際して前記流体の温度及び圧力の少なくとも一方を変化させ前記流体の比重を変化させる工程を有することを特徴とする微細構造乾燥処理方法。   4. The method according to claim 1, further comprising: changing the specific gravity of the fluid by changing at least one of the temperature and the pressure of the fluid when collecting the rinse liquid on the upper side or the lower side in the high-pressure vessel. A fine structure drying method characterized by the above. 請求項1乃至4のいずれかにおいて、前記高圧容器を水平に保ち前記サンプルホルダの下部より前記流体を導入することを特徴とする微細構造乾燥処理方法。   5. The fine structure drying treatment method according to claim 1, wherein the fluid is introduced from a lower portion of the sample holder while the high-pressure vessel is kept horizontal. 請求項1乃至5のいずれかにおいて、前記リンス液を排出させる工程と前記流体を臨界状態にする工程との間に、前記流体の温度を制御し前記リンス液及び前記流体の比重変化による渦流又は対流を発生させ、前記流体とリンス液の置換を促進させることを特徴とする微細構造乾燥処理方法。   6. The eddy current according to any one of claims 1 to 5, wherein the temperature of the fluid is controlled between the step of discharging the rinse liquid and the step of bringing the fluid into a critical state. A method for drying a microstructure, characterized by generating convection and promoting replacement of the fluid and a rinsing liquid. 請求項1乃至6のいずれかにおいて、前記リンス液を前記高圧容器内の上側又は下側に集める工程において前記高圧容器の傾斜角を15〜75度に設定することを特徴とする微細構造乾燥処理方法。   7. The microstructure drying process according to claim 1, wherein an inclination angle of the high-pressure vessel is set to 15 to 75 degrees in the step of collecting the rinse liquid on the upper side or the lower side in the high-pressure vessel. Method. 請求項1乃至7のいずれかにおいて、前記振動における振動角を±5〜±15度の範囲で行うことを特徴とする微細構造乾燥処理方法。   8. The fine structure drying treatment method according to claim 1, wherein a vibration angle in the vibration is performed in a range of ± 5 to ± 15 degrees. 請求項1乃至8のいずれかにおいて、前記振動の回数を1〜10回の範囲で行うことを特徴とする微細構造乾燥処理方法。   9. The method for drying a microstructure according to claim 1, wherein the number of vibrations is 1 to 10 times. 請求項1乃至9のいずれかにおいて、前記流体が液化二酸化炭素であり、その密度を0.65〜0.95g/mlの所定の密度に変化させることを特徴とする微細構造乾燥処理方法。   10. The fine structure drying method according to claim 1, wherein the fluid is liquefied carbon dioxide, and the density thereof is changed to a predetermined density of 0.65 to 0.95 g / ml. リンス液に浸漬又は濡れた状態の微細構造を有する基板をサンプルホルダに搭載し設置する高圧容器と、常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で貯蔵する流体貯蔵容器と、前記高圧容器を傾斜させる手段と、前記高圧容器を前記傾斜方向に振動させる手段と、前記傾斜した高圧容器内の上側又は下側に集めた前記リンス液を排出させる前記高圧容器の上側又は下側の少なくとも一方に設けられた排出口とを有する特徴とする微細構造乾燥処理装置。   A high-pressure vessel in which a substrate having a fine structure immersed or wet in a rinsing solution is mounted on a sample holder, and a fluid that stores a gas that is a gas at normal temperature and normal pressure and a liquid under high pressure in a liquid or supercritical state A storage container, means for inclining the high-pressure container, means for vibrating the high-pressure container in the inclination direction, and the high-pressure container for discharging the rinse liquid collected on the upper side or the lower side in the inclined high-pressure container. A fine structure drying apparatus having a discharge port provided on at least one of the upper side and the lower side. 請求項11において、前記サンプルホルダは前記基板の搭載面側に設けられた溝を通して前記リンス液を前記高圧容器の上側又は下側に集めることを特徴とする微細構造乾燥処理装置。   12. The microstructure drying apparatus according to claim 11, wherein the sample holder collects the rinse liquid on the upper side or the lower side of the high-pressure vessel through a groove provided on the mounting surface side of the substrate. リンス液に浸漬又は濡れた状態の微細構造を有する基板をサンプルホルダに搭載し設置する高圧容器と、常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で貯蔵する流体貯蔵容器と、前記高圧容器を傾斜させる手段と、前記傾斜した高圧容器内の上側又は下側に集めた前記リンス液を排出させる前記高圧容器の上側又は下側の少なくとも一方に設けられた排出口とを有し、前記サンプルホルダは前記基板の搭載面より外側に向かって設けられた傾斜溝を有し、該傾斜溝を通して前記リンス液を前記高圧容器の上側又は下側に集めることを特徴とする微細構造乾燥処理装置。   A high-pressure vessel in which a substrate having a fine structure immersed or wet in a rinsing solution is mounted on a sample holder, and a fluid that stores a gas that is a gas at normal temperature and normal pressure and a liquid under high pressure in a liquid or supercritical state A storage container, a means for inclining the high-pressure container, and a discharge port provided on at least one of the upper side or the lower side of the high-pressure container for discharging the rinse liquid collected on the upper side or the lower side in the inclined high-pressure container And the sample holder has an inclined groove provided outward from the mounting surface of the substrate, and the rinse liquid is collected on the upper side or the lower side of the high-pressure vessel through the inclined groove. Microstructure drying processing equipment. 請求項11乃至13のいずれかにおいて、前記高圧容器内の流体の温度及び圧力の少なくとも一方を変化させ流体の比重を変化させる温度又は圧力調整手段とを有することを特徴とする微細構造乾燥処理装置。   14. The fine structure drying apparatus according to claim 11, further comprising a temperature or pressure adjusting means for changing at least one of a temperature and a pressure of the fluid in the high-pressure vessel to change a specific gravity of the fluid. . 請求項11乃至14のいずれかにおいて、前記流体を前記高圧容器に流体を圧送するポンプと、前記サンプルホルダの上側及び下側の少なくとも一方に前記基板の温度を制御する温度調整器と、前記高圧容器内に導入される流体の圧力を制御する圧力制御装置と、高圧容器への流体導入時に高圧容器内の昇圧速度を制御する昇圧速度制御手段とを有することを特徴とする微細構造乾燥装置。   The pump according to any one of claims 11 to 14, wherein the fluid is pumped to the high-pressure vessel, the temperature controller for controlling the temperature of the substrate on at least one of the upper side and the lower side of the sample holder, and the high pressure A fine structure drying apparatus comprising: a pressure control device that controls a pressure of a fluid introduced into a container; and a pressure increase speed control unit that controls a pressure increase speed in the high pressure container when the fluid is introduced into the high pressure container. 高圧容器内にリンス液に浸漬又は濡れた状態の微細構造を有する基板を搭載して設置し、常温及び常圧では気体で高圧下では液体となる流体によって前記リンス液を乾燥除去する微細構造乾燥処理装置用サンプルホルダにおいて、前記基板の搭載部の接触部の所定の位置から外側に亘って前記高圧容器を傾斜させる方向に沿って形成された所定の幅の傾斜溝を有することを特徴とする微細構造乾燥処理装置用サンプルホルダ。   Microstructure drying in which a substrate having a fine structure immersed or wet in a rinsing liquid is installed in a high-pressure vessel, and the rinsing liquid is dried and removed by a fluid that is a gas at normal temperature and normal pressure and a liquid at high pressure. The processing apparatus sample holder includes an inclined groove having a predetermined width formed along a direction in which the high-pressure vessel is inclined from a predetermined position of the contact portion of the mounting portion of the substrate to the outside. Sample holder for fine structure drying processing equipment. 請求項16において、少なくとも前記傾斜溝に撥水処理皮膜又は鏡面仕上げ加工が施されていることを特徴とする微細構造乾燥処理装置用サンプルホルダ。

The sample holder for a fine structure drying apparatus according to claim 16, wherein at least the inclined groove is subjected to a water-repellent treatment film or a mirror finish.

JP2004293285A 2004-10-06 2004-10-06 Fine structure drying method and apparatus and sample holder Expired - Fee Related JP4409399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293285A JP4409399B2 (en) 2004-10-06 2004-10-06 Fine structure drying method and apparatus and sample holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293285A JP4409399B2 (en) 2004-10-06 2004-10-06 Fine structure drying method and apparatus and sample holder

Publications (2)

Publication Number Publication Date
JP2006108402A true JP2006108402A (en) 2006-04-20
JP4409399B2 JP4409399B2 (en) 2010-02-03

Family

ID=36377762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293285A Expired - Fee Related JP4409399B2 (en) 2004-10-06 2004-10-06 Fine structure drying method and apparatus and sample holder

Country Status (1)

Country Link
JP (1) JP4409399B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964970B1 (en) 2007-08-17 2010-06-21 한국전자통신연구원 Releasing apparatus for anti-stiction of microstructure of mems
KR20130138122A (en) * 2012-06-08 2013-12-18 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
JP2013254906A (en) * 2012-06-08 2013-12-19 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964970B1 (en) 2007-08-17 2010-06-21 한국전자통신연구원 Releasing apparatus for anti-stiction of microstructure of mems
US8613287B2 (en) 2007-08-17 2013-12-24 Electronics And Telecommunications Research Institute Apparatus for preventing stiction of MEMS microstructure
KR20130138122A (en) * 2012-06-08 2013-12-18 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
JP2013254906A (en) * 2012-06-08 2013-12-19 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
US9662685B2 (en) 2012-06-08 2017-05-30 Tokyo Electron Limited Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
US10046370B2 (en) 2012-06-08 2018-08-14 Tokyo Electron Limited Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
KR101920941B1 (en) 2012-06-08 2018-11-21 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium

Also Published As

Publication number Publication date
JP4409399B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4546314B2 (en) Fine structure drying method and apparatus
JP6662977B2 (en) Stiction-free drying process with contaminant removal for high aspect ratio semiconductor device structures
JP3965693B2 (en) Fine structure drying method and apparatus and high-pressure vessel thereof
JP5647845B2 (en) Substrate drying apparatus and substrate drying method
KR101546632B1 (en) Substrate processing apparatus and substrate processing method
JP4994990B2 (en) Substrate processing method, substrate processing apparatus, program, recording medium, and replacement agent
JP5188216B2 (en) Substrate processing apparatus and substrate processing method
JP6320868B2 (en) Substrate processing apparatus and substrate processing method
JP4133209B2 (en) High pressure processing equipment
CN107424908B (en) Wafer processing method
KR102037906B1 (en) Substrate treating apparatus and substrate treating method
TW201201263A (en) Supercritical processing apparatus and supercritical processing method
JP2007049065A (en) Super-critical processor
JP4372590B2 (en) Fine structure drying method and apparatus
JP4247087B2 (en) Fine structure drying method and apparatus
JP2006332215A (en) Method of processing microstructure and apparatus thereof
JP2004311507A (en) Method, device, and system for drying microstructure
JP4409399B2 (en) Fine structure drying method and apparatus and sample holder
JP6216274B2 (en) Substrate processing method and substrate processing apparatus
JP2004327894A (en) Supercritical drying method and supercritical dryer
JP3861798B2 (en) Resist development processing apparatus and method
JP4342896B2 (en) Fine structure drying method and apparatus
JP4008900B2 (en) Supercritical processing method
JP2009110984A (en) Substrate processing method and substrate processing apparatus
JP4307973B2 (en) Supercritical fluid processing apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees