JP2006107950A - Organic el display device - Google Patents

Organic el display device Download PDF

Info

Publication number
JP2006107950A
JP2006107950A JP2004293817A JP2004293817A JP2006107950A JP 2006107950 A JP2006107950 A JP 2006107950A JP 2004293817 A JP2004293817 A JP 2004293817A JP 2004293817 A JP2004293817 A JP 2004293817A JP 2006107950 A JP2006107950 A JP 2006107950A
Authority
JP
Japan
Prior art keywords
organic
film
display device
protective film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004293817A
Other languages
Japanese (ja)
Inventor
Masanori Yoshida
正典 吉田
Yukito Aota
幸人 青田
Hiroshi Sukai
浩士 須貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004293817A priority Critical patent/JP2006107950A/en
Publication of JP2006107950A publication Critical patent/JP2006107950A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL display device in which a display performance deterioration of an organic EL element due to water invading from the interface of a protecting film and a substrate is prevented. <P>SOLUTION: The organic EL element is pinched by two layers of protecting films (11-a, b) of which main components are Si and N, and the two layers of the protecting films mutually contact at the pattern end part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機化合物からなる薄膜に電界を印加することにより光を放出する有機EL素子を用いた表示装置に関する。   The present invention relates to a display device using an organic EL element that emits light by applying an electric field to a thin film made of an organic compound.

有機EL素子とは、陰極と陽極との間に流れる電流によって、両電極間に在る有機化合物が発光する素子のことである。   An organic EL element is an element in which an organic compound existing between both electrodes emits light by a current flowing between a cathode and an anode.

有機EL素子は自発光性であるために視認性が高いと同時に、液晶表示素子に比し、薄型軽量化が可能であるため、特にモバイル用途での応用展開が進められている。   Organic EL elements are self-luminous and have high visibility, and at the same time can be made thinner and lighter than liquid crystal display elements.

有機EL素子の断面構造の一例を図1に示す。図中、(1)は基板、(2)は金属電極、(3)は正孔輸送層、(4)は発光層、(5)は電子輸送層、(6)は透明電極をそれぞれ表しており、基板上面側より発光表示を行う。この構造の有機EL素子は一般にトップエミッション素子と呼ばれ、基板裏面より発光表示を行うボトムエミッション素子に比べ、開口率を高めることができるため、高精細化が実現できるという利点がある。   An example of the cross-sectional structure of the organic EL element is shown in FIG. In the figure, (1) is a substrate, (2) is a metal electrode, (3) is a hole transport layer, (4) is a light emitting layer, (5) is an electron transport layer, and (6) is a transparent electrode. The light emission display is performed from the upper surface side of the substrate. An organic EL element having this structure is generally called a top emission element, and has an advantage that high definition can be realized because the aperture ratio can be increased as compared with a bottom emission element that emits light from the back surface of the substrate.

一方で、有機EL素子には、ごく微量の水分や酸素により、有機発光性材料の変質、あるいは、発光層と電極間の剥離を生じ、発光効率の低下、非発光領域(ダークスポット)の増大等の表示性能劣化が発生するという課題がある。このため、従来、素子全体を凹形状の金属、あるいはガラスの封止キャップでカバーし、なおかつ、素子基板と封止キャップの空壁部(封止空間)に乾燥剤を封入することにより、水分をトラップし、素子の劣化を防止する構成が一般に採用されている。しかしながら本構成では、乾燥剤を封入するスペースを確保する必要があり、素子の小型、薄型化に不利であるとともに、発光取り出し面側に乾燥剤を配置するため、トップエミッション素子の光取り出し効率を低下させるという課題があった。   On the other hand, in organic EL elements, a very small amount of moisture or oxygen causes alteration of the organic light-emitting material or peeling between the light-emitting layer and the electrode, resulting in a decrease in light emission efficiency and an increase in non-light-emitting regions (dark spots). There is a problem that display performance deterioration occurs. For this reason, conventionally, the entire element is covered with a concave metal or glass sealing cap, and a moisture is sealed by enclosing a desiccant in the element substrate and the empty wall (sealing space) of the sealing cap. In general, a configuration is employed in which the element is trapped and deterioration of the element is prevented. However, in this configuration, it is necessary to secure a space for enclosing the desiccant, which is disadvantageous for reducing the size and thickness of the element, and arranging the desiccant on the light emission extraction surface side, so that the light extraction efficiency of the top emission element is improved. There was a problem of lowering.

これに対し、近年、水分遮断性の高い薄膜で素子を被覆保護する取り組みがなされている。例えば、特許文献1では、素子全体をSiN膜あるいはダイヤモンド様炭素膜で被覆保護する方法が開示されている。しかしながら、水分の浸入は保護膜を通してのみならず、保護膜と下地基板の界面を通しての浸入が優位的である。したがって、これらの方法で、有機EL素子上に保護膜を形成した場合でも、保護膜パターンの端部からの水分の浸入を防止できない為、素子の特性劣化を防止できないという課題がある。   On the other hand, in recent years, efforts have been made to cover and protect the element with a thin film having a high moisture barrier property. For example, Patent Document 1 discloses a method of covering and protecting the entire element with a SiN film or a diamond-like carbon film. However, the penetration of moisture is advantageous not only through the protective film but also through the interface between the protective film and the base substrate. Therefore, even when a protective film is formed on the organic EL element by these methods, there is a problem that the deterioration of the characteristics of the element cannot be prevented because the intrusion of moisture from the end of the protective film pattern cannot be prevented.

これに対し、保護膜パターンの大きさを広げることでパターン端部からの水分の浸入を防止しようとする取り組みがなされている。例えば、特許文献2では、素子全体をSiON膜を含む積層膜で被覆保護し、かつ、SiON膜パターンの面積を最も大きく設計する方法が開示されている。しかしながら、これらの方法で有機EL素子上に保護膜を形成した場合でも、基板と保護膜の接触界面を通しての水分の浸入は完全には防げず、有機EL表示装置に要求される数千時間の良好な表示性能が実現できないという課題があった。特に、有機EL表示装置に熱衝撃が加わると、保護膜と基板の界面からの水分の浸入が加速され、素子劣化が生じやすくなるという課題がある。   On the other hand, efforts are being made to prevent intrusion of moisture from the pattern edge by increasing the size of the protective film pattern. For example, Patent Document 2 discloses a method of covering and protecting the entire element with a laminated film including a SiON film and designing the area of the SiON film pattern to be the largest. However, even when a protective film is formed on the organic EL element by these methods, the intrusion of moisture through the contact interface between the substrate and the protective film cannot be completely prevented, and thousands of hours required for the organic EL display device are required. There was a problem that good display performance could not be realized. In particular, when a thermal shock is applied to the organic EL display device, there is a problem that moisture permeation from the interface between the protective film and the substrate is accelerated and element deterioration is likely to occur.

特開平10−261487号公報JP-A-10-261487 特開2002−25765号公報JP 2002-25765 A

本発明は、保護膜と基板の界面から浸入する水分による有機EL素子の表示性能劣化を防止することを目的とする。   An object of the present invention is to prevent display performance deterioration of an organic EL element due to moisture entering from an interface between a protective film and a substrate.

上記の目的を達成すべく成された本発明の有機EL表示装置は、有機EL素子がSiとNを主成分とする2層の保護膜により挟持され、かつ、前記2層の保護膜がパターン端部で互いに接していることを特徴とする。
また、前記2層の保護膜がともにSiNx、SiOxNy、SiHxNyのいずれかであることを特徴とする。
また、有機EL素子が、基板上面側より発光を取り出すトップエミッション素子であることを特徴とする。
The organic EL display device of the present invention formed to achieve the above object has an organic EL element sandwiched between two protective films mainly composed of Si and N, and the two protective films are patterned. The ends are in contact with each other.
Further, the two-layer protective films are both SiNx, SiOxNy, or SiHxNy.
Further, the organic EL element is a top emission element that extracts light emission from the upper surface side of the substrate.

本発明によれば、高い水分遮断性を持ち、組成が類似する2層の保護膜で有機EL素子を挟み込み、かつ、前記2層の保護膜をパターン端部で互いに接触させることにより、保護膜を通しての水分の浸入と、保護膜と基板の界面からの水分の浸入の両方を防止し、有機EL素子の表示性能劣化を防止することができる。   According to the present invention, the organic EL element is sandwiched between two protective films having high moisture barrier properties and similar compositions, and the two protective films are brought into contact with each other at the pattern end, thereby providing a protective film. And the penetration of moisture from the interface between the protective film and the substrate can be prevented, and display performance deterioration of the organic EL element can be prevented.

本発明は、有機EL素子がSiとNが主成分の2層の保護膜により挟持され、かつ、前記2層の保護膜がパターン端部で互いに接していることを特徴とする有機EL表示装置であり、類似した組成を持つ2層の保護膜は、親和性が高く、接着界面の密着性が非常に高いため、界面を通じての水分の浸入を防止することができる。また、類似した組成を持つ2層の保護膜は熱膨張係数がほぼ同じであり、素子に熱衝撃が加わっても接着界面の密着性の低下が生じない。   According to the present invention, an organic EL display device is characterized in that an organic EL element is sandwiched between two protective films mainly composed of Si and N, and the two protective films are in contact with each other at a pattern end. Since the two-layer protective film having a similar composition has high affinity and extremely high adhesion at the adhesion interface, it is possible to prevent moisture from entering through the interface. In addition, the two-layer protective film having a similar composition has substantially the same thermal expansion coefficient, and even when a thermal shock is applied to the element, the adhesion at the adhesive interface does not deteriorate.

さらに、本発明の有機EL表示装置は、保護膜の水分遮断性が非常に高いために、封止キャップや乾燥剤を使用しなくても、有機EL素子の表示性能劣化を防止することが可能である。また、素子の信頼性をより高める為に、本発明の保護膜と封止キャップを組み合わせて使用する場合においても、封止空間へ存在させる乾燥剤の量が、従来に比べ、ごく少量でよいため、素子の発光領域外の微小なスペースに乾燥剤を配置したり、あるいは、少量の乾燥剤を薄膜化して封止キャップ、または素子上に配置する構成をとることで、素子の薄型、小型性能を損なうことなく、信頼性の高い小型・薄型の有機EL表示装置を実現することが可能である。   Furthermore, since the organic EL display device of the present invention has a very high moisture barrier property of the protective film, it is possible to prevent display performance deterioration of the organic EL element without using a sealing cap or a desiccant. It is. Further, in order to further improve the reliability of the device, even when the protective film of the present invention and the sealing cap are used in combination, the amount of the desiccant present in the sealing space may be very small compared to the conventional case. Therefore, the device can be made thin and small by placing a desiccant in a minute space outside the light emitting area of the device, or by arranging a small amount of desiccant into a sealing cap or on the device. A highly reliable small and thin organic EL display device can be realized without impairing performance.

本発明で使用できる保護膜の要件としては、以下の点が挙げられる。
(1)高い防湿性能を有すること。具体的には、膜の透湿性能は1.0×10-3g/m2/day以下が好ましい。
(2)有機EL素子の発光取り出し側に使用するため、可視光領域での光透過性が高いこと。具体的には、素子の発光効率の観点から可視光透過率は90%以上であることが好ましい。
(3)素子上に保護膜を形成する際の素子破壊を防止する為、有機EL表示部の耐熱温度以下、すなわち、少なくとも100℃以下の低温で成膜可能であること。
(4)成膜に際し、UV光を使用しないこと。
(5)成膜に際し、有機EL素子を溶解する有機溶剤を使用しないこと。
The requirements of the protective film that can be used in the present invention include the following points.
(1) Having high moisture-proof performance. Specifically, the moisture permeability of the membrane is preferably 1.0 × 10 −3 g / m 2 / day or less.
(2) Since it is used on the light emission side of the organic EL element, it has a high light transmittance in the visible light region. Specifically, the visible light transmittance is preferably 90% or more from the viewpoint of the luminous efficiency of the device.
(3) In order to prevent element destruction when forming a protective film on the element, the film can be formed at a temperature lower than the heat resistance temperature of the organic EL display portion, that is, at least 100 ° C. or lower.
(4) Do not use UV light during film formation.
(5) Do not use an organic solvent that dissolves the organic EL element during film formation.

これらの条件を満たす保護膜として、SiNx、SiOxNy、SiHxNy膜が最も好適に利用できる。また、これらの無機膜を成膜する手法として、スパッタリング法、CVD法等の真空成膜が好適に利用できる。   SiNx, SiOxNy, and SiHxNy films can be most suitably used as protective films that satisfy these conditions. Moreover, as a method for forming these inorganic films, vacuum film formation such as sputtering or CVD can be suitably used.

さらに、接触界面の親和性を高める為に、2層目の保護膜を形成する前に、1層目の保護膜表面にUV照射、逆スパッタ処理等の活性化処理を施すことがより好ましい。   Furthermore, in order to increase the affinity of the contact interface, it is more preferable to perform activation treatment such as UV irradiation and reverse sputtering treatment on the surface of the first protective film before forming the second protective film.

以下に、本発明の実施例を図面に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below with reference to the drawings. However, the present invention is not limited to these examples.

(実施例1)
本発明に基づく実施例1について、図2にしたがって説明する。なお、図2は、本実施例で作製した有機EL表示装置の側端部断面を模式的に示したものである。
Example 1
A first embodiment according to the present invention will be described with reference to FIG. FIG. 2 schematically shows a cross section of a side end portion of the organic EL display device manufactured in this example.

まず、TFT(8)が形成された基板(1)上にスパッタリング法により、SiOxNy膜(11−a)をスパッタリング法で100nm形成した後、ドライエッチングにより、TFTのドレイン電極の部位にコンタクトホールを形成、さらに、スピンコート法で光硬化性樹脂(アクリル樹脂(ワールドロック815T、協立化学社製))をコーティング、露光、現像することにより、平坦化膜(9)を形成した。次に、同様に光硬化性樹脂(アクリル樹脂(ワールドロック815T、協立化学社製))を用い、TFT及び電極配線を覆うように、画素分離膜(10)を形成した。引き続いて、クロム膜を200nmの厚みで成膜、パターニングし、金属電極(2)とした。   First, a SiOxNy film (11-a) is formed to a thickness of 100 nm by sputtering on the substrate (1) on which the TFT (8) is formed, and then a contact hole is formed at the drain electrode portion of the TFT by dry etching. The planarization film (9) was formed by coating, exposing and developing a photocurable resin (acrylic resin (World Rock 815T, manufactured by Kyoritsu Chemical Co., Ltd.)) by spin coating. Next, similarly, using a photocurable resin (acrylic resin (World Lock 815T, manufactured by Kyoritsu Chemical Co., Ltd.)), a pixel separation film (10) was formed so as to cover the TFT and the electrode wiring. Subsequently, a chromium film having a thickness of 200 nm was formed and patterned to obtain a metal electrode (2).

その後、該基板をアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、UV/オゾン洗浄した。   Thereafter, the substrate was successively subjected to ultrasonic cleaning with acetone and isopropyl alcohol (IPA), then boiled with IPA and dried. Further, UV / ozone cleaning was performed.

次いで、真空蒸着装置(真空機工社製)を用いて、洗浄後の該基板上に正孔輸送性を有する下記化1式で表されるαNPDを真空蒸着法により50nmの膜厚で成膜して、正孔輸送層(3)を形成した。蒸着時の真空度は1.3×10-4Pa(1.0×10-6Torr)、成膜速度は0.2〜0.3nm/secの条件で成膜した。 Next, using a vacuum deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), an αNPD represented by the following formula 1 having hole transportability is formed on the washed substrate with a film thickness of 50 nm by a vacuum deposition method. Thus, a hole transport layer (3) was formed. The degree of vacuum during vapor deposition was 1.3 × 10 −4 Pa (1.0 × 10 −6 Torr), and the film formation rate was 0.2 to 0.3 nm / sec.

Figure 2006107950
Figure 2006107950

次に、同様の手法で、前記正孔輸送層(3)の上に、下記化2式で表される、アルミキレート錯体(Alq3)と、下記化3式で表せるクマリン6を100:6の重量比率で共蒸着し、50nmの膜厚で発光層(4)を形成した。   Next, in the same manner, on the hole transport layer (3), an aluminum chelate complex (Alq3) represented by the following chemical formula 2 and coumarin 6 represented by the following chemical formula 3 are 100: 6. Co-evaporation was performed at a weight ratio to form a light emitting layer (4) with a film thickness of 50 nm.

Figure 2006107950
Figure 2006107950

Figure 2006107950
Figure 2006107950

次に、電子輸送層(5)として、下記化4式で表されるフェナントロリン化合物を10nm成膜した。   Next, as the electron transport layer (5), a phenanthroline compound represented by the following chemical formula 4 was formed to a thickness of 10 nm.

Figure 2006107950
Figure 2006107950

続いて、透明電極(6)(ITO)をスパッタ法にて150nm成膜して、有機EL素子を得た。   Subsequently, a transparent electrode (6) (ITO) was formed to a thickness of 150 nm by a sputtering method to obtain an organic EL element.

さらに、保護膜(11−a)の接着界面部位(11−c)に逆スパッタ処理を施した後、スパッタリング法によりSiOxNy膜(11−b)を800nm形成した。尚、保護膜(11−a、b)の成膜はプラズマによる有機EL素子のダメージを防止する為に、対向ターゲットスパッタ装置(大阪真空社製)、Siターゲットを使用し、DCパワー:1.45kw、成膜圧力:0.7Pa、Ar流量:30sccm、N2流量:8sccm、O2流量:2sccm、の条件で成膜した。 Further, after performing reverse sputtering treatment on the adhesion interface part (11-c) of the protective film (11-a), a SiOxNy film (11-b) was formed to 800 nm by a sputtering method. The protective film (11-a, b) is formed using a counter target sputtering apparatus (manufactured by Osaka Vacuum Co., Ltd.) and a Si target in order to prevent plasma damage to the organic EL element. The film was formed under the conditions of 45 kw, film forming pressure: 0.7 Pa, Ar flow rate: 30 sccm, N 2 flow rate: 8 sccm, and O 2 flow rate: 2 sccm.

このようにして得られた有機EL表示装置に高温高湿試験(60℃、90%湿度、500時間放置)を行ったが、試験前後でダークスポットの発生、発光効率低下等の表示品位劣化は生じなかった。またヒートサイクル試験(−30℃×30分+60℃×30分、10サイクル)を行った後に、同様に高温高湿試験(60℃、90%湿度、500時間放置)を行ったが、同様に表示品位の劣化は生じなかった。   The organic EL display device thus obtained was subjected to a high-temperature and high-humidity test (60 ° C., 90% humidity, left for 500 hours). However, before and after the test, display quality degradation such as generation of dark spots and reduction in luminous efficiency was observed. Did not occur. In addition, after a heat cycle test (−30 ° C. × 30 minutes + 60 ° C. × 30 minutes, 10 cycles), a high-temperature and high-humidity test (60 ° C., 90% humidity, left for 500 hours) was similarly performed. The display quality did not deteriorate.

(実施例2)
本発明に基づく実施例2について、図3にしたがって説明する。なお、図3は本実施例で作製した有機EL表示装置の側端部断面を模式的に示したものである。
(Example 2)
A second embodiment based on the present invention will be described with reference to FIG. FIG. 3 schematically shows a cross section of the side end of the organic EL display device manufactured in this example.

まず、TFT(8)が形成された基板(1)上にスパッタリング法により、SiNx膜(11−a)をスパッタリング法で100nm形成した後、ドライエッチングにより、TFTのドレイン電極の部位にコンタクトホールを形成、さらに、スピンコート法で光硬化性樹脂(アクリル樹脂(ワールドロック815T、協立化学社製))をコーティング、露光、現像することにより、平坦化膜(9)を形成した。次に、同様に光硬化性樹脂(アクリル樹脂(ワールドロック815T、協立化学社製))を用い、TFT及び電極配線を覆うように、画素分離膜(10)を形成した。引き続いて、クロム膜を200nmの厚みで成膜、パターニングし、金属電極(2)とした。   First, a SiNx film (11-a) is formed to a thickness of 100 nm by sputtering on the substrate (1) on which the TFT (8) is formed, and then a contact hole is formed at the drain electrode portion of the TFT by dry etching. The planarization film (9) was formed by coating, exposing and developing a photocurable resin (acrylic resin (World Rock 815T, manufactured by Kyoritsu Chemical Co., Ltd.)) by spin coating. Next, similarly, using a photocurable resin (acrylic resin (World Lock 815T, manufactured by Kyoritsu Chemical Co., Ltd.)), a pixel separation film (10) was formed so as to cover the TFT and the electrode wiring. Subsequently, a chromium film having a thickness of 200 nm was formed and patterned to obtain a metal electrode (2).

その後、該基板をアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、UV/オゾン洗浄した。   Thereafter, the substrate was successively subjected to ultrasonic cleaning with acetone and isopropyl alcohol (IPA), then boiled with IPA and dried. Further, UV / ozone cleaning was performed.

次いで、実施例1と同様の手法で、正孔輸送層(3)、発光層(4)、電子輸送層(5)及び透明電極(6)(ITO)を成膜して、有機EL素子を得た。   Next, a hole transport layer (3), a light emitting layer (4), an electron transport layer (5), and a transparent electrode (6) (ITO) were formed in the same manner as in Example 1 to obtain an organic EL element. Obtained.

さらに、保護膜(11−a)の接着界面部位(11−c)に逆スパッタ処理を施した後、スパッタリング法によりSiNx膜(11−b)を800nm形成した。尚、保護膜(11−a、b)の成膜はプラズマによる有機EL素子のダメージを防止する為に、対向ターゲットスパッタ装置(大阪真空社製)、Siターゲットを使用し、DCパワー:1.45kw、成膜圧力:0.7Pa、Ar流量:30sccm、N2流量:8sccm、の条件で成膜した。 Further, after performing reverse sputtering treatment on the adhesion interface part (11-c) of the protective film (11-a), an SiNx film (11-b) was formed to 800 nm by sputtering. The protective film (11-a, b) is formed using a counter target sputtering apparatus (manufactured by Osaka Vacuum Co., Ltd.) and a Si target in order to prevent plasma damage to the organic EL element. The film was formed under the conditions of 45 kw, film forming pressure: 0.7 Pa, Ar flow rate: 30 sccm, and N 2 flow rate: 8 sccm.

引き続いて、有機EL表示装置の非発光領域に相当する部位に、乾燥剤(酸化カルシウム)(13)を形成した封止ガラスキャップ(12)を接着剤(アラルダイト、日本チバガイギー社製)(14)を用い、素子基板に貼り付け、素子全体を被覆保護し、有機EL表示装置を得た。   Subsequently, a sealing glass cap (12) in which a desiccant (calcium oxide) (13) is formed is applied to a portion corresponding to a non-light emitting region of the organic EL display device with an adhesive (Araldite, manufactured by Ciba Geigy Japan) (14) Was attached to the element substrate to cover and protect the entire element to obtain an organic EL display device.

このようにして得られた有機EL表示装置に高温高湿試験(60℃、90%湿度、500時間放置)を行ったが、試験前後でダークスポットの発生、発光効率低下等の表示品位劣化は生じなかった。またヒートサイクル試験(−30℃×30分+60℃×30分、10サイクル)を行った後に、同様に高温高湿試験(60℃、90%湿度、500時間放置)を行ったが、同様に表示品位の劣化は生じなかった。   The organic EL display device thus obtained was subjected to a high-temperature and high-humidity test (60 ° C., 90% humidity, left for 500 hours). However, before and after the test, display quality degradation such as generation of dark spots and reduction in luminous efficiency was observed. Did not occur. In addition, after a heat cycle test (−30 ° C. × 30 minutes + 60 ° C. × 30 minutes, 10 cycles), a high-temperature and high-humidity test (60 ° C., 90% humidity, left for 500 hours) was similarly performed. The display quality did not deteriorate.

(比較例)
本比較例は、図2に示す保護膜(11−a)を形成しないこと以外は実施例1と同様にして有機EL表示装置を作製したものである。
(Comparative example)
In this comparative example, an organic EL display device was produced in the same manner as in Example 1 except that the protective film (11-a) shown in FIG. 2 was not formed.

まず、TFT(8)が形成された基板(1)上にスピンコート法で光硬化性樹脂(アクリル樹脂(ワールドロック815T、協立化学社製))をコーティング、露光、現像することにより、平坦化膜(9)を形成した。次に、同様に光硬化性樹脂(アクリル樹脂(ワールドロック815T、協立化学社製))を用い、TFT及び電極配線を覆うように、画素分離膜(10)を形成した。引き続いて、クロム膜を200nmの厚みで成膜、パターニングし、金属電極(2)とした。   First, the substrate (1) on which the TFT (8) is formed is coated with a photo-curing resin (acrylic resin (World Lock 815T, manufactured by Kyoritsu Chemical Co., Ltd.)) by spin coating, and is flattened. A chemical film (9) was formed. Next, similarly, using a photocurable resin (acrylic resin (World Lock 815T, manufactured by Kyoritsu Chemical Co., Ltd.)), a pixel separation film (10) was formed so as to cover the TFT and the electrode wiring. Subsequently, a chromium film having a thickness of 200 nm was formed and patterned to obtain a metal electrode (2).

その後、該基板をアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、UV/オゾン洗浄した。   Thereafter, the substrate was successively subjected to ultrasonic cleaning with acetone and isopropyl alcohol (IPA), then boiled with IPA and dried. Further, UV / ozone cleaning was performed.

次いで、実施例1と同様の手法で、正孔輸送層(3)、発光層(4)、電子輸送層(5)及び透明電極(6)(ITO)を成膜して、有機EL素子を得た。   Next, a hole transport layer (3), a light emitting layer (4), an electron transport layer (5), and a transparent electrode (6) (ITO) were formed in the same manner as in Example 1 to obtain an organic EL element. Obtained.

さらに、スパッタリング法によりSiOxNy膜(保護膜)を800nm形成した。尚、保護膜の成膜はプラズマによる有機EL素子のダメージを防止する為に、対向ターゲットスパッタ装置(大阪真空社製)、Siターゲットを使用し、DCパワー:1.45kw、成膜圧力:0.7Pa、Ar流量:30sccm、N2流量:8sccm、O2流量:2sccm、の条件で成膜した。 Further, a SiOxNy film (protective film) having a thickness of 800 nm was formed by sputtering. In addition, in order to prevent the organic EL element from being damaged by plasma, the protective film is formed using a counter target sputtering apparatus (manufactured by Osaka Vacuum Co., Ltd.) and a Si target, DC power: 1.45 kw, film forming pressure: 0 The film was formed under the conditions of 0.7 Pa, Ar flow rate: 30 sccm, N 2 flow rate: 8 sccm, and O 2 flow rate: 2 sccm.

このようにして得られた有機EL表示装置に高温高湿試験(60℃、90%湿度、500時間放置)を行ったところ、試験前後で素子の発光効率低下が生じた。またヒートサイクル試験(−30℃×30分+60℃×30分、10サイクル)を行った後に、同様に高温高湿試験(60℃、90%湿度、500時間放置)を行ったところ、素子にダークスポットの発生が認められ、発光効率の低下が生じた。   When the organic EL display device thus obtained was subjected to a high-temperature and high-humidity test (60 ° C., 90% humidity, left for 500 hours), the luminous efficiency of the device was lowered before and after the test. In addition, after performing a heat cycle test (−30 ° C. × 30 minutes + 60 ° C. × 30 minutes, 10 cycles), a high temperature and high humidity test (60 ° C., 90% humidity, left for 500 hours) was performed. The occurrence of dark spots was observed, resulting in a decrease in luminous efficiency.

一般的な有機EL素子の一例を示す断面図である。It is sectional drawing which shows an example of a common organic EL element. 本発明の実施例1に基づく有機EL表示装置の側端部断面の模式図である。It is a schematic diagram of the side end part cross section of the organic electroluminescence display based on Example 1 of this invention. 本発明の実施例2に基づく有機EL表示装置の側端部断面の模式図である。It is a schematic diagram of the side end part cross section of the organic electroluminescence display based on Example 2 of this invention.

符号の説明Explanation of symbols

1 基板
2 金属電極
3 正孔輸送層
4 発光層
5 電子輸送層
6 透明電極
7 発光光
8 TFT
9 平坦化膜
10 画素分離膜
11−a 保護膜
11−b 保護膜
11−c 保護膜接着界面
12 封止キャップ
13 乾燥剤
14 接着剤
1 Substrate 2 Metal electrode 3 Hole transport layer 4 Light emitting layer 5 Electron transport layer 6 Transparent electrode 7 Light emitted 8 TFT
9 flattening film 10 pixel separation film 11-a protective film 11-b protective film 11-c protective film bonding interface 12 sealing cap 13 desiccant 14 adhesive

Claims (3)

有機EL素子がSiとNを主成分とする2層の保護膜により挟持され、かつ、前記2層の保護膜がパターン端部で互いに接していることを特徴とする有機EL表示装置。   An organic EL display device, wherein an organic EL element is sandwiched between two protective films containing Si and N as main components, and the two protective films are in contact with each other at a pattern end. 2層の保護膜がともにSiNx、SiOxNy、SiHxNyのいずれかであることを特徴とする請求項1記載の有機EL表示装置。   2. The organic EL display device according to claim 1, wherein the two protective films are either SiNx, SiOxNy, or SiHxNy. 有機EL素子が、基板上面側より発光を取り出すトップエミッション素子であることを特徴とする請求項1又は2記載の有機EL表示装置。   3. The organic EL display device according to claim 1, wherein the organic EL element is a top emission element that extracts light emission from the upper surface side of the substrate.
JP2004293817A 2004-10-06 2004-10-06 Organic el display device Withdrawn JP2006107950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293817A JP2006107950A (en) 2004-10-06 2004-10-06 Organic el display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293817A JP2006107950A (en) 2004-10-06 2004-10-06 Organic el display device

Publications (1)

Publication Number Publication Date
JP2006107950A true JP2006107950A (en) 2006-04-20

Family

ID=36377407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293817A Withdrawn JP2006107950A (en) 2004-10-06 2004-10-06 Organic el display device

Country Status (1)

Country Link
JP (1) JP2006107950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140064136A (en) * 2012-11-19 2014-05-28 삼성디스플레이 주식회사 Organic light emitting display apparatus and the manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140064136A (en) * 2012-11-19 2014-05-28 삼성디스플레이 주식회사 Organic light emitting display apparatus and the manufacturing method thereof
KR102048926B1 (en) * 2012-11-19 2019-11-27 삼성디스플레이 주식회사 Organic light emitting display apparatus and the manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5675924B2 (en) Organic optoelectronic device and method for encapsulating said device
JP3817081B2 (en) Manufacturing method of organic EL element
JP3290375B2 (en) Organic electroluminescent device
TWI557893B (en) Organic light emitting diode display and manufacturing method of the same
RU2413338C2 (en) Electric luminescent device
TWI578588B (en) Organic light emitting diode device and method for manufacturing the same
KR20010092414A (en) Organic el element and method of manufacturing the same
JP2007242436A (en) Manufacturing method of organic electroluminescent device, and organic electroluminescent device
JPWO2005122644A1 (en) Organic semiconductor device
JP2007317606A (en) Organic el display device and its manufacturing method
KR20070080834A (en) Organic el device array
JP2007042599A (en) Organic el display and its manufacturing method
EP2464199A1 (en) Anode structure to be used in organic el element, manufacturing method thereof, and organic el element
US20150162564A1 (en) Organic electroluminescence device
KR101835920B1 (en) Thin film encapsulation of organic light emitting diodes
JP4776993B2 (en) Organic electroluminescence device
JP2007059407A (en) Organic electroluminescent display device and organic thin film transistor equipped in same
JP2007073305A (en) Organic el light emitting device and manufacturing method of the same
JP2008108533A (en) Organic el display device
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JP4754387B2 (en) EL device
JP2008010243A (en) Organic el element and manufacturing method therefor
JP2003109750A (en) Organic electroluminescent element
JP2003086357A (en) Light emitting element and manufacturing method of the same
JP2007265764A (en) Organic el element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108