JP2006106573A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2006106573A
JP2006106573A JP2004296124A JP2004296124A JP2006106573A JP 2006106573 A JP2006106573 A JP 2006106573A JP 2004296124 A JP2004296124 A JP 2004296124A JP 2004296124 A JP2004296124 A JP 2004296124A JP 2006106573 A JP2006106573 A JP 2006106573A
Authority
JP
Japan
Prior art keywords
image
density
toner
signal
gradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004296124A
Other languages
English (en)
Inventor
Kazuhiro Oyoshi
和博 大吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004296124A priority Critical patent/JP2006106573A/ja
Publication of JP2006106573A publication Critical patent/JP2006106573A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Accessory Devices And Overall Control Thereof (AREA)
  • Laser Beam Printer (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Fax Reproducing Arrangements (AREA)

Abstract

【課題】 コピー画像の濃度や階調再現性を統一するには、それらの変動を合わせて補正する必要がある。
【解決手段】 画像形成された補正処理に使用する為の所定のパターンから成る少なくともひとつのテストプリントを有し、前記テストプリントの用紙の白レベルを検知し、その値によって補正処理に補正をかける。
【選択図】 図6

Description

本発明は、カラー画像形成装置に関するものである。
従来、カラー画像形成装置の代表例としてフルカラー複写機がある。これは、複数の出力色成分C(Cyan)、M(Magenta)、Y(Yellow)およびK(Black)について面順次に画像を形成するレーザビーム方式のカラー電子写真プリンタであり、画像信号に応じてパルス幅変調した信号によりレーザビームの発光を制御することにより、中間調表現を実現している。また、上記のような画像形成装置においては、所定パターンを像担持体上または記録媒体上に形成し、その所定パターンの濃度を読取ることで、濃度補正、階調補正を行い、出力画像の品質を安定させる手法が知られている。
特開平10-063047号公報
しかしながら、画像形成における画像濃度や階調再現性の変動には、装置環境の変動に起因する短期的な変動や、感光体や現像剤の経時変化に起因する長期的な変動があり、コピー画像の濃度や階調再現性を統一するには、それらの変動を合わせて補正する必要がある。また、どのような紙にプリントされるかによって画像濃度の再現性は変化するので、これも合わせて補正する必要がある。
以上の点に鑑み、本発明によれば以下の手段を講ずることにより上記不具合を解消するものである。
即ち、本発明の画像形成装置は、原稿画像から画像信号を生成する生成手段と、前記画像信号を補正する補正手段と、前記補正手段により補正された画像信号に基づき記録媒体に可視像を形成する形成手段と、前記生成手段により生成される画像信号に基づき、前記画像信号に基づく画像形成における前記補正手段の補正処理および前記形成手段の画像形成条件を設定する設定手段と、操作者により様々な設定を行なう為の操作部と、前記形成手段によって画像形成された、前記補正処理に使用する為の所定のパターンから成る少なくともひとつのテストプリントと、を有し、前記生成手段からの画像信号によって前記テストプリントの用紙の白レベルを検知し、その値によって前記補正処理に補正をかけることを特徴とする。
以上説明したように、本発明によれば、操作者が階調を補正する際に、どのような用紙を使用したとしても短期的及び長期的な画像濃度及び階調再現性の変動を補正することができる。
以下、好ましい実施例として、フルカラー複写機についての詳細な説明をする。なお、本発明はこの実施例に限るものではない。
[画像形成装置概観]
図2に、前記画像形成装置103の概観図を示す。
先ず、複写機としての原稿の複写において、201は、原稿台ガラスであり、読み取られるべき原稿202が置かれる。原稿202は、照明203により照射され、ミラー204、205、206を経て、光学系207により、CCD208上に像が結ばれる。更に、モータ209により、ミラー204、照明203を含む第1ミラーユニット210は、速度Vで機械的に駆動され、ミラー205、206を含む第2ミラーユニット211は、速度1/2Vで駆動され、原稿202の全面が、走査される。
212は、画像処理回路部であり、読み取られた画像情報を電気信号として処理し、画像メモリ108上に一旦保持し、プリント信号として出力する部分である。
画像処理回路部212より出力されたプリント信号は、不図示のレーザードライバーに送られ、不図示の4つの半導体レーザーを駆動する。
213は、ポリゴンミラーであり、不図示の4つの半導体レーザーより発光された4本のレーザー光を受ける。
その内の1本はミラー214、215、216をへて感光ドラム217を走査し、次の1本はミラー218、219、220をへて感光ドラム221を走査し、次の1本はミラー222、223、224をへて感光ドラム225を走査し、次の1本はミラー226、227、228をへて感光ドラム229を走査する。
一方、230はイエロー(Y)のトナーを供給する現像器であり、レーザー光に従い、感光ドラム217上にイエローのトナー像を形成し、231はマゼンタ(M)のトナーを供給する現像器であり、レーザー光に従い、感光ドラム221上にマゼンタのトナー像を形成し、232はシアン(C)のトナーを供給する現像器であり、レーザー光に従い、感光ドラム225上にシアンのトナー像を形成し、233はブラック(Bk)のトナーを供給する現像器であり、レーザー光に従い、感光ドラム229上にブラックのトナー像を形成する。
以上4色(Y、M、C、Bk)のトナー像が用紙に転写され、フルカラーの出力画像を得ることができる。
用紙カセット234、235および、手差しトレイ236のいずれかより給紙された用紙は、レジストローラー237を経て、転写ベルト238上に吸着され、搬送される。給紙のタイミングと同期がとられて、予め感光ドラム217、221、225、229には各色のトナーが現像されており、用紙の搬送とともに、トナーが用紙に転写される。
各色のトナーが転写された用紙は、分離され、搬送ベルト239により搬送され、定着器240によって、トナーが用紙に定着され、排紙トレイ241に排紙される。
両面動作の場合には、用紙カセット234、235および、手差しトレイ236のいずれかより給紙された用紙は、レジストローラー237を経て、転写ベルト238上に吸着され、搬送される。給紙のタイミングと同期がとられて、予め感光ドラム217、221、225、229には各色のトナーが現像されており、用紙の搬送とともに、第1面の画像形成が行なわれ、トナーが用紙に転写される。
各色のトナーが転写された用紙は、分離され、搬送ベルト239により搬送され、定着器240によって、トナーが用紙に定着され、排紙偏向板により排紙縦パス246を通過して、両面反転部245へ搬送される。そして用紙通過して規定時間後、両面反転部入口ローラが逆回転し、用紙は反転して両面パス前搬送部247へ搬送され、両面パス244へ搬送される。このとき両面パス244上の用紙は上側が第1面の画像となっている。用紙が両面パスに搬送されると紙揃えをした後直ちに再給紙を行い、第2面目の画像形成が行なわれ、定着器240通過後排紙トレイ241に排紙される。複数の用紙で連続的に両面動作を行なうときには両面パスからの再給紙と、用紙トレイからの給紙が交互に行われることになる。
なお、4つの感光ドラム217、221、225、229は、距離dをおいて、等間隔に配置されており、搬送ベルト239により、用紙は一定速度vで搬送されており、このタイミング同期がなされて、4つの半導体レーザーは駆動される。
[画像信号の流れ]
図1に画像信号の流れを示す。
208はCCDセンサであり、読み込まれた画像が、レッド(R)、グリーン(G)、ブルー(B)の3つの色成分毎に、それぞれディジタル信号として出力される。
112は、マスキング回路であり、次式による演算により、入力された(R0、G0、B0)信号を標準的な(R、G、B)信号に変換する。
|- -| |- -| |- -|
| R | | c11 c12 c13 | | R0 |
| G | = | c21 c22 c23 | | G0 |
| B | | c31 c32 c33 | | B0 |
|- -| |- -| |- -| ・・・・・(1)
但し、cij(i=1、2、3 j=1、2、3)は、CCDセンサの感度特性/照明ランプのスペクトル特性等の諸特性を考慮した装置固有の定数である。
104は輝度/濃度変換部であり、RAMもしくはROMのルックアップテーブルにより構成され、次式の様に演算がおこなわれる。
C1 = −α×log10(R/255)
M1 = −α×log10(G/255) ・・・・・(2)
Y1 = −α×log10(B/255) (αは定数)
106は出力マスキング/UCR回路部であり、M1、C1、Y1信号を画像形成装置のトナー色であるY、M、C、Bk信号に変換する部分であり、次式の演算が成される。
|- -| |- -| |- -|
| C | | a11 a21 a31 a41 | | C1 |
| M | = | a12 a22 a32 a42 | | M1 |
| Y | | a13 a23 a33 a43 | | Y1 |
| Bk | | a14 a24 a34 a44 | | Bk1 |
|- -| |- -| |- -| ・・・・・(3)
但し、aij(i=1、2、3、4 j=1、2、3、4)は、トナーの色味諸特性を考慮した装置固有の定数であり、さらに、
Bk1 = min(C1、M1、Y1) ・・・・・(4)
以上、上記(2)、(3)、(4)式に基づき、CCDセンサーで読み込まれたR、G、B信号に基づいたC1、M1、Y1、Bk1信号をトナーの分光分布特性に基づいたC、M、Y、Bk信号に補正して出力する。
一方、105は文字/線画検出回路であり、原稿画像中の各画素が、文字または線画の一部分であるか否かを判定し、判定信号TEXT(TEXT1,TEXT2)を発生する文字/線画検出回路である。107は圧縮/伸張回路であり、画像信号(R、G、B)および文字/線画判定信号TEXT(TEXT1,TEXT2)を圧縮し、情報量を落とした後にメモリ108に格納すると共に、メモリ108より読み出されたデータにより、画像信号(R、G、B)および文字/線画判定信号TEXT(TEXT1,TEXT2)を伸張するものである。なお、画像圧縮/伸張回路については特に記載はしない。
312は、ガンマ補正回路であり、LUTによりプリンタの特性に応じたガンマ補正が施される。
[複写機単体での動作]
複写機単体の動作を説明する。複写機動作の場合には、CCD208で読み込まれた画像信号は、マスキング回路112、輝度/濃度変換部104を経て、圧縮/伸張回路にて圧縮後にメモリ108に書き込まれる。また、文字/線画判定回路105によって判定された文字/線画判定信号TEXT(TEXT1,TEXT2)も圧縮/伸張回路にて圧縮後にメモリ108に書き込まれる。
更に、メモリ108より読み出されたデータは、圧縮/伸張回路107によって伸張され、複写機の画像形成タイミングに従って送られ、不図示のPWM回路を通じてレーザードライバーに送られる。そのタイミングチャートを図3に示す。
図3において、CCD208によって読みとられた画像は、401に示されるタイミングにて、メモリ108に書き込まれる。更に、メモリ108上に書き込まれた画像データは、402、403、404および405に示されるタイミングで読み出される。402、403、404および405に示されるタイミングの関係は、図示の通りに、時間d/v間隔をあけて、読み出される。ここで、すでに説明したが、dは等間隔に配置された4つのドラム間隔であり、vは搬送ベルトにより搬送される用紙の速度である。
[PWM回路]
図4はPWM回路の構成例を示すブロック図である。ただし、図4の構成は一色分であり、YMCKの各色ごとに図4の構成が必要になる。
601はD/A変換器で、入力されるディジタル画像信号をアナログ信号に変換し、コンパレータ605へ送る。602は階調性を重視する画像用の三角波発生器であり、二画素周期の三角波を発生する。また、603は解像度を重視する画像用の三角波発生器であり、一画素周期の三角波を発生する。608は特に解像度を重視する画像用の三角波発生器であり、二分の一画素周期の三角波を発生する。604はセレクタで、判定信号TEXT(TEXT1,TEXT2)に応じて三つの三角波の何れかを選択し、コンパレータ605に送る。
以上の構成により、判定信号TEXT(TEXT1,TEXT2)に応じて、文字または線画を構成する像域で、特に解像度を重視する像域においては、三角波発生器608から出力される特に解像度を重視する画像用の三角波と、アナログ信号とが、コンパレータ605により比較される。また、文字または線画を構成する像域においては、三角波発生器603から出力される解像度を重視する画像用の三角波と、アナログ信号とが、コンパレータ605により比較される。また、文字または線画以外を構成する像域においては、三角波発生器602から出力される階調性を重視する画像用の三角波と、アナログ信号とが、コンパレータ605により比較される。コンパレータ605の出力はPWM信号として、半導体レーザ素子607を駆動するレーザドライバ606へ入力される。
図5A〜図5Cはパルス幅変調の様子を示す図で、図5Aは階調性を重視する画像におけるパルス幅変調の様子を示している。D/A変換器601の出力801と、二画素周期の三角波802とが比較され、PWM信号803が得られる。また、図5Bは解像度を重視する画像におけるパルス幅変調の様子を示している。D/A変換器601の出力804と、一画素周期の三角波805とが比較され、PWM信号806が得られる。また、図5Cは特に解像度を重視する画像におけるパルス幅変調の様子を示している。D/A変換器601の出力807と、二分の一画素周期の三角波808とが比較され、PWM信号809が得られる。
実際には、PWM信号803と806と809とが、判定信号TEXT(TEXT1,TEXT2)により適応的に切替えられて出力されるので、形成する画像の像域特性に応じた好ましい画像形成が行われることになる。
[自動階調補正の概要]
[第一の自動階調補正]本実施形態は、フルカラー画像の形成時における画像濃度および階調安定性を得るために、二種類の濃度および階調制御(以下「自動階調補正」と呼ぶ)を行っている。まず、第一の自動階調補正における第一の制御について説明する。
●第一の制御
図7は第一の自動階調補正における第一の制御例を示すフローチャートである。また、図8Aから8Fは画像形成装置103の操作パネルの表示例である。
操作パネルの図示しない「自動階調補正」キーが押されると、第一の制御がスタートする。操作パネルには図8Aに示す画面が表示がされ、「テストプリント1」キーが押されると、図7に示すステップS101で、テストプリント1が出力される。このとき、テストプリント1を形成するために必要な記録紙がない場合は警告が表示される。また、テストプリント1を形成するときは、画像形成装置103の環境条件に応じた標準のコントラスト電位(後述)を初期値として用いる。テストパターン1は、図9に示すように、最大濃度パッチ(濃度信号レベル255)を含む、Yパッチ群1001および1005、Mパッチ群1002および1006、Cパッチ群1003および1007、並びに、Kパッチ群1004および1008の各四行16列の64階調分のグラデーションパッチ群からなる。これら64階調のパッチには、全部で256階調あるうちの低濃度領域を重点的に割当てることで、ハイライト部における階調特性を良好に調整することができる。また、パッチ群1001、1002、1003および1004は解像度400LPI(lines/inch)のパッチで構成され、パッチ群1005、1006、1007および1008は800LPIのパッチで構成されている。なお、二つの解像度で同一の階調パターンのパッチ群を出力してもよいが、解像度の違いで階調特性が大きく異なる場合は、解像度に応じた階調パターンを設定するのが好ましい。
次に、操作パネルには図8Bに示す画面が表示され、出力されたテストプリント1が原稿台ガラス201上におかれ「読み込み」キーが押されると、ステップS102で、テストプリント1の読取りが開始される。
ステップs102で「読み込み」キーが押された際にテストプリント1以外の原稿が原稿台に置かれていた場合や、テストプリント1の原稿台への置き方が正しくない場合(s103)には、図8Eに示すような操作パネルに警告のメッセージを表示し(s112)、操作者が正しくテストプリント1を原稿台にセットし直した後、再度ステップs102の読み込みを行なう。テストプリント1の原稿台への置き方が正しいかどうかの判定は、読み込みの際に、サンプリングされた画像信号レベルを所定の値と比較することによって行なうことができる。
また、テストプリント1をプリントした際に使用された用紙がどのような用紙であるかも、例えば用紙の4角をサンプリングした値を所定の値と比較することによって判定することができる。この判定結果によって、紙種による白レベルの違いを考慮して最大濃度を補正する際にオフセットをつけて補正処理を行なう。(s104)
テストプリント1の各パターンのRGBデータは輝度濃度変換部104のLUTにより光学濃度に換算される。なお、輝度濃度変換部104のLUTには式(2)を用いて算出された係数が予め設定されている。つまり、式(2)の補正係数αは光学濃度が得られるように調整されている。
次に、このようにして得られた濃度情報から、最大濃度を補正する方法を説明する。図10Aは感光ドラムの表面電位の相対値(以下、単に「表面電位」という)と、上記で得られた濃度情報との関係を示す図である。
テストプリント1の形成に用いたコントラスト電位、すなわち現像バイアス電位により一次帯電された感光ドラムが、最大発光レベルで駆動される半導体レーザ素子から出力されるレーザビームにより走査されたときの感光ドラムの表面電位差をaとし、そのときの最大濃度をDaとする場合、最大濃度付近の領域では、感光ドラムの表面電位に対する濃度値は、図10Aに実線Lで示すようなリニアな関係になることがほとんどである。ただし、二成分現像系では、現像器内のトナー濃度が変化して低下した場合、図10Aに破線Nで示すように、最大濃度付近の領域で、感光ドラムの表面電位に対する濃度値がノンリニアになる場合がある。従って、最終的な最大濃度の目標値1.6に0.1のマージンを見込んで、1.7を最大濃度の制御目標値に設定して制御量を決定する。
なお、コントラスト電位bは次式を用いて求める。ただし、kaは補正係数であり、ステップS105において現像方式の種類によりKaを最適化するのが好ましい。
b = (a + ka)×1.7/Da …(10)
次に、コントラスト電位bから、グリッド電位および現像バイアス電位を求める方法について簡単に説明する。図10Bはグリッド電位と感光ドラムの表面電位の関係例を示す図である。
グリッド電位Vgを-300Vに設定し、半導体レーザ素子の発光レベルを最小にして感光ドラムをレーザビームで走査したときの表面電位Vd、および、半導体レーザ素子の発光レベルを最大にして感光ドラムをレーザビームで走査したときの表面電位Vlを、表面電位計708(図6参照)で測定する。同様に、グリッド電位Vgを-700Vに設定した時のVdおよびVlを測定する。得られた-300Vおよび-700Vのデータからその間を補間し、外挿することで、グリッド電位Vgと感光ドラムの表面電位の関係を求める。この電位データを求める制御を「電位測定制御」と呼ぶ。
そして、得られたVdから画像にトナー付着する所謂被りトナーが発生しないように、所定の電位差Vback(例えば150V)を設けて現像バイアスVdcを設定する。コントラスト電位Vbは現像バイアスVdcとVlの差分電圧であり、Vbが大きい程、最大濃度が大きくとれる。また、求めたコントラスト電位Vbを得るためのグリッド電位Vgおよび現像バイアス電位Vdc図10Bから求めることができる。
本実施形態では、ステップS106で、前述したように最大濃度の目標値1.7が得られるようにコントラスト電位Vbを求め、そのコントラスト電位Vbが得られるようにグリッド電位Vgおよび現像バイアス電位Vdcを設定する。
次に、γ補正部312の役割および階調を補正する方法について説明する。図11は濃度再現特性例を示す特性変換チャートである。
図11に示す第一領域Iは、原稿画像を濃度信号に変換する画像読取特性を示し、第二領域IIは濃度信号にガンマ補正を施すγ補正部312の変換特性を示し、第三領域IIIはレーザ出力信号と画像濃度との関係を示すプリンタのガンマ特性を示し、第四領域IVは原稿濃度と出力画像濃度との関係を示す。つまり、第四領域IVの特性は画像形成装置103における総合的な階調特性を表すことになる。なお、本実施形態では、各色8ビットのディジタル信号を扱うので、各色の階調数は256である。
また、最大濃度の目標値を高めに設定する最大濃度制御により、第三領域IIIのプリンタのガンマ特性は実線Jで示すようになる。もし、最大濃度の目標値を高めるような制御を行わない場合、プリンタのガンマ特性は、実線Hで示すように、目標濃度1.6に達しない可能性がある。実線Hの特性を示すプリンタの場合、ガンマ補正部312をどのように設定しても、ガンマ補正部312は最大濃度を上げる能力はもち合わせていないので、濃度DHと1.6の間の濃度は再現不可能になる。
画像形成装置103では、第四領域IVの特性をリニアにするために、第三領域IIIのプリン夕のガンマ特性が曲っている分、第二領域IIのガンマ変換特性により補正している。γ補正部312に与えるガンマ変換特性は、第三領域IIIのプリンタのガンマ特性の入出力関係を逆にするだけで、容易に得ることができる。
次に、ステップS107で、図8Cに示す操作パネルの表示に従い、テストプリント2が出力される。なお、テストプリント2を出力する際は、γ補正部312のガンマ補正機能は停止される。
テストプリント2は、図12に示すように、Yパッチ群1101および1105、Mパッチ群1102および1106、Cパッチ群1103および1107、並びに、Kパッチ群1104および1108の各四行16列の64階調分のグラデーションパッチ群からなる。これら64階調のパッチには、全部で256階調あるうちの低濃度領域を重点的に割当てることで、ハイライト部における階調特性を良好に調整することができる。また、パッチ群1101、1102、1103および1104は解像度200LPI(lines/inch)のパッチで構成され、パッチ群1105、1106、1107および1108は400LPIのパッチで構成されている。なお、二つの解像度で同一の階調パターンのパッチ群を出力してもよいが、解像度の違いで階調特性が大きく異なる場合は、解像度に応じた階調パターンを設定するのが好ましい。
次に、操作パネルには図8Dに示す画面が表示され、出力されたテストプリント2が原稿台ガラス201上におかれ「読み込み」キーが押されると、ステップS108で、テストプリント2の読取りが開始される。
ステップs108で「読み込み」キーが押された際にテストプリント2以外の原稿が原稿台に置かれていた場合や、テストプリント2の原稿台への置き方が正しくない場合(s109)には、図8Fに示すような操作パネルに警告のメッセージを表示し(s113)、操作者が正しくテストプリント2を原稿台にセットし直した後、再度ステップs108の読み込みを行なう。テストプリント2の原稿台への置き方が正しいかどうかの判定は、読み込みの際に、サンプリングされた画像信号レベルを所定の値と比較することによって行なうことができる。
そして、ステップS110で、輝度濃度変換部104から出力される濃度情報は、レーザ出力レベルと、対応するパッチの位置情報とともにメモリに記憶される。
この段階で、図11の第三領域IIIに示したプリンタのガンマ特性を求めることができ、ステップS111で、得られたガンマ特性の入出力関係を入れ換えることにより、γ補正部312のガンマ変換特性を設定する。なお、ガンマ変換特性を求める際に、テストプリント2の階調パターン数しかデータがないので、濃度信号の0から255まで全レベルにレーザ出力レベルが対応するように、不足するデータを補間処理により補う。
●第二の制御
次に、第一の自動階調補正における第二の制御について説明する。
潜像の現像を継続的に行うと、現像器内の現像剤のトナー濃度が低下し、現像性の低下が起こる。また、周囲環境の変化、現像工程の繰返しなどによっても現像性の変化が起こり、結果として、画像濃度および階調再現性が変化することになる。
本実施形態においては、画像濃度および階調再現性の変化を抑え、安定な濃度および階調再現性を得るために、第二の制御として、感光体ドラム上にテストパターンを形成し、その濃度を感光体ドラムに対向する位置に設置した画像濃度センサ709(図6参照)により検知して、画像濃度および階調再現性を制御する画像濃度検知制御を行う。さらに、有彩色の画像形成に関して、各現像器内に設置されたトナー濃度センサにより、現像器内の現像剤のトナー濃度を検知して制御する現像剤濃度検知制御を行う。なお、画像濃度センサ709やトナー濃度センサは、例えばLEDの発光部、および、発光部から出力された光を受信するフォトダイオードの受光部からなる。
本実施形態では、有彩色の現像工程、すなわちYMC各色の画像形成においては、画像濃度検知制御により出力される信号を、現像剤濃度検知制御の補正に使用する。以下、Yの画像形成一例として、現像剤濃度検知制御について説明する。
現像器230内には、前記のトナー濃度センサが設けられている。このトナー濃度センサは、二成分現像剤中のトナーが赤外光を反射し、逆にキャリアが赤外光を吸収する特性を用いるものである。つまり、現像器230内の現像剤にLEDにより赤外光を照射し、現像剤により反射される赤外光の光量をフォトダイオードにより検知することで、現像剤のトナー濃度を算出する。そして、算出されたトナー濃度に応じてトナーを補給することにより、画像濃度を制御するものである。
現像器230に現像剤を投入した直後、現像剤未使用の状態での現像剤の反射光量をフォトダイオードで測定し、フォトダイオードの出力をSIG(init-Y)とする。SIG(init-Y)は、現像剤のトナー濃度の制御目標値としてメモリに記憶される。
次に、画像形成工程が開始され現像剤の使用が開始されると、一画像の形成ごとに、そのときの現像剤に対してフォトダイオードの出力SIG(cal-Y)を測定し、メモリに格納されているSIG(init-Y)との差分△SIGを計算する。
△SIG(Y) = SIG(init-Y) - SIG(cal-Y) …(11)
式(11)と、予め測定されたトナー濃度が1重量%分変動する当りの出力感度値RATEにより、そのときのトナー濃度の初期値からのずれ量△Dを算出する。
△D = △SIG / RATE …(12)
ずれ量△Dの計算値により、現像器230内に補給されるトナー量が決定される。つまり、ずれ量△Dがマイナスの場合はそのずれ量△Dに見合う分のトナーを補給し、また、ずれ量△Dがプラスの場合はトナーの補給を停止する。例えば、△Dが-1重量%のときは1重量%相当のトナーを補給し、△Dが+1重量%のときはトナーを補給しない。このようにして、初期のトナー濃度を維持するような制御を行う。
次に、画像濃度検知制御について説明する。
画像濃度検知制御は、所定のタイミングで実行され、感光ドラム217上に濃度検知用の参照画像としてパッチ画像を形成する。すなわち、パターンジェネレータにより発生される予め定められた濃度に対応する信号レベルのパッチ画像信号をPWM回路に供給する。これによって、予め定められた濃度に対応するパッチ静電潜像が感光ドラム217上に形成され、このパッチ静電潜像を現像器230により現像する。なお、パッチの濃度は、現像特性を最も制御し易い値に設定されている。これにより、画像濃度のみならず、階調再現性をも所望の特性に制御することができる。
次に、パッチトナー像の濃度を画像濃度センサ709により測定する。測定されたパッチ濃度は現像器230内の現像剤のトナー濃度に対応する。
より具体的に説明すると、画像濃度センサ709のフォトダイオードから出力される信号S(sig-Y)は、図示しない差分器の一方の入力端子へ供給される。この差分器の他方の入力端子には、パッチの規定濃度(初期濃度)に対応する基準信号S(int-Y)が入力されている。従って、差分器からは、パッチトナー像の濃度と初期濃度との差分、つまり濃度差を示す信号S(cal-Y)が出力される。信号S(cal-Y)はCPU300aに供給される。この信号S(cal-Y)は、前述した現像剤濃度検知制御による現像器230へのトナー補給制御の補正に使用される。
一般に、現像剤のトナー濃度が高くなると、画像濃度が濃くなり、逆に現像剤のトナー濃度が低くなる画像濃度が薄くなる。また、環境変動あるいは耐久劣化などにより現像効率の変化が発生する。従って、現像剤濃度検知制御のみでは一定の画像濃度が保証されない。そのため、本実施形態においては、画像濃度検知制御により得られる濃度差を示す信号S(cal-Y)に基づいて、現像剤濃度検知制御の目標値SIG(init-Y)を調整している。
現像剤濃度検知制御の目標値SIG(init-Y)の具体的な調整方法を説明するが、初期の現像剤のトナー濃度が6重量%であるとする。トナー濃度センサの出力に基づき、トナー濃度が6重量%になるようにトナーが補給された状態で、画像濃度検知制御を行い、パッチの濃度が初期濃度に比べて低く、初期濃度に戻すにはトナーが5g必要であると判断された場合、現在のトナー濃度は約1重量%低い状態にあると考えられる。従って、現像剤濃度検知制御の目標値を6重量%から新規の目標値SIG(tgt-Y)の7重量%に変更し、その後は新規の目標値で現像剤濃度検知制御を行う。これにより、画像濃度を所望の値に保つことが可能になる。勿論、本実施形態の現像器においてはトナー5gが約1重量%に対応するが、現像器が異なればこの値も異なる。
[第二の自動階調補正]
上述した第一の自動階調補正における第二の制御を用いて、現像剤のトナー濃度を制御し、さらに、感光ドラム上に形成したパッチ濃度により、トナー濃度の制御目標値を補正することで現像特性の変動を抑え、画像濃度および階調再現性を安定に保つことが可能になる。
しかしながら、画像濃度および階調再現性は、第二の制御により補正される現像特性だけによって決まるものではない。例えば、感光ドラムの光減衰特性の変化、レーザビームの強度変化、装置の機械的精度の変動など、様々な要因で画像濃度および階調再現性は変動する。これらの要因による画像濃度および階調再現性の変化を、上述した第一の自動階調補正における第一の制御により吸収することはできない。つまり、第一の制御により上記の要因による変動を補正すると、第二の制御の条件に変化を与えることになり、所望する制御性能が得られないばかりか、第一の制御により補正した分を第二の制御により元に戻す、つまり補正前の不良な状態へ戻すことになってしまう。
そこで、本実施形態においては、第一の制御と第二の制御とを効果的に適用するために、第一の制御の結果に基づいて、第二の制御を調整する。以下、Yの制御を一例として具体的に説明する。
画像濃度検知制御におけるパッチは、階調再現性を保証するために予め決められた最適な濃度で形成される。すなわち、パターンジェネレータから出力されるパッチ画像信号はγ補正部312へ送られ、所望の濃度が得られるようにガンマ変換され、ガンマ変換されたパッチ画像信号により感光ドラム上にパッチが形成される。
さて、γ補正部312のガンマ変換特性は第一の制御により適宜変更されることは、上述したとおりである。従って、感光ドラム上に形成されるパッチ濃度は、第一の制御を行うことにより予め設定された最適の濃度に調整されることになる。
新たに設定されたγ補正部312のガンマ変換特性を使用して、パッチを形成し検知したパッチ濃度S(sig-Y)と基準信号S(int-Y)とから得られる濃度差信号S(cal-Y)を基準信号の補正値S(adj-Y)としてメモリに保存し、以降、基準信号S(int-Y)に補正値S(adj-Y)を加減した新たな基準信号S(aint-Y)をパッチの規定濃度(初期濃度)として前述した画像濃度検知制御を行う。これにより、第一の制御によって補正された、所望の画像濃度と最適な階調特性を画像濃度検知制御を用いて維持することが可能になる。
さらに、第一の制御を行った際には、現像剤のトナー濃度が制御の過渡期にあり、画像濃度検知制御よって新たに設定された目標値SIG(tgt-Y)に収束していない場合がほとんどである。そこで、本実施形態においては、第一の制御を行うと同時に、トナー濃度センサによりトナー濃度SIG(cal-Y)を検出し、これを新たな目標値SIG(tgt-Y)に置換える。これにより、第一の制御によって補正された、所望の画像濃度と最適な階調特性を現像剤濃度制御を用いて維持することが可能になる。
上述したように、本実施形態においては、本発明にかかる第一の制御により画像濃度および階調再現性を制御し、第二の制御により画像濃度および階調再現性を制御する。さらに、第一の制御の結果に基づき、第二の制御を調整することにより、安定した画像濃度および階調再現性によりフルカラー画像を形成することが可能になる。
画像信号の流れを示す図 画像形成装置概観図 複写機単体としての動作を示すタイミングチャート PWM回路の構成例を示すブロック図 (A)〜(C)はパルス幅変調の様子を示す図 画像形成部の詳細な構成例を示す図 第1の自動階調補正における第1の制御例を示すフローチャート (A)〜(F)は画像形成装置の操作パネルの表示例 テストプリント1の一例を示す図 (A)〜(B)濃度情報から最大濃度を補正する方法を説明する図 濃度再現特性例を示す特性変換チャート テストプリント2の一例を示す図

Claims (1)

  1. 原稿画像から画像信号を生成する生成手段と、
    前記画像信号を補正する補正手段と、
    前記補正手段により補正された画像信号に基づき記録媒体に可視像を形成する形成手段と、
    前記生成手段により生成される画像信号に基づき、前記画像信号に基づく画像形成における前記補正手段の補正処理および前記形成手段の画像形成条件を設定する設定手段と、操作者により様々な設定を行なう為の操作部と、
    前記形成手段によって画像形成された、前記補正処理に使用する為の所定のパターンから成る少なくともひとつのテストプリントと、を有し、
    前記生成手段からの画像信号によって前記テストプリントの用紙の白レベルを検知し、その値によって前記補正処理に補正をかけることを特徴とする画像形成装置。
JP2004296124A 2004-10-08 2004-10-08 画像形成装置 Withdrawn JP2006106573A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296124A JP2006106573A (ja) 2004-10-08 2004-10-08 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296124A JP2006106573A (ja) 2004-10-08 2004-10-08 画像形成装置

Publications (1)

Publication Number Publication Date
JP2006106573A true JP2006106573A (ja) 2006-04-20

Family

ID=36376364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296124A Withdrawn JP2006106573A (ja) 2004-10-08 2004-10-08 画像形成装置

Country Status (1)

Country Link
JP (1) JP2006106573A (ja)

Similar Documents

Publication Publication Date Title
JP5388772B2 (ja) 画像形成装置
JP5094100B2 (ja) 画像形成装置
US9659242B2 (en) Apparatus that performs calibration for maintaining image quality
US8988728B2 (en) Calibration method executed in image forming apparatus
EP1326426A2 (en) Image processing apparatus
JP5676965B2 (ja) 画像形成装置
JP2009055606A (ja) 画像形成装置及びその濃度階調制御方法
US8643858B2 (en) Image forming apparatus with calibration function
JP2002296851A (ja) 画像形成装置およびキャリブレーション方法
JP2003054078A (ja) 画像形成装置および画像形成装置の制御方法およびプログラムおよび記憶媒体
US9516196B2 (en) Image forming apparatus that performs calibration for maintaining image quality
US7787006B2 (en) Image forming apparatus capable of forming excellent image
JP2015018170A (ja) 画像形成装置、画像形成方法およびプログラム
JP5247058B2 (ja) 画像形成装置
US10126694B2 (en) Image forming apparatus capable of performing calibration
JPH08289149A (ja) 画像記録装置およびその方法
JP6201281B2 (ja) 画像形成装置、画像形成方法、プログラムおよび記録媒体
JP2002199145A (ja) 画像形成装置およびキャリブレーション方法
JP2006106573A (ja) 画像形成装置
JP2005121850A (ja) 画像形成装置
JP3472257B2 (ja) 画像処理方法、記録媒体
JP2003307883A (ja) 画像形成装置
JP2017198973A (ja) 画像形成装置
JP5375682B2 (ja) 画像形成装置、画像形成方法及びプログラム
JP2005123763A (ja) 画像形成装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108